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ABSTRACT
Approximation can increase performance or reduce power consump-
tion with a simplified or inaccurate circuit in application contexts
where strict requirements are relaxed. For applications related to
human senses, approximate arithmetic can be used to generate suf-
ficient results rather than absolutely accurate results. Approximate
design exploits a tradeoff of accuracy in computation versus per-
formance and power. However, required accuracy varies according
to applications, and 100% accurate results are still required in some
situations. In this paper, we propose an accuracy-configurable ap-
proximate (ACA) adder for which the accuracy of results is con-
figurable during runtime. Because of its configurability, the ACA

adder can adaptively operate in both approximate (inaccurate) mode
and accurate mode. The proposed adder can achieve significant
throughput improvement and total power reduction over conven-
tional adder designs. It can be used in accuracy-configurable ap-
plications, and improves the achievable tradeoff between perfor-
mance/power and quality. The ACA adder achieves approximately
30% power reduction versus the conventional pipelined adder at the
relaxed accuracy requirement.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids; J.6
[Computer Applications]: COMPUTER-AIDED ENGINEERING

General Terms
Algorithms, Design, Performance

Keywords
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Accuracy-Configurable Adder

1. INTRODUCTION
Guardbands for dynamic variations severely limit performance

and energy efficiency of conventional IC designs. To overcome
consequences of overdesign, several recent mechanisms for vari-
ation-resilient design [4] allow timing errors and manage design
reliability dynamically. Relaxing the requirement of correctness for
designs may dramatically reduce costs of manufacturing, verifica-
tion and test [16]. In resilient designs, errors can be corrected with
redundancy techniques (error-tolerance), or accepted in some ap-
plications relating to human senses such as hearing and sight (error-
acceptance). In the error-acceptance regime, approximation via a
simplified or inaccurate circuit can increase performance and/or re-
duce power consumption.
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Various approximate arithmetic designs have been previously
proposed. Lu [7] introduces a faster adder which has shorter carry
chains and considers only the previous k bits of input in computing
a carry bit. Verma et al. [12] provide a variable latency specula-
tive adder (V LSA), which is a reliable version of the Lu adder [7]
with error detection and correction. Shin et al. [10] also propose
a data path redesign technique for various adders which cuts the
critical path in the carry chain. Zhu et al. [14] [13] propose three
approximate adders – ETAI , ETAII and ETAIIM . ETAI is
divided into an accurate part and an inaccurate part to achieve ap-
proximate results. ETAII cuts carry propagation to speed up the
adder, and ETAIIM modifies ETAII by connecting carry chains
in accurate MSB parts. Kulkarni et al. [5] present a 2x2 under-
designed multiplier, and use it to build large power-efficient ap-
proximate multipliers. George et al. [3] define the concept of prob-
abilistic CMOS (PCMOS), and implement efficient arithmetic us-
ing PCMOS. Shin et al. [11] propose a logic synthesis approach
to design an approximate circuit.

The approximate designs produce almost-correct results at the
given required accuracy, and obtain power reductions or perfor-
mance improvements in return. In some applications, however,
more accurate or totally accurate results are required under cer-
tain conditions – e.g., image processing in security cameras would
require cleaner images after detecting a motion. In contexts where
the required accuracy changes during runtime, the accuracy of re-
sults should be configurable to maximize the benefit of approximate
operations. Figure 1 illustrates how power benefits can be achieved
with an accuracy-configurable design. The accuracy-configurable
design can adapt to changing accuracy constraints by using differ-
ent modes in each situation. To our knowledge, no previous work
can configure the output accuracy during runtime, and each is thus
restricted (or, best-suited) to particular application contexts. In con-
texts where the accuracy requirement can change dynamically, the
previous methods’ benefits from the accuracy tradeoff are reduced
since the implementation must be targeted to the maximum accu-
racy requirement.
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Figure 1: Power benefits from accuracy-configurable design.

In this paper, we propose an accuracy-configurable approximate
(ACA) adder, which can configure the accuracy of results during
runtime. The main contributions of our work are the following.
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• The proposed ACA adder has runtime-configurable accuracy
to better enable tradeoff of accuracy in computation versus
performance and power.

• We provide quantitative metrics for an approximate arith-
metic design. We compare the ACA adder to previous ap-
proximate adders based on these metrics.

• We demonstrate the power benefits of the ACA adder over
previous approximate and conventional adder designs for ac-
curacy-configurable applications.

The rest of the paper is organized as follows. Section 2 presents
the proposed ACA adder design. Section 3 provides experimen-
tal results and analysis. Section 4 summarizes and concludes the
paper.

2. ACCURACY-CONFIGURABLE ADDER

2.1 Approximate Adder Implementation
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Figure 2: Proposed approximate adder – 16-bit adder case.

Previous approximate adders [7] [10] [14] have difficulty detect-
ing and correcting errors since they are designed for error-accept-
able applications with a target accuracy. However, accurate com-
putations are still required at certain times, according to the appli-
cation. VLSA [12] can provide accurate results, but has large delay
and area overhead for the error detection and correction. The cen-
tral contribution of our present work is to propose an approximate
adder which supports both accurate and inaccurate computation
with error-correction and accuracy-configuration capability. Figure
2 shows our proposed approximate circuit for the case of a 16-bit
adder. In the adder, the carry chain is cut to reduce critical-path
delay, and three sub-adders generate results of partial summations.
With the reduced critical-path delay, high performance (by increas-
ing the clock frequency) or low power consumption (by decreasing
the operating voltage) is obtained. A middle sub-adder (AM +BM )
is introduced to increase accuracy. Without the middle sub-adder
(as in ETAII [13]), error occurs when the eighth carry bit is high,
and for random input patterns the error rate is 50.1%. On the
other hand, with the introduction of the middle sub-adder, error rate
for random input patterns is reduced to 5.5%. (In the real imple-
mentation, all redundant parts (four-LSB output of AH + BH and
AM + BM sub-adders) are optimized only for carry-generation.)
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Figure 3: General implementation for the proposed adder.

We can generalize the implementation of the proposed approxi-
mate adder. Figure 3 shows the general implementation of an N -bit

adder with a parameter k, which is the bit-width of the sub-adder
result. In the adder, each divided sub-module produces a k-bit re-
sult except for the last sub-module, which produces a 2k-bit result.
The approximate adder thus consists of the (N/k−1) sub-modules
as described in Equation (1).

SUM [N − ik − 1 : N − (i + 1)k] =

A[N − ik − 1 : N − (i + 2)k] +

B[N − ik − 1 : N − (i + 2)k],

where i = 0, ..., N/k − 2 (1)

In modern adder designs, such as carry-lookahead (CLA), carry-
select and Kogge-Stone adders, the path depth and area are asymp-
totically proportional to log2N and Nlog2N respectively, where
N is the bit-width of the adder [15]. Based on this, we can ex-
press delay, area and power consumption of the proposed adder in
terms of the parameters N and k. The proposed ACA adder has
(N/k − 1) sub-adders, each of which is a 2k-bit adder. Therefore,
delay of the critical path can be expressed with Equation (2) and
area can be estimated with Equation (3), where Cdelay and Carea

are constants for delay and area, respectively.

delay = Cdelay(log2k + 1) (2)

area = Carea(N − 2k)(log2k + 1) (3)

Powerdyn = Cpower(N − 2k)(log2k + 1)2 (4)

Power consumption of the ACA adder can be roughly estimated
as follows. Dynamic power consumption with voltage scaling at

a fixed frequency is proportional to capacitance · Vdd
2, where

the capacitance is proportional to the area. Cell delay is pro-

portional to 1/(Vdd − Vt)
β , and V 2

dd is roughly proportional to
1/(cell delay) if we assume that β is 2. Since (cell delay) ×
(path depth) is constant at a fixed frequency, V 2

dd is proportional to
the path depth, which is log2k + 1. Consequently, dynamic power
with voltage scaling can be expressed using Equation (4), where
Cpower is a constant fixed for given Vdd for dynamic power con-
sumption. Static power consumption of the adder can be roughly
estimated as proportional to the area in Equation (3).

In our proposed adder design, the output of each sub-adder (ex-
cept the last sub-adder) is incorrect when a carry input should be
propagated to the results. In Figure 2, when the carry[4] (carry
bit from AL + BL) is ‘1’ and SUMM [3 : 0] is 1111(2) , the

output result has an error in SUM [11 : 8]. In the general im-
plementation, the output result will be correct when there are no

errors in all (N/k − 1) sub-adders. In the ith sub-adder, errors
occur when (1) the LSB part of the result (SUMi[k − 1 : 0])
has all ‘1’ values (probability P = 1

2k ) and (2) the LSB part

([k − 1 : 0]) of the (i + 1)th sub-adder produces a carry bit (prob-

ability P = 1
4

+ 1
2
·

1
4

+ 1
2
·

1
2
·

1
4

+ ...). Therefore, with a random
input vector, the probability of having a correct result in the pro-
posed adder is

P (N, k) = (1 −
1

2k
·
2k

− 1

2k+1
)

N
k

−2
(5)

Table 1 shows the estimated results of 16-bit ACA adders with
different parameter values k. With smaller k value, the minimum
clock period and dynamic power can be reduced, but the pass rate
(probability of having a correct result) will be decreased. The esti-
mations come from Equations (2), (3), (4) and (5). In Section 3.3
below, we validate the above estimation with real implementations.

Table 1: Estimated minimum clock cycle, area, dynamic power and pass rate for

each k value when N = 16 (normalized to the conventional CLA 16-bit adder).

k=2 k=3 k=4 k=5 k=6

min. clock period 0.5 0.65 0.75 0.83 0.89

area 0.87 1.05 1.12 1.15 1.12

dynamic power 0.44 0.68 0.84 0.95 1.00

pass rate 0.554 0.829 0.942 0.982 0.995
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2.2 Error Detection and Correction for Accurate
Computation

As described in Section 2.1, our proposed adder is incorrect when
a carry bit is propagated between sub-adders. However, the error
can be detected and corrected with a small overhead. We detect an
error for each sub-adder by checking the output of the sub-adder
and the carry-in signal that comes from the previous sub-adder. Er-
ror detection can be implemented with several ‘and’ gates. To cor-
rect the error, ‘1’ should be added to the approximate (inaccurate)
output, and the error correction can be implemented with an incre-
mentor circuit.

SUMapprox

OUTIN
sub-adderi

sub-adderi+1

approximate adder

SUMcorrect

carryi+1

error

EDC circuit

data stall

sumi

errori

incrementor

Figure 4: Error detection and correction with the approximate adder.

With these simple error detection and correction circuits, our
proposed adder can be implemented to have variable latency like
the previous VLSA adder [12], with a small overhead for an er-
ror detection and correction (EDC) system. Figure 4 shows an
EDC system with our proposed adder. The error detection cir-
cuit (‘and’ gates) checks the carry propagation and generates an
error signal. The error correction (incrementor) circuit produces
an error-free output by adding compensation data, and requires an
additional clock cycle. When errors are detected from input pat-
terns, the error signal is activated. The error signal holds the input
pattern during the error correction and chooses the error-corrected
value (SUMcorrect) as an output. With this approach, our approxi-
mate adder can provide accurate results at a higher clock frequency
than that of conventional adders (e.g., CLA). According to the esti-
mated results in Table 1, clock period can be reduced by 25% with
6% (= error rate) recovery-cycle overhead (16-bit ACA, k = 4).

2.3 Accuracy Configuration with Pipelined Archi-
tecture

When our proposed adder is combined with a pipelined architec-
ture, we can obtain accurate results with the same throughput as a
conventional adder. In the pipelined architecture, approximate ad-
ditions are computed at the first pipeline stage, and error correction
can be completed at the second stage. Figure 5 shows the conven-
tional pipelined adder (above) and the approximate adder (below).
The pipelined implementation of approximate adder has a struc-
tural analogy with the pipelined adder of the 2006 U.S. patent [8] in
which partial summations are performed at the first stage and carry
bits are added at the later stages. However, the patent is clearly
directed to accurate operations, not approximate computations. In
addition, we use our approximate adder (Figure 3) in the first stage.
In the pipelined approach, there is no improvement of the clock fre-
quency since the achievable clock period is the same as that of the
conventional adder. However, power benefits are obtained through
configuration of accuracy: in the approximate mode, the error cor-
rection stage is power-gated with foot (or, head) switches in Figure
5, and power reduction over the conventional adder design can be
achieved. We compare the conventional and approximate pipelined
adders in Section 3.

In the proposed adder implementation, to achieve higher perfor-
mance or lower power consumption, we can reduce the carry chain
depth (k) of sub-adders (see Table 1). However, when k is less than
N/4, it is impossible to correct all errors and achieve 100% cor-
rect results within one clock cycle since the error-correction paths
become critical. To achieve correct results in the pipelined imple-
mentation, the error-correction stage should be extended to mul-

tiple stages. Figure 6 shows the pipelined adder implementation
(k = N/8 case), in which four pipeline stages are required to
achieve a 100% accurate result. In the pipelined adder, each stage
generates a result with different accuracy; the output accuracy in-
creases as the number of pipeline stages increases. According to
the accuracy requirement, we can turn off the later stages with a
power gating technique, and we can reduce the power consumption
further with the accuracy tradeoff.

Since the proposed adder supports both approximate and accu-
rate results, it can be used in applications that require accurate re-
sults only under certain conditions. Conventional accurate designs
are energy-inefficient in the error-acceptable application context,
because they always compute the exact function. Previous approx-
imate designs cannot handle a varying accuracy requirement, and
this limits the benefit of the accuracy tradeoff: as noted above, the
approximate function must meet the maximum accuracy threshold
across all applications. Moreover, if the application requests an ex-
act computation, additional accurate circuits must be added to the
previous approximate designs. By contrast, the ACA design effi-
ciently exploits a tradeoff between accuracy and power/performance
with its runtime accuracy configurability.

approximate adder
A

B

SUMapprox

error

SUMcorrect

error correction

N/2-bit adder
AL

BL

Stage 1

SUML

Stage 2

carry

N/2-bit adder
AH

BH
SUMH

accurate 

mode

power gating

switches

Figure 5: Pipelined adder implementation – conventional adder (above) and ap-

proximate adder (below). In approximate operation, the error correction stage is

power-gated.

3. EXPERIMENTAL SETUP AND RESULTS

3.1 Experimental Setup
To test approximate designs, we have written each design in Ver-

ilog and synthesized it to a TSMC 65GP cell library with Synopsys
DesignCompiler [17]. We then perform gate-level simulations us-
ing Cadence NC-Sim [18]. In the simulation, gate delay is taken
from an SDF (standard delay format) file. For voltage scaling ex-
periments, we prepare Synopsys Liberty (.lib) files for each voltage
from 1.00V to 0.60V in 0.01V increments, using Cadence Library
Characterizer v9.1 [19]. The prepared libraries are used for SDF
file generation and power estimation at each voltage. Each simula-
tion is performed with input patterns for one million cycles. During
the simulation, each output value is compared with a reference (cor-
rect) value to produce the accuracy metrics. For the input patterns,
we use random data, as well as actual data from SPEC 2006 [20]
benchmarks. We extract operand data from ADD instructions in
the SPEC benchmarks.

3.2 Metric for Approximate Design
To quantify errors in approximate designs, two metrics have been

previously proposed [1]. Error rate (ER) is the percentage of cy-
cles in which output value is different from the correct value. Error
significance (ES) is the numerical difference between correct and
output results; this quantifies the amount of error. In image/video
applications, [2] uses the product of ES and ER as a metric of
error tolerance. [10] introduces a criterion for acceptability: ES
× ER ≤ acceptance threshold, where the acceptance threshold is
specified according to the application. For the error significance
(ES) metric, [14] considers only amplitude of error. This is use-
ful for many digital signal processing (DSP) systems that process,
e.g., sound and image data. However, in communication systems
that mainly handle information data, the number of incorrect bits
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Figure 6: Accuracy-configurable implementation for pipelined adder.

(Hamming distance) is a more meaningful metric for accuracy –
e.g. a (32,28) Reed-Solomon code can correct up to 2-byte errors.
This consideration for the ES metric is required when approximate
arithmetic is applied to error-tolerant systems with a redundancy
technique.

Table 2 shows two accuracy metrics for amplitude data and in-
formation data. ACCamp used in [14] quantifies the amplitude of
errors, where Rc and Re are the correct and obtained results, re-
spectively. We propose another accuracy metric, ACCinf , which
measures error significance as Hamming distance, where Be is the
number of error bits and Bw is the bit-width of the data. For ex-
ample, when the correct (reference) data is 1000_0000(2) and the
result data is 1100_0000(2) , accuracy with ACCamp and ACCinf

will be 1
2

and 7
8

, respectively. To evaluate the approximate cir-
cuits, we obtain average values of accuracy metrics ACCamp and
ACCinf over the entire simulation to consider both ER and ES.

Table 2: Accuracy metrics for error significance (ES).

metric definition data type

ACCamp 1 − |Rc − Re|/Rc amplitude data

ACCinf 1 − Be/Bw information data

Table 3: ACA adder results with different k values.

k 2 3 4 5

min. clock period (ps) 180 190 220 230

area (um2) 550 990 920 840

pass rate (%) 55.3 82.8 94.0 98.1

throughput improvement (%) 11.3 24.6 22.3 21.4

Table 4: Design comparison for each adder design.

CLA LU ACA ETAI ETAIIM

area (um2) 910 1356 923 576 678

min. clock period (ps) 280 210 200 200 260

pass rate (%) 100 99.2 94.1 10.0 97.0

ACCamp (maximum) 1.000 0.998 0.997 0.999 0.999

ACCinf (maximum) 1.000 0.999 0.993 0.694 0.996

area overhead for EDC N/A 75% 28% N/A 15%

3.3 Approximate Adder with Different Parameters
We explore the proposed adder with different parameters (k: half

of carry-chain depth). Table 3 summarizes results – minimum clock
period, area, error rate and throughput improvements – for each im-
plementation of the 16-bit adder with different k values. According
to the results, with smaller k, the maximum operating frequency in-
creases, but the error rate increases as well. With higher k, the er-
ror rate is reduced significantly, but the benefit of the approximate
circuit, i.e., clock period reduction, is small. In the table, through-
put improvement over conventional design is calculated including
error recovery overhead. From the implementations, a maximum
throughput improvement is achieved when k = 3. If we correct
erroneous results with EDC as in Figure 4, then 17.2% additional
clock cycles are required for error correction. With this overhead,
ACA adder can improve data throughput by 24.6% over the con-
ventional CLA adder.

3.4 Approximate Adder Comparison
We evaluate each approximate adder with respect to the pass

rate and the accuracy metrics which we have proposed. We use
gate-level simulation at each possible clock period to compare five

adders: CLA, Lu’s adder [7], ETAI, ETAIIM [14] and the pro-
posed ACA adder (without error correction). In the experiment,
the same carry-chain width (8-bit) is selected for the four approxi-
mate adders. In the implementation, a register (flip-flop) is inserted
in each output port to detect timing errors.

Table 4 shows area, pass rate, accuracy, minimum clock period
and EDC overhead for each adder design. According to the re-
sults, the ETAI adder has the smallest design area, but has a low
pass rate and limited accuracy with respect to the ACCinf metric.
Therefore, the ETAI adder is preferred for applications which allow
low accuracy in results. The ETAIIM adder shows fairly high ac-
curacy, but does not have speed (clock period) benefit. Lu’s adder
shows a smaller error rate and high accuracy with respect to both
ACCamp and ACCinf metrics. However, it requires larger area
than the other designs. The proposed adder shows similar results
for both metrics as Lu’s adder. However, the area of the ACA adder
is smaller than that of Lu’s adder, and EDC is possible with small
area overhead (28%). With the ACA adder, the minimum clock
period can be reduced by 26% compared to the accurate CLA.
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Figure 7: Accuracy (y-axis) vs. power consumption (x-axis) under fixed clock

period (0.25ns) and scaled voltage (from 1.0V to 0.6V ).

Figure 7 shows a power vs. accuracy tradeoff in a voltage scaling
scenario: the x-axis shows total power consumption, and the y-axis
shows the accuracy (ACCamp, ACCinf ). The power consumption
and the accuracy are measured with different voltage libraries char-
acterized using Cadence Library Characterizer [19]. The clock
period is fixed at 0.30ns during the simulations. In the results,
Lu’s adder does not show power benefits due to its design size.
ETAI shows low power consumption and high ACCamp accuracy,
but has low ACCinf accuracy, and cannot detect and correct er-
rors. ETAIIM shows similar characteristics to ACA in the voltage
scaling case, but the adder cannot be used for a high-performance
(high-frequency) design, as shown in Table 4. The results in Figure
7 imply that our proposed adder can provide a significant power
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reduction with small accuracy penalty. When the required accu-
racy is 0.970 (ACCamp), the ACA adder shows 37.0%, 36.4% and
15.9% total power reduction over CLA, Lu’s adder and ETAIIM,
respectively.

We have tested our approximate adder on a real application – a
Gaussian smoothing filter used in [6]. Gaussian smoothing is per-
formed on the input image by convolving with a matrix in the spa-
tial domain. In the convolution, the addition operation is done with
approximate 16-bit adders. Other operations, such as multiplication
and division, are accurate computations. Figure 8 shows results for
various approximate adders when they consume 50% of the power
of accurate CLA. From the results, the ACA adder has PSNR of
24.5dB, and this suggests that image processing/filtering applica-
tions could employ our proposed adder with significant power sav-
ings and only small loss in image quality.

(a) (b) (c) 

(d) (e) (f) 

Figure 8: Image smoothing: (a) original image with noise; (b) accurate adder; (c)

ACA, PSNR: 24.5 dB; (d) ETAI, PSNR: 25.3 dB; (e) ETAIIM, PSNR: 16.2 dB; (f)

Lu’s adder, PSNR: 11.1dB.

Table 5: Comparison between conventional and approximate (2-stage) pipelined

adders at the accurate mode.

conventional pipelined approximate pipelined
adder area clock total area clock total

width (um2) period power k (um2) period power
(N ) (ns) (mW ) (ns) (mW )

8 459 0.313 0.557 2 576 0.312 0.564

16 1082 0.357 1.558 4 1171 0.358 1.669

32 2252 0.404 2.860 8 2420 0.414 2.914

Table 6: Implementation results of 32-bit ACA adder with 4-stage pipeline (power

consumption of each mode and power reduction over conventional pipelined

adder).

config.
power- ACCamp ACCinf total power reduction
gating (max.) (max.) (mW) (%)

mode-1 none 1.000 1.000 5.962 -11.5%
mode-2 stage-4 0.998 0.960 4.683 12.4%
mode-3 stage-3, 4 0.991 0.925 3.691 31.0%
mode-4 stage-2, 3, 4 0.983 0.900 2.588 51.6%

3.5 Accuracy Configuration and Power Savings
When the architecture allows pipelining for addition, our pro-

posed adder can be implemented as shown in Figure 5. We imple-
ment both the conventional pipelined adder and the approximate
pipelined adder to compare the designs in terms of area, timing and
power. In the implementation, registers (flip-flops) are included at
each pipeline stage (before stage-1, between stage-1 and stage-2,
and after stage-2).

Table 5 shows the implementation results for the conventional
and approximate pipelined adders. The parameter k has been se-

lected as N/4 for a two-stage pipelined implementation. In the
table, minimum clock period is measured at a fixed voltage (1.0V ),
and total power is measured at a fixed frequency (2.5GHz) with
voltage scaling. In the ACA adder case, timing and power over-
heads from power gating cells, output MUXes, and IR drop are
included. We can see that area, timing and power of both designs
are similar when the ACA adder operates in the accurate mode.
Total power of the approximate adder is comparable to that of the
conventional adder, even though ACA has additional EDC circuits.
This is because ACA has fewer registers between stage-1 and stage-
2 than the conventional pipelined adder. (In Figure 5, the conven-
tional adder requires registers for AH , BH , SUML and carry at
the first stage. For a 16-bit adder, 25 registers (8 + 8 + 8 + 1) are
required. On the other hand, ACA requires 18 registers (16 for
SUMapprox and 2 for error indication).)
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Figure 9: Accuracy metric ACCamp (above) and ACCinf (below) vs. power

consumption for conventional pipelined adder, ACA adder in accurate mode, and

ACA adder in approximate mode (4-stage, 32-bit adder).

In the pipelined architecture, the ACA adder can provide various
configurable modes according to the pipeline depth. To improve
the design performance, we increase the pipeline depth; the deeper
pipeline reduces the path depth of the design. In the conventional
pipelined adder, bit-width of the adder in each stage can be reduced
to N/#stage, where N is the entire bit-width and #stage is the
depth (number) of the pipeline stages. In the ACA adder, we can re-
duce the value of parameter k with deeper pipeline depth as shown
in Figure 6. To show the benefit of accuracy configuration, we have
implemented a 32-bit ACA adder (N = 32, k = 4) with 4-stage
pipeline, and compared it with a conventional pipelined adder with
an 8-bit CLA in each stage. Table 6 shows the implemented results
for the 32-bit ACA adder. For the accuracy estimation, one million
cycles of random patterns are used. The ACA adder can operate
in four different modes, based on the power gating of each stage.
We can see that the modes show different power consumptions and
different achievable accuracies. The ACA adder consumes 11.5%
more power than the conventional adder in accurate mode (mode-1)
due to the presence of recovery circuits. At the same time, it shows
a significant power reduction in the approximate modes: 12.4%,
31.0% and 51.6% in mode-2, mode-3 and mode-4, respectively.
Figure 9 shows detailed results for power consumption versus ac-
curacy metrics in each configuration. From the results, we can see
that accuracy configuration with the mode change is much more ef-
fective than with voltage scaling, in terms of the tradeoff between
accuracy and power.
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Table 7: Accuracy (ACCamp, ACCinf ) results of 32-bit ACA adder for real benchmarks (SPEC 2006).

accuracy metric benchmark astar bzip2 calculix gcc h264ref mcf sjeng soplex

ACCamp

mode-1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
mode-2 0.9999 1.0000 0.9999 0.9992 0.9999 0.9997 0.9998 0.9999
mode-3 0.9993 0.9998 0.9972 0.9990 0.9990 0.9997 0.9995 0.9998
mode-4 0.9979 0.9970 0.9958 0.9951 0.9978 0.9991 0.9981 0.9953

ACCinf

mode-1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
mode-2 0.9979 1.0000 0.9978 0.9881 0.9953 0.9819 0.9897 0.9985
mode-3 0.9949 0.9984 0.9967 0.9849 0.9897 0.9809 0.9876 0.9965
mode-4 0.9940 0.9931 0.9910 0.9617 0.9851 0.9596 0.9787 0.9925
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Figure 10: Normalized power consumption versus conventional pipelined de-

sign when the accuracy requirement is varied uniformly over the interval 0.99

≤ ACCamp ≤ 1.00 and 0.95 ≤ ACCinf ≤ 1.00.

We also obtain the accuracy results in each accuracy mode with
real input patterns extracted from SPEC 2006 benchmarks. Table 7
shows accuracy results of a 32-bit ACA adder with such real input
patterns. The accuracy results are different for each benchmark,
e.g, the measured accuracy for bzip2 is higher than for gcc. Fur-
thermore, the accuracy with real patterns is greater than with ran-
dom input patterns (Table 6), most likely because addition inputs
for MPU have infrequently and/or systematically changing patterns
in the applications. We evaluate power reductions across accuracy
requirements with the patterns from SPEC 2006 benchmarks. Fig-
ure 10 shows power reduction achieved by the ACA adder ver-
sus the conventional pipelined adder under the accuracy require-
ments. We assume that required accuracy is from 0.99 (0.95) to
1.0 for ACCamp (ACCinf ), and that it varies uniformly over this
range during the entire runtime. From the results, dynamic accu-
racy configuration achieves up to 44.5% (30.0% on average) and
47.1% (35.8% on average) power reduction over the conventional
pipelined design for ACCamp and ACCinf metrics, respectively.

4. CONCLUSIONS
In this paper, we propose an accuracy-configurable approximate

(ACA) adder for which the accuracy of results is configurable dur-
ing runtime. Due to its configurability, the ACA adder can oper-
ate adaptively in both approximate (inaccurate) mode and accurate
mode. To quantify the accuracy in approximate computation, we
provide two metrics for amplitude data and information data. We
compare the ACA adder against previous approximate adders based
on the proposed metrics. The ACA adder shows high accuracy with
respect to the metrics, and can provide up to 24.6% throughput im-
provement and 37.0% power reduction over the conventional CLA

adder. The ACA adder can also be used in accuracy-configurable
applications with pipelining. We demonstrate that the ACA adder
can provide approximately 30% power reduction under a relaxed
accuracy requirement versus the conventional pipelined adder. Fi-
nally, we show that our ACA adder can improve the achievable
tradeoff between performance, power and quality for given accu-
racy requirements.

Our ongoing work seeks to implement accuracy-configurable de-
signs for other arithmetic components such as multipliers, multi-
input adders, etc. More broadly, our research addresses additional
aspects of (runtime) accuracy-configurable systems and applica-
tions.
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