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Abstract

An exhaustive dataflow-analysis algorithm associates with each point in a program a set of “dataflow facts”
that are guaranteed to hold whenever that point is reached during program execution. By contrast, a
demand dataflow-analysis algorithm determines whether a single given dataflow fact holds at a single given
point.

This paper presents a new demand algorithm for interprocedural dataflow analysis. The algorithm has

four important properties:
e It provides precise (mmeet-over-all-interprocedurally-valid-paths) solutions to a large class of problems.
e It has a polynomial worst-case cost for both a single demand and a sequence of all possible demands.

e The worst-case total cost of the sequence of all possible demands is no worse than the worst-case cost

of a single run of the best known exhaustive algorithm for the same class of problems.

e Experimental results show that in many situations (e.g., when only a small number of demands are
made, or when most demands are answered yes) the demand algorithm is faster than the current best

exhaustive algorithm.
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1. Introduction

An exhaustive dataflow-analysis algorithm associates with each point in a program a set of “dataflow facts”

that are guaranteed to hold whenever that point is reached during program execution. This information can

be used in a variety of software engineering tools (for example, to provide feedback to the programmer

about possible errors such as the use of an uninitialized variable, or to determine whether a restructuring

transformation is meaning-preserving) or can be used by an optimizing compiler (in choosing valid optim-

izing transformations).

It is not always necessary to compute complete dataflow information at all program points. A demand

dataflow-analysis algorithm determines whether a given dataflow fact holds at a given point

[Bab78,Due93,Rep94c,Rep94a,Rep94b,Due95]. Demand analysis can sometimes be preferable to exhaus-

tive analysis for the following reasons:

Narrowing the focus to specific points of interest. Software-engineering tools that use dataflow
analysis often require information only at a certain set of program points. Similarly, in program optimi-
zation, most of the gains are obtained from making improvements at a program’s “hot spots”—in par-
ticular, its innermost loops. However, current tools typically include a phase during which an exhaus-
tive interprocedural dataflow-analysis algorithm is used. There is good reason to believe that the use of
a demand algorithm will greatly reduce the amount of extraneous information computed.

Narrowing the focus to specific dataflow facts of interest. Even when dataflow information is desired
for every program point p, the full set of dataflow facts at p may not be required. For example, it is
probably only useful to determine whether the variables used at p might be uninitialized, rather than
determining that information for all of the variables in the procedure.

Reducing work in preliminary phases. In problems that can be decomposed into separate phases, not
all of the information from one phase may be required by subsequent phases. For example, the May-
Mod problem determines, for each call site, which variables may be modified during the call
[Ban79,Co088]. This problem can be decomposed into two phases: computing side effects disregard-
ing aliases (the so-called DMod problem), and computing alias information [Ban79,C0089,C0083].
Given a demand (e.g., “What is the MayMod set for a given call site ¢7”), a demand algorithm has the
potential to reduce drastically the amount of work spent in earlier phases by propagating only relevant
demands (e.g., “What are the alias pairs (x, y) such that x is in DMod(c)"?).

Demand analysis as a user-level operation. It is desirable to have program-development tools in
which the user can ask questions interactively about various aspects of a program
[Mas80,Wei84,Lin84,Hor86]. Such tools are particularly useful when debugging, when trying to
understand complicated code, or when trying to transform a program to execute efficiently on a parallel
machine. Because it is unlikely that a programmer will ask questions about all program points, solving

just the user’s sequence of demands is likely to be significantly less costly than an exhaustive analysis.



Of course, determining whether a given fact holds at a given point may require determining whether other,
related facts hold at other points (and those other facts may not be “facts of interest” in the sense of the
second bullet-point above). It is desirable, however, for a demand dataflow-analysis algorithm to minimize
the amount of such auxiliary information computed. Certainly the worst-case cost of a demand dataflow-
analysis algorithm (for one demand) should be no worse than the worst-case cost of the best exhaustive
algorithm. Furthermore, it is desirable that the information computed in response to one demand be reus-
able, so as to minimize the cost of a sequence of demands; we call algorithms that are able to reuse infor-
mation in this way caching demand algorithms. Ideally, the worst-case total cost of the sequence of
demands that produces complete dataflow information should be no worse than the worst-case cost of a sin-
gle run of the best possible exhaustive algorithm; we call this the same-worst-case-cost property. Since no
non-trivial lower bounds (other than undecidability results) are currently known for dataflow analysis, it is
not possible to determine whether a demand algorithm has the same-worst-case-cost property; however, it
is possible to determine whether a demand algorithm has this property with respect to a particular exhaus-
tive algorithm.

This paper presents a new caching demand algorithm for interprocedural dataflow analysis. The new

algorithm, which is an improved version of the one reported in [Hor95], has four important properties:
e It provides precise (meet-over-all-interprocedurally-valid-paths) solutions to a large class of problems.
e [t has a polynomial worst-case cost for both a single demand and a sequence of all possible demands.

e It has the same-worst-case-cost property with respect to the exhaustive algorithm given in [Rep95].
That algorithm is currently the best exhaustive algorithm for the class of dataflow problems that can be
handled precisely by our demand algorithm: the IFDS problems defined in Section 2.1 (i.e., of the
exhaustive algorithms that can handle all IFDS problems, the one given in [Rep95] has the best asymp-

totic worst-case running time).

e Experimental results show that in many situations (e.g., when only a small number of demands are
made, or when most demands are answered yes) the demand algorithm is faster than the algorithm from

[Rep95].

The remainder of the paper is organized as follows: Section 2 provides background material. First, the
class of dataflow-analysis problems that can be handled by our algorithm is defined. Second, we show how
to transform a dataflow-analysis problem in this class into a special kind of graph-reachability problem.
Section 3 presents our new algorithm, which solves demands for dataflow-analysis information by solving
equivalent graph-reachability demands. Experimental results on C programs are reported in Section 4.

Section 5 discusses related work.



2. Background

2.1. The IFDS Dataflow Framework

The algorithm given in Section 3 can be used to solve any interprocedural dataflow-analysis problem in
which the dataflow facts form a finite set D, and the dataflow functions (which are of type 2°—2P) distri-
bute over the meet operator (either union or intersection). We call this class of problems the interpro-
cedural, finite, distributive, subset problems, or IFDS problems, for short. The IFDS problems include all
locally separable problems-—the interprocedural versions of classical “bit-vector” or “gen-kill” problems
(e.g., reaching definitions, available expressions, and live variables)—as well as non-locally-separable
problems such as truly-live variables [Gie81], copy-constant propagation [Fis88, pp. 660], and possibly-
uninitialized variables. The IFDS framework was defined in [Rep95], where we presented an efficient
exhaustive algorithm for solving IFDS problems. That definition is summarized below.

The IFDS framework is a variant of Sharir and Pnueli’s “functional approach” to interprocedural
dataflow analysis [Sha81], with an extension similar to the one given by Knoop and Steffen in order to han-
dle programs in which recursive procedures have local variables and parameters [Kno92]. These frame-
works generalize Kildall’s concept of the “meet-over-all-paths” solution of an intraprocedural dataflow-
analysis problem [Kil73] to the “meet-over-all-valid-paths” solution of an interprocedural dataflow-
analysis problem.

In Kildall’s framework, an instance of a dataflow-analysis problem consists of a bounded lower semi-
lattice (the dataflow information) with meet operator 1, a flowgraph (representing the program), and an
assignment of dataflow functions to the edges of the flowgraph. If all of the dataflow functions are distri-
butive, Kildall’s algorithm computes the meet-over-all-paths solution to the problem instance. Similarly, in
the IFDS framework, an instance of a dataflow-analysis problem (or IFDS problem, for short) consists of

the following:

e A finite set D (the dataflow information).

e A meet operator 1. The algorithm given in Section 3 requires that the meet operator be union. How-
ever, the algorithm can still be used to solve problems for which the meet operator is intersection: such
problems can always be transformed to a complementary problem in which the meet operator is union,
and the algorithm can then be applied.

o A supergraph G (a collection of flowgraphs, one for each procedure). In supergraph G *, a procedure
call is represented by two nodes, a call node and a return-site node. In addition to the ordinary
intraprocedural edges that connect the nodes of the individual flowgraphs, for each procedure call—
represented by call-node ¢ and return-site node r—=G “ has three edges: an intraprocedural call-to-
return-site edge from ¢ to r; an interprocedural call-to-start edge from c to the start node of the called

procedure; an interprocedural exit-fo-return-site edge from the exit node of the called procedure to r.



(The call-to-return-site edges are included so that the IFDS framework can handle programs with
local variables and parameters; the dataflow functions on call-to-return-site and exit-to-return-site edges
permit the information about local variables and value parameters that holds at the call site to be com-
bined with the information about global variables and reference parameters that holds at the end of the
called procedure.)

e An assignment of distributive dataflow functions (of type 2P — 2Py to the edges of the supergraph.

Given an instance of an IFDS problem, a dataflow fact d € D, and a flowgraph node n, the demand algo-
rithm given in Section 3 determines whether fact d is in the meet-over-all-valid-paths solution at node n.
The distinction between meet-over-all-paths and meet-over-all-valid-paths is necessary to capture the idea
that not all paths in G " represent potential execution paths. A valid path is one that respects the fact that a
procedure always returns to the site of the most recent call, To understand the algorithm of Section 3, it is
useful to distinguish further between a same-level valid path (a path in G * that starts and ends in the same
procedure, and in which every call has a corresponding return) and a valid path (a path that may include

one or more unmatched calls).

Example. Figure 1 shows an example program and its supergraph G *. In G, the path
Startygy — nl — n2 — start, — nd — exit, — n3
is a (same-level) valid path; the path
startygm, —> nl = n2 — start, — n4

is a non-same-level valid path (because the call-to-start edge n2 — start, has no matching exit-to-return-

site edge); the path
starty, —> nl — n2 - start, — n4d — exit, — n8

is not a valid path because the exit-to-return-site edge exif, — n8 does not correspond to the preceding
call-to-start edge n2 — start,.

In Figure 1, the supergraph is annotated with the datafiow functions for the “possibly-uninitialized vari-
ables” problem. The “possibly-uninitialized variables” problem is to determine, for each node n in G ", the
set of program variables that may be uninitialized just before execution reaches n. A variable x is possibly
uninitialized at n either if there is an x-definition-free valid path from the start of the program to n, or if
there is a valid path from the start of the program to # on which the last definition of x uses some variable y
that itself is possibly uninitialized. For example, the dataflow function associated with edge n6 — n7
shown in Figure 1 adds a to the set of possibly-uninitialized variables after node n6 if either a or g is in the

set of possibly-uninitialized variables before node n6. O

The IFDS framework can be used for languages with a variety of features (including procedure calls,

parameters, global and local variables, and pointers). Encoding a problem in the IFDS framework may in



declare g: integer
A S Sexfa>

procedure main

begin Y
declare x: integer start L start
main s hl
read(x) ENTER main F ENTER P
call P(x) i
end A8 (xg) ;oo ASS
ni nd
procedure P (value a: integer) READ(x) IFa>0
begin ASS
if (a > 0) then A 5-(x] i \ ;
read n
a:= c(zg)— g "2 READ(g)
call P (a) CALL P‘ ASS ‘ A SS-1g)
print(a, g) ASS-(g) ASSY "
3 a=a-g
end n3 "
RETURN A Sil (ae S)or (e S)
FROMP ‘ then SU {a}
iss w7 else S—{a})
o CALLP
it ¥ AsS-a
main
EXIT main "
RETURN
FROM P
LS S-{a) /] ‘ 2SS
H ) ny
ASS-fa} } i/ PRINT(2,g)
/ ASS
v.\'ifl,
| Exite
(a) Example program (b) Its supergraph G*

Figure 1. An example program and its supergraph G*. The supergraph is annotated with the dataflow functions for
the “possibly-uninitialized variables” problem. The notation S<x/a> denotes the set S with x renamed to a.

some cases involve a loss of precision; for example, in languages with pointers there may be a loss of pre-
cision for problem instances in which there is aliasing. Once a problem has been encoded in the IFDS
framework, the demand algorithm presented in this paper provides (with no further loss of precision) an
efficient way to determine whether a particular dataflow fact is in the meet-over-all-valid-paths solution to

the problem.

2.2. From Dataflow-Analysis Problems to Realizable-Path Reachability Problems

In this section, we show how to convert IFDS problems to “realizable-path” graph-reachability problems.
This is done by transforming an instance of an IFDS problem (a supergraph G " in which each edge has an
associated distributive function in 2°-2%) into an exploded supergraph G”, in which each node (1, d)
represents dataflow fact d e D at supergraph node n, and each edge represents a dependence between

dataflow facts at different supergraph nodes.
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The key insight behind this “explosion” is that a distributive function fin 2°-—2% can be represented
using a graph with 2 D +2 nodes; this graph is called f's representation relation. Half of the nodes in this
graph represent f°s input; the other half represent its output. D of these nodes represent the “individual”
dataflow facts that form set D, and the remaining node (which we call 0) essentially represents the empty
set. An edge 0 — d means that d is in f (S) regardless of the value of § (in particular, d is in f (J)). An
edge d — d, means that d, is not in f (&), and is in f (S) whenever d, is in S. Every graph includes the
edge 0 —> 0; this is so that functional composition corresponds to compositions of representation relations

(this is explained below).

Example. The main procedure shown in Figure 1 has two variables, x and g. Therefore, the representa-
tion relations for the dataflow functions associated with this procedure will each have six nodes. The func-
tion associated with the edge from start,,;, to nl is AS.{x, g}; that is, variables x and g are added to the set
of possibly-uninitialized variables regardless of the value of S. The representation relation for this function

is:

0 =
0 e

The representation relation for the function AS.S — {x} (which is associated with the edge from n/ to n2)

is shown below. Note that x is never in the output set, and g is there iff it is in §.

© Of—)
= O QO
- VP SN SN

O

A function’s representation relation correctly captures the function’s semantics in the sense that the
representation relation can be used to evaluate the function. In particular, the result of applying function f
to input S is the union of the values represented by the “output” nodes in f's representation relation that are
the targets of edges from the “input” nodes that represent either 0 or a node in S. For example, consider
applying the dataflow function AS.S — {x} to the set {x} using the representation relation shown above.
There is no edge out of the initial x node, and the only edge out of the initial 0 node is to the final 0 node,
so the result of this application is &. The result of applying the same function to the set {x, g} is {g},

because there is an edge from the initial g node to the final g node.
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The composition of two functions is represented by “pasting together” the graphs that represent the indi-
vidual functions. For example, the composition of the two functions discussed above: AS.S — {x} o

AS.{x, g}, is represented as follows:

0 x g
o0 I
Yo

0 x g
graph represent the result of applying the composed functions. For example,

]

Paths in a “pasted-together’
there is a path in the graph shown above from the initial 0 node to the final g node. This means that g is in
the final set regardless of the value of § to which the composed functions are applied. There is no path
from an initial node to the final x node; this means that x is not in the final set, regardless of the value of S.
To understand the need for the 0 — 0 edges in the representation relations, consider composing the two
example functions in the opposite order: AS.{x, g} o AS.S ~ {x}. This function composition is represented

as follows:

0O =

O ffm—)
O
[0 B R @

Note that both x and g are in the final set regardless of the value of S to which the composed functions are
applied. This is reflected in the graph shown above by the paths from the initial 0 node to the final x and g
nodes. However, if there were no edge from the initial 0 node to the intermediate 0 node, there would be
no such paths, and the graph would not correctly represent the composed functions.

Returning to the definition of the exploded supergraph G*: Each node n in supergraph G " is “exploded”
into D + 1 nodes in G¥, and each edge m—sn in G" is “exploded” into the representation relation of the

function associated with m—>n. In particular:
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(i) For every node nin G", there is a node (1, 0) in G*.

(i) Forevery node nin G", and every dataflow fact d € D, there is a node {n, d) in G*.
Given function f associated with edge m —n of G*:

(ili) There is an edge in G* from node {(m, 0) to node {n, d) for every d & f (D).

(iv) There is an edge in G* from node (n, d,) to node {(n, d,) for every d,, d, such that d, € f ({d, })
and d, € f (D).

(v) There is an edge in G¥ from node {m, 0) to node {1, 0).

Because “pasted together” representation relations correspond to function composition, a path in the
exploded supergraph from node {1, d,) to node {im, d,) means that if dataflow fact d; holds at supergraph
node 7, then dataflow fact d, will hold at node m. By looking at paths that start from node (start,;,, 0)
(which represents the fact that no dataflow facts hold at the start of procedure main) we can determine
which dataflow facts hold at each node. However, recall that we are not interested in all paths in the
exploded supergraph; we are only interested in those that correspond to valid paths in the supergraph G .
We call those paths in G its realizable paths; similarly, we call a path in G* that corresponds to a same-
level valid path in G* a same-level realizable path. [Rep94a) includes a proof that dataflow fact d holds at

supergraph node 7 iff there is a realizable path in G* from node {start,;,, 0) to node (n, d).

Example. The exploded supergraph that corresponds to the instance of the “possibly-uninitialized vari-
ables” problem shown in Figure 1 is shown in Figure 2. The dataflow functions are replaced by their
representation relations. In Figure 2, closed circles represent nodes that are reachable along realizable
paths from (start,,,;,, 0). Open circles represent nodes not reachable along realizable paths. (For example,
note that nodes (18, g) and {n9, g) are reachable only along non-realizable paths from (start,,;,, 0).) As
stated above, this information indicates the nodes’ values in the meet-over-all-valid-paths solution to the
dataflow-analysis problem. For instance, the meet-over-all-valid-paths solution at node exif, is the set {g}.
(That is, variable g is the only possibly-uninitialized variable just before execution reaches the exit node of
procedure p.) In Figure 2, this information can be obtained by determining that there is a realizable path

from (start,,,;,, 0) to (exit,, g), but not from {start,,,, 0 to {exit,, a). O

3. A Demand Algorithm for IFDS Problems

In this section, we show how to solve demand IFDS problems by solving equivalent realizable-path reacha-
bility demands. The algorithm, called the Demand-Tabulation Algorithn, is presented in Figure 3. The
top-level function of the algorithm is called IsMemberOfSolution. The call IsMemberOfSolution((#, 2))
returns true iff there is a realizable path from node {start,,,;,, 0) to node {n, d Yin G*. Such a path exists iff
the meet-over-all-valid-paths solution to the dataflow-analysis problem at node 7 of G " includes dataflow

fact d.
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0 x g start . start P 0a g
o0 main I :.
ENTER main i ENTER P
Y Y
0 : g nl '_,': :': n4 0a g
READ(x) IFa>0
Y e
053 2 READ(g) ®
‘ CALLP *
- - - Yy
T 4 né 0a g
| ) .
0 x g n3 ar=a-g
RETURN ‘
FROM P !
R n7 0ag
Y | CALLP °QJ)
exit '-_. 4. o - o A
2 (X) % o main *
EXIT main : -

i e * 111)

Figure 2. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem
shown in Figure 1. Closed circles represent nodes of G¥ that are reachable along realizable paths from (start,,, 0).
Open circles represent nodes not reachable along such paths.
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declare
G* = (N*, E*Y: global exploded supergraph
PathEdge, SummaryEdge: global edge set, initially empty ‘ /* These sets are preserved across calls */
ReachableNodes: global node set, initially {(n, 0) |ne N*) /* This set is preserved across calls */
VisitedNodes: global node set, initially empty /% This set is preserved across calls */

function IsMemberOfSolution({1z, d/): exploded supergraph node) returns boolean
declare en: exploded supergraph node or Failure
begin _

[11 en = BackwardDFS({1, d})

[2] if en = Failure then

[3] return(false)

[4] else

[5] UpdateReachableNodes(ern)

[6] return(frue)

[71 fi
end

function BackwardDFS({ii, d)) returns exploded supergraph node or Failure
declare EdgeWorkList: edge set; NodeStack: node stack
begin _

[8]  push (i, d) onto NodeStack

[9]  while NodeStack is not empty do

[10]  pop a node {n, d) from NodeStack

[11]  if(n, d) € ReachableNodes then

[12] return((n, d))

[13] else if (n, d) & VisitedNodes then

[14] insert {1, d) into VisitedNodes

[15] switch n

[16] case 1 is a return-site node :
[17] let ¢ be the call node that corresponds to 1, and let p be the procedure called at ¢
[18] EdgeWorkList := &
[19] for each d’ such that {exit,, d) —={n, d)e E * do Propagate({exit,, d') — {exit,, d"), EdgeWorkList) od
[20] BackwardTabulateSLRPs(EdgeWorkList)
[21] for each d’ such that {¢, dy — {n, d) e (E*USummaryEdge) and {c, d’) & VisitedNodes do push {c, d’) onto NodeStack od
[22] end let
[23] end case
[24] case n is the start node of procedure p :
[25] for each ¢ € Callers(p) do
[26] for each d” such that (¢, d"Y— (1, dYe E# and {c, d’) € VisitedNodes do push (¢, d") onto NodeStack od
[27} od
[28] end case
[29] default :
[30] for each (m, d’) such that (m, d’)— (n, dYe E* and {m, d’) & VisitedNodes do push {1, d*) onto NodeStack od
[31] end case
[32] end switch
[33] fi
[34] od
[35] return(Failure)
end

procedure UpdateReachableNodes({n1y, d,): exploded supergraph node)
declare NodeWorkList: node set =
declare {(n, d), (m, d’): exploded supergraph node
begin
[36] insert (iy, d,) into NodeWorkList
[37] while NodeWorkList # & do
[38] Select and remove an exploded supergraph node (1, d) from NodeWorkList
[39] insert (i1, d) into ReachableNodes
[40} remove (1, d) from VisitedNodes
[41] for each (i, d’) such that ({n, d) = (m, d’) & (E* USummaryEdge)) and (n, d)— {(n, d’) is not an exit-to-return-site edge, and
({m, d") e VisitedNodes) and ({m, d’) € ReachableNodes) do
[42] Insert {m, d”y into NodeWorkList
[43] od
[44] od
end

Figure 3. The Demand-Tabulation Algorithm determines whether dataflow fact d holds at flowgraph node n. Pro-
cedures BackwardTabulateSLRPs and Propagate are given in Figure 4.
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IsMemberOfSolution consists of a backward phase (performed by function BackwardDFS) followed by
a forward phase (performed by procedure UpdateReachableNodes). BackwardDFS performs a backward
depth-first search of G¥ starting from “demand” node (i1, EZ), to determine whether the demand node can be
reached via a realizable path from node (start,,;,,0). UpdateReachableNodes is called only when
BackwardDFS is successful. The purpose of UpdateReachableNodes is to update two sets, Reacha-
bleNodes and VisitedNodes, that are maintained across calls to IsMemberOfSolution in order to prevent
repeating work done on a previous call.

The ReachableNodes and VisitedNodes sets are used and maintained as follows:

ReachableNodes
An exploded-graph node {1, d) is placed in set ReachableNodes when it has been determined that there
is a realizable path from (start,,.,, 0) to (n, d). Before the first call on IsMemberOfSolution is per-
formed, ReachableNodes is initialized to { {n, 0) } for all supergraph nodes #.

As soon as function BackwardDFS encounters a node (n, d) that is in ReachableNodes, the backward
depth-first search is terminated, and node (1, d) is returned (line 12). (The fact that {n, d) is reachable
via a realizable path from (start,;,, 0) together with the fact that BackwardDFES only visits nodes from
which there is a realizable path to the “demand” node (n, E), means that there is a realizable path from
(start, g, 0 to (7, d).)

Procedure UpdateReachableNodes starts at the node (1, d) returned by BackwardDFS, and performs
a forward traversal of G*, following only the edges that were traversed backwards by BackwardDFS.
All of the nodes that it encounters are reachable from {start,,, 0) via a realizable path, so they are
added to ReachableNodes. (This update of ReachableNodes is part of what makes the Demand-
Tabulation Algorithm a caching algorithm. The algorithm would still be correct if UpdateReacha-
bleNodes followed all edges other than exit-to-return-site edges, but it would increase the time required

for a single demand.)

VisitedNodes

Between invocations of IsMemberOfSolution, the exploded-graph nodes in set VisitedNodes are those
for which it has been determined that there is no realizable path from (start,;,, 0). During an invoca-
tion of IsMemberOfSolution, nodes visited for the first time are added to this set (line 14); those deter-
mined to be reachable from (start,,,, 0) by a realizable path are transferred from this set to the
ReachableNodes set by procedure UpdateReachableNodes (lines 39 and 40). Note that when
BackwardDFS returns Failure, none of the nodes that have been added to VisitedNodes by
BackwardDFS are reachable from {start,,,;,, 0), so it is not necessary for IsMemberOfSolution to call
UpdateReachableNodes.

An interesting aspect of BackwardDFS is how it ensures that only nodes from which there is a realizable

path to demand node {n, d) are visited. This is accomplished by the call to BackwardTabulateSLRPs at
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line 20, which occurs when the node {n, d) popped from the stack corresponds to a return-site node (i.e., n
is a return-site node in G*). The purpose of BackwardTabulateSLRPs is to find summary edges, which
represent transitive dependences due to procedure calls: A summary edge of the form {c, d,)—>(r, d5)
(where ¢ is a call node and r is the matching return-site node) represents a same-level realizable path from
{c,d;) to {r, d»). Summary edges are recorded in the (global) set named SummaryEdge. After calling
BackwardTabulateSLRPs, BackwardDFS can continue its backward traversal across the newly discovered

summary edges (line 21).

declare G* = (N*, E*): global exploded supergraph
declare PathEdge, SummaryEdge: global edge set, initially empty /* These sets are preserved across calls */

procedure BackwardTabulateSLRPs(EdgeWorkList: edge set)

begin
[45] while EdgeWorkList # & do
[46] Select and remove an edge (1, d,) = {exit,, d) from EdgeWorkList
[47] if (n, d,) is {start,, 0)) or ((start,, 0) — (exit,, d) & PathEdge) then
[48] switch n

[49] case n a return-site node :
[50] let ¢ be the call node that corresponds to 72, and g be the procedure cailed at ¢
[51] for each d, such that {exit,, d,)— {n, d,)e E* do Propagate({exit,, d») — {exit,, d»), EdgeWorkList) od
[52] for each d, such that {c, d. )= {n, d,)e (E*USummaryEdge) do ﬁropagate((c, dy) —(exit,, d), EdgeWorkList) od
[53] end let
[54] end case
[55] case 72 the start node of procedure p :
[56] for each ¢ € Callers(p) do
[57] let ¢ be ¢’s procedure, and r be the return-site node that corresponds to ¢
[58] for each d, d, such that (c, d,} = (n, d;)e E and (exit,, d) —(r, d3) € E* do
[59] if {c, d4)— (r, ds) & SummaryEdge then
[60] Insert {c, d4)— (r, d3) into SummaryEdge
[61] for each d, such that {r, d3) — (exit,, d,) € PathEdge do Propagate({c, d,) — (exit,, d ), EdgeWorkList) od
[62] fi
[63] od
[64] end let
[65] od
[66] end case
[67] default :
[68] for each m, d, such that (m, d,)—(n, d,)€ E* do Propagate((m, d,)— {exit,, d), EdgeWorkList) od
[69] end case
[70] end switch
{711 £
[72] od
end
procedure Propagate((n, d ) — (exit,, d): edge, EdgeWorkList: edge set)
begin

[73] ifd, is 0 then
[74] n = start,
[751 fi
[76] if(n, d)— (exit,, d)& PathEdge then
[771 Insert (2, d ) — (exit,, d) into PathEdge
[78] Insert {n, d,)— {exit,, d) into EdgeWorkList
[791 fi
end

Figure 4. Procedure BackwardTabulateSLRPs finds summary edges and records them in set SummaryEdge.
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BackwardDFS calls three auxiliary subprograms: Callers, Propagate, and BackwardTabulateSLRPs.
Function Callers(p) returns the set of call nodes that represent calls on p; procedures Propagate and
BackwardTabulateSLRPs are shown in Figure 4. As discussed above, the purpose of BackwardTabula-
teSLRPs is to find summary edges, and to record them in the set named SummaryEdge. In order to do this,
BackwardTabulateSLRPs finds path edges (which represent same-level realizable paths in G*) whose tar-
gets are nodes of the form (exit,, d) (i.e., nodes of G? that correspond to exit nodes of G*). It records all
such path edges in the (global) set named PathEdge.

Procedure BackwardTabulateSLRPs is a worklist algorithm that starts with an initial worklist containing
a set of zero-length path edges (edges of the form (exit,, d) — (exit,, d)); on each iteration of the main loop
it deduces the existence of additional path edges and summary edges.

In terms of leading quickly to a “yes” answer to a demand, the best thing that can happen in Backward-
TabulateSLRPs is to discover a path edge whose source is a “0” node (i.e., a path edge of the form
(n, 0) = (exit,, d)). In this case, the answer to the current demand is guaranteed to be “yes.” However,
BackwardTabulateSL.RPs cannot simply quit, because it is vital that the PathEdge and SummaryEdge sets
be left in a consistent state to ensure that subsequent calls to IsMemberOfSolution return the correct
answer. In particular, BackwardTabulateSLRPs must finish finding all path edges whose targets are some
node other than (exit,, d). On the other hand, there is no need to process any more path edges to {exit,, d).
Therefore, on discovering such an edge, BackwardTabulateSLRPs inserts the path edge
(start,, 0) — (exit,, d) into PathEdge and into the worklist (lines 74, 77 and 78). This situation is illustrated
below. The solid bold arrow represents the path edge whose source is a “0” node, and the dotted bold
arrow represents the new path edge that is inserted into PathEdge and the worklist.

< xmrtp , 0> <e.\'1tp ,d>

',
pcLIT

<n, 0>

Furthermore, when a path edge is taken off the worklist (line 46) it is processed only if it is itself of the
form (start,, 0) — (exit,, d), or if that path edge has not yet been discovered.

The configurations that are used by BackwardTabulateSLRPs to deduce the existence of path edges and
summary edges are depicted in Figure 5. The first two diagrams of Figure 5 correspond to the case where n
is a return-site node; the next two diagrams correspond to the case where n is a start node; and the final
diagram corresponds to the default case. In Figure 5, the bold dotted arrows represent edges that are

inserted into sets PathEdge and SummaryEdge if they were not previously in those sets.
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Figure 5. These five diagrams show how procedure BackwardTabulateSLRPs deduces the existence of new path and
summary edges.
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Example. When IsMemberOfSolution is called with the exploded supergraph node {19, g) from the
example shown in Figure 2, (i.e., the demand “Might g be uninitialized at node n9?” is made), the follow-

ing steps are performed (all line numbers refer to lines in Figure 3):

1. BackwardDFS is called with node (19, g).

2, Node (n9, g) is pushed onto NodeStack at line 8, and then popped off (into (n, d)) at line 10.

3. Node (n9, g) is inserted into VisitedNodes at line 14. The default case of the switch (line 29) is taken,
and node (18, g) is pushed onto NodeStack.

4. Node (n8, g) is popped from NodeStack; n8 is a return-site node, so the case on line 16 is selected, and
BackwardTabulateSLRPs is called for the first time. This causes summary edge {n7, g) — (18, g) to be
inserted into SummaryEdge (and causes several other edges to be inserted into PathEdge).

5. Node {n7, g) is pushed onto NodeStack at line 21.

6. Node (n7, g) is popped from NodeStack; the default case is taken, and node (16, g) is pushed onto
NodeStack.

7. Node (n6, g) is popped from NodeStack; the default case is taken, but there are no edges that satisfy the
for-loop condition (line 30).

8. NodeStack is now empty, so BackwardDFS returns Failure, and IsMemberOfSolution returns false. [

3.1. Cost Of The Demand-Tabulation Algorithm

In this section we discuss the time and space requirements of the Demand-Tabulation Algorithm. To

express these costs in terms of the size of the (unexploded) supergraph, we will use the following parame-

ters:
N the number of nodes in supergraph G*
E the number of edges in supergraph G*
Call the number of call nodes in supergraph G *
D the size of set D

The maximum number of exploded supergraph and summary edges (and thus, the worst-case time and
space requirements of the Demand-Tabulation Algorithm) varies depending on what class of dataflow-
analysis problems is being solved. There are two interesting sub-classes of the distributive dataflow-

analysis problems: the h-sparse problems and the locally separable problems.

Definition 3.1. A problem is li-sparse if all problem instances have the following property: For each func-
tion f on an ordinary intraprocedural edge or a call-to-return-site edge of G”, the number of edges in G*

that represent function f, excluding edges that emanate from the 0 node, is at most zD. [

In general, when the nodes of G" represent individual statements and predicates (rather than basic
blocks), and when there is no aliasing, we expect most distributive problems to be /i-sparse (with 1 < D):
Each statement changes only a small portion of the execution state, and accesses only a small portion of the

state as well. Therefore, the dataflow functions, which are abstractions of the statements’ semantics,
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should be “close to” the identity function. The identity function is represented using D + 1 edges; thus, the

number of edges needed to represent each dataflow function should be roughly D.

Example. When the nodes of G " represent individual statements and predicates, and there is no alias-
ing, every instance of the possibly-uninitialized variables problem is 2-sparse. The only non-identity
dataflow functions are those associated with assignment statements. The outdegree of every non-0 node in
the representation of such a function is at most two: a variable’s initialization status can affect itself and at

most one other variable, namely the variable assigned to. O

Definition 3.2. A problem is locally separable if all problem instances have both of the following proper-

ties:

o Intraprocedural dataflow functions have only component-wise dependences: For each function f on an
ordinary intraprocedural edge or a call-to-return-site edge of G ", for each dataflow fact d, either d is
not in f (S) for any S, or disin f (8) for all §, or disin f (S) iff 4 is in S. In other words, while there is
no restriction on the number of out-going edges from the initial 0 node of a function’s representation
relation, every other initial node d must either have no out-going edges, or a single out-going edge to

final node d.

e Corresponding calls and returns have related dataflow functions: If the representation relation for the
dataflow function associated with a call-to-start edge ¢ —s includes the edge {c, d,) — (s, d), then the
representation relation for the dataflow function associated with the corresponding exit-to-return-site

edge e — reither includes the edge (e, d,) — (r, d,), or exploded node {¢, d,) has no outgoing edge. []

The locally separable problems are the interprocedural versions of the classical separable problems from
intraprocedural dataflow analysis (also known as gen/kill or bit-vector problems). All locally separable

problems are 1-sparse, but not vice versa.

Another parameter that affects the running time of the Demand-Tabulation Algorithm is the “bandwidth”
for the transmission of dataflow information between procedures. In particular, the times given here rely
on the fact that it is always possible to construct G* so the maximum outdegree of a non-0 node in a call-
to-start edge’s representation relation, and the maximum indegree of a non-0 node in an exit-to-return-site
edge’s representation relation are both 1. (See the Appendix of [Rep95] for a more complete discussion of
this issue.) The implementation reported in Section 4 constructs G* so that these properties hold.

The table in Figure 6 summarizes the worst-case size of the exploded supergraph G¥ (in terms of the
number of exploded edges) as well as the worst-case number of summary edges that might be added by the
Demand-Tabulation Algorithm for distributive, h-sparse, and locally-separable dataflow-analysis problems
(the number of summary edges added in the worst-case is the same for a single demand and for a sequence

of all possible demands). In practice, we have found that the actual numbers are much smaller than those
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Class of functions | Graph-theoretic characterization of Number of edges in G* | Number of added sum-
the dataflow functions’ properties mary edges

Distributive Upto O(D 2 edges/representation-relation O (ED?) O (CallD?)

h-sparse At most O (hD) edges/representation-relation || O (hED) 0 (CallD?)

Locally separable | O (D) edges/representation-relation O(ED) O (CallD)

Figure 6. Worst-case space requirements for the exploded supergraph for three different classes of dataflow-analysis
problems.

in this table (see Figure 9). The table in Figure 7 summarizes the worst-case times required for the
Demand-Tabulation Algorithm for six different classes of problems. In each case, the time given is the
worst-case time for a single demand. The details of the analysis of the running time of the Demand-
Tabulation Algorithm can be found in [Rep94a].

The most efficient exhaustive algorithm known for the class of IFDS problems is the one given in
[Rep95]. Its worst-case running times are almost identical to the times given in Figure 7; the only differ-
ence is that for an intraprocedural, locally separable problem, the bound for the exhaustive algorithm is
O (ED), while the bound for the Demand-Tabulation Algorithm is O (E). The similarity in the worst-case
running times of the two algorithms reflects the fact that (theoretically) a dataflow fact at one point might
depend on all other facts at all other points. In practice, however, we have found that the Demand-
Tabulation Algorithm (applied to a single demand) is much faster than the exhaustive algorithm (see Figure

).

3.2. The Same-Worst-Case-Cost Property

We have designed the Demand-Tabulation Algorithm so that it has the same-worst-case-cost property with
respect to the exhaustive algorithm of [Rep95]. In particular, a call to IsMemberOfSolution can re-use the
sets ReachableNodes, VisitedNodes, PathEdge, and SummaryEdge, whose values are preserved across

calls. When the Demand-Tabulation Algorithm is used with a request sequence that places demands on all

Asymptotic running time
Class of functions || Intraprocedural | Interprocedural
problems problems
Distributive O (ED?) O (ED?)
h-sparse O (hED) O (Call D? + hED?)
Locally separable || O(E) O(ED)

Figure 7. Asymptotic running time of the Demand-Tabulation Algorithm (for answering a single demand) for six dif-
ferent classes of dataflow-analysis problems.
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nodes of G¥, BackwardDFS and UpdateReachableNodes will each traverse a given edge in G# at most
once during the processing of the request sequence. BackwardTabulateSLRPs will traverse a given sum-
mary edge or an edge of G¥ in procedure p at most D times: once for each node of the form (exity, d).
(The information accumulated in sets PathEdge and SummaryEdge prevents procedure BackwardTabula-
teSLRPs from performing additional work, and the information accumulated in ReachableNodes and Visi-
tedNodes prevents BackwardDFES and UpdateReachableNodes from performing additional work.) In gen-
eral, this is bounded by O (E D?), which is the same amount of work that could be performed in the worst
case by the exhaustive algorithm given in [Rep95]. Thus, the Demand-Tabulation Algorithm has the
same-worst-case-cost property with respect to the exhaustive algorithm.

While this is an important property, it does not, of course, mean that the Demand-Tabulation Algorithm
will always outperform the exhaustive algorithm. First, the constant factors are different for the two algo-
rithms. Second, there will be problem instances for which the exhaustive algorithm will not achieve its
worst-case cost. Therefore, there will be times when the exhaustive algorithm will outperform the

Demand-Tabulation Algorithm (see Figure 12).
4. Experimental Results

4.1. Background to the Experiments

We have carried out two experiments to compare the performance of the Demand-Tabulation Algorithm to
that of the exhaustive algorithm of [Rep95], and two further experiments to study the trade-offs between
the benefit and overhead of the caching performed by the Demand-Tabulation Algorithm. In all of our
reported results, running times reflect the trimmed mean of five data points (i.e., all experiments were run
five times, and the average running times were computed after discarding the high and low values).

Three different analysis algorithms were used in the study: (1) the Demand-Tabulation Algorithm, as
described above, (2) a non-caching version of the Demand-Tabulation Algorithm (that returns true as soon
as it visits a node of the form {n, 0), reinitializes the set VisitedNodes to &J after each invocation of IsMem-
berOfSolution, does not maintain the set ReachableNodes, but does preserve the sets PathEdge and Sum-
maryEdge across calls to IsMemberOfSolution),! and (3) the exhaustive algorithm reported in [Rep95].

The three algorithms described above were implemented in C and used with a front end that analyzes a
C program, builds the program’s control-flow graph, and then generates the corresponding exploded super-

graph for five dataflow-analysis problems:

'The non-caching algorithm does not have the same-worst-case-cost property with respect to the exhaustive algorithm. In the worst
case, on a request sequence that places demands on all nodes of G¥, the non-caching algorithm could perform as much as Q(V E D)
work, which is worse than the O (£ D?) bound on the work performed by the exhaustive algorithm.
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Possibly-Uninitialized Variables
This is the problem that we have used as our running example.

Simple Uninitialized Variables
This is the locally separable version of the possibly-uninitialized variables problem, in which a variable
is considered to be initialized whenever it is the target of an assignment, regardless of whether the
right-hand-side expression includes possibly-uninitialized variables. (So every simple uninitialized
variable is also possibly uninitialized, but not vice versa.)

Live Variables
This is the standard, locally separable problem in which variable x is considered to be live at super-
graph node n iff there is a path from n to the end of the program on which x is used before being
defined. It is useful to identify assignments to non-live variables: Programming tools might flag them
as indicating possible logical errors, and optimizing compilers can use this information to perform
dead-code elimination (i.e., by removing such assignments).

Truly Live Variables
This is a non-locally-separable (and more accurate) version of the live-variables problem in which vari-
able x is considered to be truly live at supergraph node n iff there is a path from » to the end of the pro-
gram on which x is used in a truly live context before being defined, where a truly live context means:
in a predicate, or in a call to a library routine, or in an expression whose value is assigned to a truly live
variable [Gie81]. Because it is non-locally-separable, the truly-live-variables problem is in some sense
a harder problem than the live-variables problem; its results are also more accurate (every truly live
variable is also live, but not vice versa) and thus, for example, can lead to more opportunities for dead-
code elimination.

Some assignments to variables that are live but not truly live can be discovered by repeatedly solving
the live-variables problem and removing assignments to non-live variables until no more assignments
to non-live variables are found. However, there are two potential disadvantages to solving the live
variables problem rather than the truly live variables problem: the problem needs to be solved repeat-
edly, and in the presence of cycles in the control-flow graph, there may be assignments to non-truly-live
variables that are never discovered (and thus cannot be reported as logical errors or removed).

Constant Predicates
This is a non-locally-separable problem that seeks to determine, for every predicate that consists of a
single identifier, whether that predicate is guaranteed to have a constant value (either frue—non-
zero—or false—zero). To do this, it performs a simple kind of copy-constant propagation, tracking, for
every scalar variable x, whether x might be non-zero, zero, or L (an unknown value). Given a predi-
cate that consists of just the identifier x, if the dataflow fact <x, non-zero> holds at that points, while
neither fact <x, zero>, nor fact <x, > holds at that point, then the predicate is guaranteed to be true

(and similarly, it is possible to determine when the predicate is guaranteed to be false).
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In our experiments, procedure calls via pointers to procedures, and aliasing due to pointers were handled

by our C front end as follows:

o For all of the dataflow-analysis problems, every call via a pointer was considered to be a possible call
to every procedure of an appropriate type that was passed as a parameter or whose value was assigned
to a variable somewhere in the program.

o For all of the dataflow-analysis problems, every memory write via a pointer was considered to be a pos-
sible write of every piece of heap-allocated storage and of every variable to which the “address-of”
operator (&) was applied somewhere in the program.

e For the live variables, truly live variables, and constant-predicates problems, every memory read via a
pointer was considered to be a possible read of every piece of heap-allocated storage and of every vari-
able to which the “address-of” operator was applied somewhere in the program.

e For the possibly-uninitialized variables problem, memory reads were considered to read only the value
of the pointer itself. This is because the results of this analysis are suitable for providing feedback to
the programmer rather than for guiding an optimizing compiler; it is more important to avoid
overwhelming the programmer by reporting hundreds of possibly-uninitialized variables than to be sure
that absolutely every possibly-uninitialized variable has been reported. (For the simple uninitialized-
variables problem, reads via pointers are irrelevant, since a variable that is the target of an assignment

is considered to be initialized regardless of which variables are used to compute the assigned value.)

Of course, the results of the two live-variable analysis problems and of the constant-predicates problem
might be improved if we first did a pointer analysis and then used the results of that analysis in setting up
the dataflow functions (rather than treating pointers as described above). However, it is interesting to note
that even with this very simple treatment of pointers we are able to identify a significant number of assign-
ments to dead variables (see Figure 8) and some constant predicates. Furthermore, the goal of our experi-
ments was to compare the performance of the caching-demand, non-caching-demand, and exhaustive algo-
rithms. We were looking for insights about the characteristics of a dataflow problem that predict which
algorithm will be best; these characteristics should be independent of the particular problems used, or how
they were defined.

Tests were carried out on a Sun SPARCstation 20 Model 61 with 128 MB of RAM. The study used 53
C programs—some standard UNIX utilities, some programs from the SPEC integer benchmark suite [92],
and some programs used for benchmarking in previous studies [Lan93,Aus94]. For each program, the
table in Figure 8 gives the number of lines of preprocessed source code (with blank lines removed), the
parameters that characterize the size of the control-flow graphs (number of procedures, number of call
sites, number of control-flow graph nodes), and, for each of the five dataflow-analysis problems, the
number of “interesting” program-point/datafiow-fact pairs (see the next paragraph), and the number of
these pairs that are in the meet-over-all-valid-paths solution (i.e., if demands are made for all “interesting”

program-point/dataflow-fact pairs, this is the number of demands that would be answered yes).
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Recall that demand analysis is potentially preferable to exhaustive analysis whenever the full set of all
dataflow facts at all points is not required. In this case, it may be more efficient to use a demand algorithm,
issuing demands only for the program-point/dataflow-fact pairs of interest. To test whether this is true in
practice, one of our experiments compares the time required by the exhaustive algorithm to the time
required by the Demand-Tabulation Algorithm to answer all “interesting” demands, where “interesting” is
defined for each of our dataflow problems as follows: For the two versions of the “uninitialized-variables”
problem, every use of a scalar variable x gives rise to the demand “might x be uninitialized here?”; for the
two versions of the “live variables” problem, every assignment to a scalar variable x gives rise to the
demand “is x live here?”; and for the “constant predicates” problem, every instance of a predicate that con-
sists only of the identifier x gives rise to three demands: “might x be zero here?”, “might x be non-zero
here?”, and “might x be L here?”.?

The table in Figure 9 provides information about the size of the dataflow domain for each dataflow prob-
lem for each test program, the sizes of the exploded supergraphs, and the number of summary edges added
by the Demand-Tabulation Algorithm when processing all “interesting” demands.

In the following subsections, the times reported for the experiments include the time used to build the
exploded supergraphs and to perform dataflow analysis on those graphs (they do not include the time used
by the front end to build the test programs’ control-flow graphs). Figure 10 shows the ratios of the times
used to build the exploded supergraphs to the times used for analysis. Five graphs are shown: one for the
exhaustive algorithm, one for the Demand-Tabulation Algorithm used to answer a single demand (using
the average time for 20 randomly selected demands), one for the Demand-Tabulation Algorithm used to
answer all interesting demands, one for the non-caching demand algorithm used to answer a single demand
(using the average time for the same 20 demands used for the Demand-Tabulation Algorithm), and one for
the non-caching algorithm used to answer all interesting demands.

It is interesting to compare these ratios with the ratios predicted by the table in Figure 7 (showing the
asymptotic running times of the Demand-Tabulation Algorithm for distributive, h-sparse, and locally separ-
able problems). For the h-sparse problems (truly live variables, possibly uninitialized variables, and con-
stant predicates), analysis time is related to the size of the graph by factors of D? and D?. Therefore, one
would expect that graph-construction time would tend to take less of the total time as the size of the graph
increases. This expectation is born out by our measurements. However, for the locally separable problems
(live variables and simple uninitialized variables), analysis time is linear in the size of the graph. There-

fore, one would expect the ratio of graph-construction time to total time to be independent of the size of the

2 Recall that a particular predicate is constant only if one of the first two demands is answered yes, while the other two demands are
answered no. Therefore, the number of demands answered yes reported for this problem in Figure 8 is much greater than the number
of predicates found to be constant.
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Lines || CFG statistics uninit-vars statistics live-vars statistics const-preds statistics
Example of # yes. # yes

source\l P | Call| N |# demands|possibly]simple|\# demands|truly] live'l| # demands # yes

code uninit  |uninit live
xref 681 8| 13| 204 65 0 0 88 79 81 42 14
queens 111 41 41 402 97 0 0 180 165 165 51 22
hash 1461 6| 9| 224 49 1 1 90 74| 76 12 4
misr 2161 6 8| 399 135 0 0 177 159} 159 9 3
exptree 238 1 13} 17| 438 171 0 0 178 154| 158 54 21
dry 241 || 14| 17| 329 117 6 5 120 91 100 6 2
chomp 262 || 21| 44| 902 247 0 0 361 317| 319 54 28
diff.diffh 303 || 14| 49| 653 219 4 4 320 277 277 57 21
genetic 336 | 17| 32| 691 245 0 0 290 232| 236 21 4
anagram 344 |1 15| 22| 599 199 2 2 261 231| 232 39 14
allroots 42701 7| 19| 427 156 0 0 226 188 190 6 2
ul 451 | 14} 351366 310 2 ] 578 514 514 195 73
ks 5744 14 17 | 1145 389 0 0 491 444 446 24 11
compress 657 | 15| 2811760 428 0 0 772 679 682 165 67
stanford 665 || 47| 7911424 675 6 3 612 5171 538 51 24
clinpack 695 || 12| 4311269 583 15 1 595 539| 541 12 4
travel 725 |1 15| 23| 554 316 11 5 290 265 267 75 40
lex315 747 || 1710211130 261 2 2 451 438 440 138 80
sim 748 || 15| 47 |2178| 1869 635 6 1234 |1181]1182 411 159
mway 806 || 21| 4211819 777 145 12 811 7031 705 63 27
pokerd 1099 || 25| 84 (2167 720 67 6 996 875 875 192 77
ft 1185 || 28| 4811017 365 0 0 419 395¢ 395 45 12
ansitape 1222 || 36| 108 | 2247 447 1 | 1012 8481 849 168 75
loader 1255 || 30| 79 2143 542 60 5 894 886, 886 165 72
gce.main 1285 || 31| 97 12406 830 6 1 1128 110171017 309 143
voronoi 1394 || 47| 104 | 1421 696 3 3 686 577 610 168 69
ratfor 1531 || 52266 {2792 847 232 1 1245 941 946 411 142
live 1674 || 86203 |4462| 1404 0 0 2052 |1611]1613 24 10
struct.beautyl| 1701 || 33| 212 |2797 711 18 6 1276  |1062]1068 327 125
diff.diff 1761 || 41126 [4983) 1178 75 4 1839 1538|1540 465 213
xmodem 1809 || 26| 153 |3425 743 21 10 1487 [1232(1232 543 328
compiler 1908 || 38349 3680 619 126 0 1543 |1175|1179 714 448
learn.learn || 1954 || 34| 77 |3849 597 7 0 1475 |1172]1172 309 152
gnugo 1963 || 28| 88 (3397| 1184 120 39 1413 1148|1150 624 260
triangle 19638 || 18} 42 |3435| 3217 104 29 1765 116101622 582 215
football 2075 || 581257 |6002) 2252 36 12 2953 2906|2906 687 329
dixie 2439 || 36| 86 ]2902 697 36 14 1256  |1131]1131 222 89
eqntott 2470 || 611215 14598] 1766 337 21 2117 19131916 405 177
twig 2555 || 761|222 [4383) 1278 T 16 1 2049 |1813]1817 312 121
arc 2574 |1 901254 |5912|| 1903 72 0 2693 2384|2384 666 351
cdecl 2577 || 32203 |3474 730 2 0 1520 |1346)1383 333 151
lex 2645 || 62329 |6709) 2577 201 4 3192 |2748|2800 861 363
patch 2746 || 541|264 |5265| 1569 216 41 2592 |2433|2440 771 377
yacr2 2911 || 521|157 |3934|f 2314 54 2 1939 |1795]|1795 468 214
assembler || 2994 || 521247 15227|] 1192 28 2 2233 121572169 516 185
unzip 3261 || 40126 |3585] 1237 185 16 1715 15591565 462 229
tbl 3462 1] 83314 |6538) 2149 135 15 2966 2564|2564 1119 512
gee.cpp 4061 || 541216 |5828| 2874 27 4 2815 |2516(2525 1425 766
simulator 4239 1| 991408 | 5873} 1323 310 9 2217 |2181(2181 996 463
agrep 4906 || 64136 |7837|] 3919 33 6 3687 |3312]3322 1116 571
ptx 5001 || 48] 130 |7326| 4354 734 96 3475 3268|3281 1830 837
li 6054 |1132] 555 15960]] 1480 343 17 3267 (3022|3065 1500 1161
be 6745 || 981675 |8423| 2511 660 13 3267 3022|3065 654 298

Figure 8. Test program information.
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uninit-vars statistics live-vars statistics const-preds statistics

Example G? edges summary edges G* edges summary edges Sum-
D \possibly| simple |possibly | simple D ruly live truly live || D |G* edgesimary
uninit | wiinit |uninit | uninit live live edges

xref 18] 3493, 3376 11 11 18] 3627 3489 99 27 1143 7380 0
queens 40, 16729 16556 22 181 45| 18702; 17706 42 14 1 82| 32893 23
hash 13]  2493] 2401 2 0} 15, 3207y 3109 15 10 | 34| 5986 0
misr 30| 11377) 11181 12 61 31 12500] 11825 44 18 || 85] 31431 0
exptree 27] 10596; 10395 123 112 28] 11329; 11051 203 86 || 79| 29508 35
dry 27] 8641 8510 50 50 35, 11658 11192 220 57 1| 58] 16681 0
chomp 23] 18786] 18290, 261 1514 25| 20881; 19555 400 119 || 671 51995 162
diff.difth 63| 36198 35799 160 1281 72| 44792 43181 444 141 100} 39295 158
genetic 35| 24157 23848] 295 2701 42| 31205 30647 829 247 ||100] 64908 67
anagram 72| 35979| 35594 66 62| 86| 45830 44543 101 45 115 40131 27
allroots 29| 12280 12003 32 0| 34| 14947 14725 162 44 || 73] 29044 0
ul 45 62661 62123] 679 649 511 71871 69634 847 645 ||133] 180002| 976
ks 48| 54686/ 53695 157 811 56| 62673] 60180 91 47 || 911 97043 0
compress 94| 165091 164214f 396 344|108} 212791| 184215 460 380 ||181| 294058 136
stanford 66! 93488] 92944 296 2581 85} 133601} 128626/ 2279 159 ||106] 124818 14
clinpack 43] 55205 54551 210 1981} 54 71690 68990 1654 235 |[115] 141760 0
travel 90| 50598| 50118 201 150|]103] 58891| 57549 357 177 |j166] 82632 4
lex315 41| 38734, 38253] 553 439 48| 51208 50846 601 176 ||[109] 89476 102
sim 81| 192191] 190725, 1195 | 1110|| 85| 209054| 203021 1765 1064 235 544236 10
mway 119} 203320| 200451 1205 9411144 244501| 237500, 3021 306 |256] 399681] 348
pokerd 67| 140864 139371 607 568 75| 166329| 158840 1494 672 ||L09] 194389| 447
ft 39; 38717| 382527 202 161 44| 43850| 43237 537 314 || 79| 70695 140
ansitape 126} 273206 271608 6414 | 4393|174} 464349| 399937] 35016 2410 |286] 553269| 1113
loader 64] 125521} 124495 471 267 70| 144834| 141695 1485 500 ||130] 223230 0
gcc.main 107] 272511] 269954| 3273 | 2943|[112| 298455| 289970 3624 2208 |[223| 521955| 1331
voronoi 81] 110663} 108563 3596 | 2971|| 85| 126283| 120223; 5030 1030 |226| 278519| 280
ratfor 59] 177753 176195 6587 | 7401} 93] 317360 312737 11150 7040 ||175] 476097 936
live 57| 239190 236321 5616 | 5597||121] 565720| 561393 4369 951 |157] 611871 0
struct.beauty|| 83| 261733| 260599 6887 | 6610111] 382174] 374492| 8322 5400 |208| 597034| 1540
diff.diff 160| 613366| 605402 1771 | 1601|182} 947107 696872 3601 1241 |388|1361962| 874
xmodem 121] 406443 404237 1621 | 1607 134] 475438| 460730| 6014 1732 |271] 827700| 1960
compiler 44( 177068| 176087| 10305 | 8389 52| 229519 226545 13993 8903 ||130| 472640 8675
learn.learn || 89| 337739| 336109| 1872 | 1824124] 488639} 474089 1572 1410 ||175) 610777 2326
gnugo 53| 167169 164727 1313 943 62| 206718} 201418 2041 740 ||121] 341553 66
triangle 108| 334696| 331110 0 0|137] 426522) 384299 885 222 |232| 631468 4
football 97| 484289| 481017/ 5195 | 5148|129| 728595| 719297, 5310 2941 |25011122236| 1529
dixie 87] 260924{ 258759 1572 | 1335||117| 354942{ 348047] 1964 1012 {169 471333 594
eqntott 711 348804| 346608 3948 | 3797|f 95| 505852 488345 11998 6775 |08} 969982 1415
twig 135 651217| 636825 7905 | 7719]|154[1415560| 744234} 41523 6776 |397,1787337| 1511
arc 158] 954734 951715| 11819 | 115361/187/1189180(1172834| 14945 | 10404 |385|2161776| 5439
cdecl 74! 271604 270265 7201 | 7011}106| 427621| 416435| 12266 7587 |R17) 751691| 1611
lex 130] 972295 969098| 20229 | 19857 (|157|1219914[1199864| 20890 | 13767 [388]2753136] 4080
patch 144| 799454 794874} 11950 | 11974]|162| 966122| 933514; 15668 | 10586 |331|1685318 8429
yacr2 106| 348885 346615 3245 | 3311](|107| 357509| 353996 4158 1215 |80 840228 59
assembler || 70| 378857| 375720 2633 | 2324| 86; 473472| 454803] 8500 2563 |[154| 774266 385
unzip 179] 711922 707762| 8092 | 7266|208| 856644| 831084| 16929 6239 142411595253 3157
thl 89| 589267| 585684 11373 | 10672 }j135] 983139| 977401| 12325 6758 22611380852 9775
gce.cpp 138! 830388| 822277| 5314 | 5026|168/1154487,1053956| 18954 5380 |B16{1722977| 4565
simulator 61] 372914 370631 5041 | 3703 75| 493171 486588| 10557 3400 ||121] 642022| 1196
agrep 151{1191039{1187014] 6043 | 5849||186]1526409|1481386] 9424 4112 |B19(2321891| 5858
ptx 27112017638{1995183| 4971 | 4628|2852320122|2127202| 10831 3409 62214213669 3687
1i 113} 698042 695496| 38862 |27950(|124] 818403| 809486| 51551 | 44612 B25/1795698| 4826
be 152{1372175(1367767| 49964 |49084174|1688319/1661439| 56647 | 33835 |352]|2813877| 22448

Figure 9. Graph sizes and added summary edges.
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graph. This expectation is not born out by our measurements; instead, the ratio tends to decrease as the

size of the graph increases.

4.2. Experiments

Experiment 1: Single demand vs. Exhaustive

Our first two experiments compared the Demand-Tabulation Algorithm with the exhaustive algorithm. Our
first experiment reflects what might happen when dataflow analysis is used in the context of a tool that
intersperses demands and program modifications (so if an exhaustive algorithm is used, it must be re-run
whenever a demand is made following a modification). In this case, it is reasonable to compare the time
required by the exhaustive algorithm with the time required by the demand algorithm to answer a single
demand. Therefore, for this study, we recorded the following data for each dataflow-analysis problem and
for each test program: (1) the time used by the exhaustive algorithm to build the exploded supergraph and
to find the meet-over-all-valid-paths solution; (2) the average time used by the Demand-Tabulation Algo-
rithm to build the exploded supergraph and to answer a single demand (using 20 randomly selected
demands). This data is summarized in Figure 11.

Although there are a few cases where the Demand-Tabulation Algorithm is slower than the exhaustive
algorithm, they are all tests for which the running times are trivial (less than 3 seconds). It seems clear that
overall, the Demand-Tabulation Algorithm is preferable to the exhaustive algorithm when the goal is to

answer a single demand.

Experiment 2: Sequence of demands vs. Exhaustive

Our second comparison of the Demand-Tabulation Algorithm and the exhaustive algorithm reflects what
happens when “complete” dataflow information is desired (i.e., when it is desired to know, for all “interest-
ing” program-point/dataflow-fact pairs, whether that pair is in the meet-over-all-valid-paths solution).
Therefore, for this study we recorded the time used by the Demand-Tabulation Algorithm to answer the
sequence of all “interesting” demands, for each datafiow-analysis problem and for each test program, and
compared those times to the times required by the exhaustive algorithm. This data is summarized in Figure
12.

The Demand-Tabulation Algorithm outperforms the exhaustive algorithm in all cases for the constant-
predicates and live-variables problems, and in all but three cases for the truly-live-variables problem; it is
clearly the algorithm of choice in these cases. For the two versions of the uninitialized-variables problem,
the Demand-Tabulation Algorithm is almost always slower than the exhaustive algorithm; sometimes
significantly so. The Demand-Tabulation Algorithm is clearly not the algorithm of choice for these prob-

lems.
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Graph-Construction Time vs Total Time
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Figure 10. Ratios of times used to build the exploded supergraph to times used for analysis for the three different algo-
rithms.
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Figure 11. First comparison of the Demand-Tabulation Algorithm and the exhaustive algorithm. The exhaustive algo-
rithm is used to find the entire meet-over-all-valid-paths solution, and the Demand-Tabulation Algorithm is used to
answer a single demand.
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Experiment 2: Sequence of Demands vs Exhaustive
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Figure 12. Second comparison of the Demand-Tabulation Algorithm and the exhaustive algorithm. The exhaustive al-
gorithm is used to find the entire meet-over-all-valid-paths solution, and the Demand-Tabulation Algorithm is used to
answer all “interesting” demands.
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We believe that there are two characteristics of dataflow problems that are reasonable predictors of the
relative speeds of the Demand-Tabulation Algorithm (applied to all interesting demands) and the exhaus-

tive algorithm:
1. The number of demands, relative to the size of the exploded graph.
2. The percentage of demands with “yes” answers.

If the number of demands is very small, clearly the Demand-Tabulation Algorithm will visit many fewer
nodes than the exhaustive algorithm, and so less time is likely to be required for the Demand-Tabulation
Algorithm. If most demands are answered “yes”, the nodes visited by the Demand-Tabulation Algorithm
will also be visited by the exhaustive algorithm; however, since demands are not placed for all facts at all
points, the Demand-Tabulation Algorithm should still be faster. However, if most demands are answered
“no”, the Demand-Tabulation Algorithm may visit many more nodes than the exhaustive algorithm:
demands answered no correspond to unreachable exploded supergraph nodes, so the exhaustive algorithm
does not visit those nodes or any of their predecessors; however, the demand algorithm starts at those nodes
and visits all predecessors, eventually discovering that none of them is in the ReachableNodes set.

In the case of the two live-variables problems, most of the demands (“is x live at this assignment?”) lead
to a yes answer, while in the case of the two uninitialized-variables problems, most of the demands (“might
x be uninitialized at this use?”) lead to a no answer.

The graph in Figure 13 plots the percentage of demands that are answered yes versus the ratio of the run-
ning times of the two algorithms for the five dataflow-analysis problems.

Based on the results of our first two experiments, we hypothesize that when the goal is to answer
demands at most program points, and it is expected that most demands will be answered no, the exhaustive
algorithm will be the algorithm of choice. However, when the expected number of demands is small (for
example, in an interactive tool, or in a restructuring tool that is likely to demand dataflow information only
for a small part of a program before performing a transformation, or for a problem like the constant-
predicates problem), or it is expected that most demands will be answered yes, then the Demand-

Tabulation Algorithm will be the algorithm of choice.

Experiment 3: Caching vs Non-caching demand (single demand)

The goal of our third and fourth experiments was to study the tradeoffs between the benefit and overhead
of caching, first on a single demand and then on a sequence of demands.

For our third experiment we applied the non-caching demand algorithm to the same 20 randomly
selected demands used in Experiment 1 (starting the algorithm from scratch for each demand as was done
for the Demand-Tabulation Algorithm), and we computed the average running time for a single demand.

The results of this experiment are shown in Figure 14.
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Experiment 2: Time Ratios vs. Percentage of “‘yes” Answers
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Figure 13. When most demands are answered yes, the Demand-Tabulation Algorithm is likely to outperform the ex-
haustive algorithm; the situation is reversed when most demands are answered no.

As expected, caching involves some overhead (about 50% in the worst case for our experiments). This
is due partly to the extra work required to maintain the ReachableNodes and VisitedNodes sets, and partly
due to the fact that more time is required to build the exploded supergraph. In particular, the Demand-
Tabulation Algorithm must traverse edges in both directions (BackwardDFS traverses edges backwards
and UpdateReachableNodes traverses edges forwards) while the non-caching demand algorithm only
traverses edges backwards. Thus, the Demand-Tabulation Algorithm must include both predecessor and

successor information in the exploded supergraph, while the non-caching demand algorithm only needs to
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include predecessor information.

Experiment 4: Caching vs Non-caching demand (sequence of demands)

For our final experiment, we applied the non-caching demand algorithm to the same sequences of all
“interesting” demands to which the Demand-Tabulation Algorithm was applied in Experiment 2. The
results of this experiment are shown in Figure 15.

For a sequence of demands, the benefits of caching outweigh its overhead in all cases for the possibly-
uninitialized variables and the simple uninitialized-variables problems (however, recall that we have
already concluded that the exhaustive algorithm is superior to the Demand-Tabulation Algorithm for a
sequence of demands for these two problems). For the truly live variables problem the caching algorithm
is faster in all but five cases (and in those cases it is only about 5% slower). For the constant-predicates
problem, caching is a win in about half of the cases, and for the live-variables problem, in about two-fifths
of the cases. However, for both of these problems, it seems that the caching algorithm is still the algorithm

of choice:

e In the worst case for the caching algorithm, it took about 1.4 times as long as the non-caching algo-
rithm; in the worst case for the non-caching algorithm, it took about 1.8 times as long as the caching

algorithm.

e There is only one case in which the time for the non-caching algorithm is at least 25% less than the
time for the caching algorithm, while there are seven cases in which the time for the caching algorithm

is at least 25% less than the time for the non-caching algorithm.

5. Relation to Previous Work

Until very recently, work on demand-driven dataflow analysis only considered the intraprocedural case (cf.
[Bab78]) and work on interprocedural dataflow analysis only considered the exhaustive case (cf.
[Sha81,Cal88,Cal86,Kn092]). Because in intraprocedural dataflow analysis all paths in the control-flow
graph are assumed to be valid execution paths, the work on demand-driven intraprocedural dataflow
analysis does not extend to the interprocedural case, where the notion of realizable paths is important.

One approach to obtaining demand algorithms for interprocedural dataflow-analysis problems was
described by Reps [Rep94c,Rep94b]. Reps presented a way in which algorithms that solve demand ver-
sions of interprocedural analysis problems can be obtained automatically from their exhaustive counter-
parts (expressed as logic programs) by making use of the “magic-sets transformation”, a general transfor-
mation developed in the logic-programming and deductive-database communities for creating efficient
demand versions of (bottom-up) logic programs [Roh86,Ban86,Bee87,Ul189]. Reps illustrated this
approach by showing how to obtain a demand algorithm for the interprocedural locally separable problems.

Subsequent work by Reps, Sagiv, and Horwitz extended the logic-programming approach to the class of
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Figure 14. Comparison of the caching and non-caching demand algorithms for a single demand.
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IFDS problems [Rep94a,Rep95]. (The latter papers do not make use of logic-programming terminology;
however, the exhaustive algorithms described in the papers have straightforward implementations as logic
programs. Demand algorithms can then be obtained by applying the magic-sets transformation.)

Several people, leery of the (space, time, and conceptual) overheads involved in using logic databases,
questioned whether the logic-programming approach to obtaining demand algorithms for interprocedural
dataflow analysis can really produce implementations that are efficient enough to be used in real-world
program-analysis tools. Although the jury is still out on this issue (waiting for improved logic-database
implementations), it is natural to ask a related question: “Is there a way to adapt the ideas so that they can
be used in program-analysis tools written in imperative programming languages?”

The present paper can be viewed as answering this question in the affirmative. The two basic ideas used
in the magic-sets transformation are propagation of queries and caching of results, and it is fairly easy to
transfer these notions over to demand algorithms written in an imperative programming language (such as
C). The Demand-Tabulation Algorithm given in Section 3 can be viewed as an analog of the magic-sets-
transformed exhaustive dataflow analysis program: The operations that push nodes onto NodeStack in
BackwardDFS and insert edges into EdgeWorkList in BackwardTabulateSLRPs for subsequent processing
can be viewed as “query-propagation” operations; the sets ReachableNodes, VisitedNodes, PathEdge, and
SummaryEdge, whose values are preserved across calls, can be viewed as caches of previously computed
results (and previously computed “intermediate values”).

On the other hand, there are a number of benefits obtained when an imperative programming language is
used to implement these ideas. The most important benefit is that the algorithm of Section 3 has a simple,
low-overhead implementation in an imperative programming language. The implementation is based on
array indexing and linked lists, and involves neither term-unification nor term-matching. In addition, an
imperative implementation has the opportunity to exploit specific properties of the problem that are not
present in all logic programs (and hence would not be exploited by either the magic-sets transformation or
the bottom-up “engine” used for evaluating logic-programs). The two forms of “early cut-off” employed
by the algorithm given in Section 3 provide two examples of how such properties can be exploited to

improve performance:?

e The use of a depth-first-search strategy in BackwardDFS allows BackwardDFS to terminate as soon as
a node in ReachableNodes is encountered.

e In BackwardTabulateSLRPs, once it is known that there is a path from some node of the form {m, 0) to
(exit,, d), the path edge (start,, 0) — (exit,, d) is inserted into PathEdge. Subsequent tests for member-

ship of this edge in PathEdge allow BackwardTabulateSLRPs to avoid processing more path edges with

3A previous version of the Demand-Tabulation Algorithm that was presented in [Hor95] did not employ either of these strategies for
early cut-off.
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target (exit,, d).

Of course, these early cut-offs can only be taken when the answer to the current demand is yes. Thus,
these improvements to the algorithm are most significant for problems with a high ratio of yes answers.

A related approach to obtaining demand versions of dataflow-analysis algorithms has been investigated
by Duesterwald, Gupta, and Soffa, first for intraprocedural problems [Due93] and subsequently for inter-
procedural problems [Due95]. In their approach, a set of dataflow equations is set up on the flow graph
(but as if all edges were reversed). The flow functions on the reversed graph are the (approximate)
inverses of the original forward functions. Their algorithm for solving such problems is a demand-driven
algorithm that repeatedly propagates a query from a node in the control-flow graph to the node’s predeces-
sors. (The appropriate query is generated by applying the inverse dataflow function.) Caching also plays a
role: Values of “summary functions™ are tabulated; these express how queries at return sites generate
queries at call sites.

The Duesterwald-Gupta-Soffa approach is more general than ours because it can handle distributive
problems on any finite lattice, while the Demand-Tabulation Algorithm is limited to distributive problems
on finite subset lattices. (They can also provide approximate information in cases where the flow functions
are monotonic but not distributive.) However, this generality is achieved at some cost. When applied to an
IFDS problem, the worst-case cost of the algorithm given in [Due95] is exponential: O (E D 2b ), while the
worst-case cost of the Demand-Tabulation Algorithm is polynomial: O (E D?).

This is not the entire story, however, because the Duesterwald-Gupta-Soffa framework can be used as a
conceptual framework for deriving particular algorithms for specific problems as special cases of their gen-
eral methods. For instance, this is done for copy-constant propagation in the second half of [Due95], and
yields an algorithm with polynomial running time. Our algorithm can be viewed as the specialization of
the Duesterwald-Gupta-Soffa framework to the entire class of IFDS problems. (But no further specializa-
tion for a particular problem is necessary to obtain an algorithm with polynomial running time. That is,
from a specification of the edge transformers for a particular problem instance, our techniques automati-
cally yield an algorithm with polynomial running time.)

Another framework for demand analysis is given in [Sag]. That framework applies to a class of distribu-
tive problems that is strictly larger than the IFDS problems and that is incomparable to the class to which
the Duesterwald-Gupta-Soffa framework applies. (The framework of [Sag] applies only to distributive
problems, whereas the Duesterwald-Gupta-Soffa framework can be applied to some non-distributive prob-
lems. However, the Duesterwald-Gupta-Soffa framework requires that the lattice of dataflow values have a
finite number of elements, whereas the framework of [Sag] requires only that the lattice have finite height.)
The Demand-Tabulation Algorithm can be viewed as a specialization of the algorithm of [Sag] to IFDS
problems, but with several improvements (e.g., the two forms of “early cut-off” discussed above, and the

elimination of an entire phase of the more general algorithm).
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At the other end of the spectrum, it is interesting to compare our work with Callahan’s “program-
summary-graph” algorithm for flow-sensitive side-effect analyses [Cal88]. As discussed in [Rep95],

Callahan’s problems fall into the class of locally separable IFDS problems, the subclass of the IFDS prob-

lems that corresponds to interprocedural versions of the classic gen/kill problems.* From the standpoint of
asymptotic worst-case complexity, Callahan’s problems can actually be solved more efficiently with the
algorithm from [Rep95] than with the algorithm given by Callahan. Because the present paper provides a
demand version of the exhaustive algorithm from [Rep95] (where the demand algorithm has the same
worst-case complexity as the exhaustive algorithm), our work also provides a demand algorithm for solv-

ing all of Callahan’s problems.
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