Automated Feature Localization for Hardware Designs using
Coverage Metrics*

Jan Malburg Alexander Finder Gorschwin Fey
University of Bremen
28359 Bremen, Germany
{malburg, final, fey } @informatik.uni-bremen.de

Abstract

Due to the increasing complexity modern System on Chip designs are developed by large design
teams. In addition, existing design blocks are re-used such that the knowledge about these parts of
the design entirely depends on the quality of the documentation. For a single designer it is almost
impossible to have detailed knowledge about all blocks and their interaction.

We introduce a simulation-based automation technique to support design understanding. Based
on use cases provided by the designer and on their coverage information, the proposed technique
identifies parts of the source code that are relevant for a certain functional feature. In two case
studies the technique is shown to be at least as exact as reading the documentation with two
important advantages: the automated approach is faster and more precise than the existing docu-
mentation for the inspected designs.

1. Introduction

Modern chip designs, especially Systems on Chip, grow with respect to their transistor count as well
as their supported features. Such chips are developed by large design teams consisting of hundreds
of people [ITR09] and are far beyond the point where a single designer knows every detail about the
design. Furthermore chips are assembled of design blocks from different sources. A design block is
a part of a chip which provides a defined functionality. The functionality ranges from very complex,
for example complete CPU-cores, to simple encoder and decoder blocks. Typically, complex design
blocks are assembled from several less complex design blocks. A design block could be a new block
developed especially for the new chip, or it might be a block already used in previous designs, or
even a third-party block. All of those design blocks in a chip are responsible for one or more different
features. Some of the features might be realized by combining the functionality of several different
blocks.

A feature is a distinguishing characteristic of a design. A functional feature defines the expected out-
put of the system under specific input. Other types of features are for example robustness, defining the
amount of errors which can occur before the result is incorrect or performance, limiting the time until
the design has to return the expected output. In the following only functional features are considered
and simply called features.

*This work was supported in part by the German Research Foundation (DFG, grant no. FE 797/6-1)

For design improvement, design extension, and bug fixing a developer has to understand the design.
Those tasks become even more important, since the amount of re-used design blocks is continuously
increasing in future [ITRO9]. In order to understand a design it is mandatory to know where in the
design which feature is implemented. This does not only mean to know the block providing a feature,
but where exactly in the block the feature is implemented. In general, it is unlikely that a developer
has this knowledge. Purely manual inspection of the Hardware Description Language (HDL) code is
a laborious, and therefore cost intensive task and the developer still might miss relevant parts of the
implementation. Therefore, it is desirable to have tools which help the developer to find the relevant
code for a feature and to understand the design.

In this paper we present a technique for locating parts of the HDL code which are relevant for a
functional feature. This technique uses a dynamic approach relating coverage information gathered
by simulation to features executed by use cases. Results are presented to the user by coloring the
source code.

The contributions of this paper are:
* a feature localization technique for hardware designs,
* aunified notation to compare existing coloring schemes,
* anew coloring scheme,
* the use of toggle coverage for feature localization, and
* an evaluation of the approach and coloring schemes using two open source designs.

The remainder of this paper is organized as follows: Section 2 gives an overview of related work.
Notations are defined in Section 3. In Section 4 we present our technique and different heuristics for
feature localization. Section 5 describes the application of our prototype to two open source designs.
Section 6 concludes the paper and discusses results.

2. Related Work

So far, no technique has been published about feature localization in hardware designs at the HDL
level. However, feature localization for software designs is an area well-studied for over 15 years.
Often the statement coverage from runs using a wanted feature is compared to the coverage of runs not
using this feature [WS95]. Simple approaches only consider program statements which are covered
by runs using a wanted feature, but are not covered by runs that do not use the feature [WC96]. More
advanced approaches use more fine-grained categorizations, where the statements are classified based
on the relation of runs using (not using) a certain feature [EKS03].

Techniques for bug localization in software using coverage information are similar to coverage-based
feature localization. A well-known tool in this context is Tarantula [JHSO1]. Tarantula is a visualiza-
tion tool for bug localization which colors statements depending on their suspiciousness of causing a
bug. The suspiciousness is computed by comparing the percentage of failing runs to non-failing runs
executing the statement. Abreu et. al. [AZvG06] showed that using the Ochiai coefficient, a similarity
coefficient used in molecular biology, yields better results for computing the suspiciousness of a state-
ment compared to the Tarantula formula. Later Santelices et. al. [STYH09] presented an approach
to relate branch- and definition-use-coverage to statements. They showed that using the average of
several different coverage criteria to compute the final suspiciousness creates better results than each
coverage criterion on its own.

The approach presented in this paper is based on coverage information gathered by simulating the
design under test. To this extend it is similar to the approaches described above. However, all previous
approaches are used for software, while we consider hardware systems. There are several differences
between software and hardware. For hardware there exist different coverage metrics, like toggle
coverage, which we also use for feature localization. Moreover, in HDL descriptions of a design,
there is several code which continuously is executed without being called from any other function,
for example always-blocks and assign-statements in Verilog [IEE06]. Finally, hardware designs are
inherently parallel.

3. Preliminaries

In this section we give basic definitions and introduce some terminology required for the rest of the
paper. Let D be the design under test. A use case u for D is given by a sequence u = (i1, ia, ..in)
of input values 7 for D. A use case may either be directly defined by the user, or a test case from
the test bench of D may be considered as use case. A feature f is a required behavior of D, defined
by the developer or the specification of D. The set F' = {fi, fa, f3, .., fx} is the set of all features
supported by D. A run r is the simulation of D applying a use case. The user defines, if a run r uses
a feature f. The set R = {ry, 79,73, ..., } is the set of all runs. A coverage metric C' with respect to
D is a set of conditions. A coverage item c € C'is a single condition. The form of these conditions
is defined by C. Two typical coverage metrics used in hardware design are statement coverage and
toggle coverage [TKO1]. Toggle coverage is a coverage metric especially for hardware design, on the
other hand statement coverage is also used in software design [JHSO1]. In case of statement coverage
C, for each statement s contained in the HDL code of D, there exists exactly one condition ¢4, where
cs has the form "r executes s". In case of toggle coverage C; for each wire and each register ¢ there
exist exactly two conditions ¢;, and ¢;,, where ¢, is of the form "r switches ¢ from O to 1" and ¢, is of
the form "r switches ¢ from 1 to 0". The set C = C'; U C, U ... is the union of all coverage metrics with
respect to D. A run r € R covers c, if r fulfills c. Standard coverage tools determine the following
sets:

coveredBy(r) = {c € C|r covers c} coverage items covered by r
uncoveredBy(r) = C\coveredBy(r) coverage items not covered by r
coveredBySet(R,) = | | coveredBy(r) coverage items covered by runs in R,
reR,
uncoveredBySet(Rs) = C\coveredBySet(R) coverage items not covered by R,
hit(c) = {r € R|r covers c} runs covering ¢
miss(c) = R\hit(c) runs not covering ¢

withr € R, R, C R,and c € C.

4. Locating Features

In this section we present our approach for feature localization in hardware designs. The main idea
of feature localization using coverage metrics is to compare the coverage of runs for a system which
use a certain feature with those not using this feature. Therefore several different runs of the system

under test are required. An underlying assumption for our approach is, that for a developer it is easier
to decide whether a run is related to a feature than deciding whether a coverage item is related to a
feature. Which feature f € F'is used by a run must be either specified by a developer or taken from
the test bench documentation:

use(f) ={r € R|ruses f} runs using f
notuse(f) = R\use(f) runs not using f

Based on the user input and the coverage information the relation between features and coverage
items is computed:

pass(c, f) = hit(c) Nuse(f) runs covering ¢ and using f
fail(c, f) = hit(c) N notuse(f) runs covering ¢ and not using f

A coverage item c is likely related to a feature f for example, if ¢ is covered whenever f is used but
never covered when f is not used, or formally: (pass(c, f) = use(f)) A (fail(c, f) = 0). Still the
difference in the coverage may have other reasons. For some coverage item c it might be possible that
¢ & coveredBySet(use(f)), even though c is related to the implementation of f. For example, if ¢ is
related to a special case of f. Having only small differences between the runs, which use a feature
and which do not, as well as having runs which use as few other features as possible often improves
the result [Fan02].

There exist several different heuristics for computing the likelihood of a coverage item to be related
to a feature, which base on the coverage information. Section 4.1 presents four heuristics adapted
from literature. Section 4.2 introduces an additional heuristic and discusses the different heuristics
and their relation to each other. Finally, Section 4.3 presents the prototype implementation of our
technique.

4.1. Coloring heuristics

For feature localization, there exist several heuristics to relate the source code parts to a feature [EKSO03,
WS95]. For evaluating which heuristics are best for the localization of features in hardware designs,
four heuristics from literature have been adapted for our technique. To present the results to the user
we use color coding. This way of presentation is inspired by the Tarantula tool [JHSO1].

In [EKSO03] two different categorizations for feature localization are described. Both categorizations
are defined over a set of computational units. Based on how fine-grained the partition should be, a
computational unit can be for example a source code statement, a basic block, or a function. For
our approach we define the categorizations over the set of coverage items C. The first categorization
(C'aty) partitions the coverage items from C, which were covered by at least one run using the wanted
feature f € F, into four different categories defined as:

1. Coverage items covered if and only if f is used:

uniquelylnvolved(f) = {c € C| (pass(c, f) = use(f)) A (fail(c, f) = 1)}

2. Coverage items always covered when f is used and sometimes when f is not used:
indispensablylnvolved(f) = {c € C| (pass(c,) = use(f))A

(0 < |fail(c, f)| < |notuse(f)|)}

3. Coverage items sometimes covered when f is used:
potentiallylnvolved(f) = {c € C| 0 < |pass(c, f)| < |use(f)|}

4. Coverage items always covered:
commonlylnvolved() = {c € C| Vr € R, ¢ € coveredBy(r)}

As this categorization only considers a coverage item c if pass(c,f) # (), there is a fifth implicit
category:

5. Coverage items never covered when f is used:
unconsidered(f) = {c € C| pass(c, f) = 0}

The second categorization (C'aty) partitions the coverage items with respect to a certain feature into
five groups defined as:

1. Coverage items covered if and only if f is used:
specific(f) = {c € C| (pass(c, f) = use(f)) A (fail(c, f) = 0)}
2. Coverage items always covered when f is used and at least once when f is not used:

relevant(f) = {c € C| (pass(c, f) = use(f)) A (fail(c, f) # 0)}

3. Coverage items sometimes covered when f is used and never when f is not used:
conditionalSpecific(f) = {c € C| 0 < |pass(c,)| < |use(f)| A (fail(c, f) =0)}

4. Coverage items sometimes covered when f is used and at least once when f is not used:
shared(f) ={c € C| 0 < |pass(c, f)| < |use(f)| A (0 <|fail(c, f)])}

5. Coverage items never covered when f is used:
irrelevant(f) = {c € C| pass(c, f) = 0}

In addition to the presented categorizations, two coloring schemes from bug localization in software
are adapted for our approach. The first scheme extends the two-dimensional 7arantula scheme [JHSO1]
to differentiate multiple features. The first dimension is the likelihood liker of ¢ being related to a
feature f:

. B passed(c, f)
liker(c, f) = passed(c, f) + failed(c, f)

with passed(c, f) = |”|fsi((c};{|)| and failed(c, f) = |,le;£(;(ch))|‘ To prevent undefined values let liker(c, f) =

0 if hit(c) = (. Our formula is a generalization of the original formula. The value of the original for-
mula can be computed by fixing the feature f to "not passes the test case". For our approach, the
hue of a coverage item is defined by its likelihood. The hue reaches from green (likey = 1) over
yellow (liker = 0.5) to red (liker = 0). The second dimension of the Tarantula scheme estimates the
confidence con towards the likelihood value of c. The confidence is defined as:

con(c,) = max(passed(c,), failed(c, f))

The confidence is visualized as the brightness in which c is colored. The brightness of c is linear to
its confidence. A high confidence (con = 1) is colored brightest and a low confidence (con = 0) is
colored darkest.

The other coloring scheme from bug localization in software uses the Ochiai coefficient for computing
the likelihood. Compared to the Tarantula scheme, the Ochiai coloring scheme yields better results
in case of bug localization in software [AZvG07]. Again we generalize the formula by adding a
parameter for the wanted feature f, such that we compute the likelihood like of a coverage item c to
be related to f by:

| pass(c, f)]
likeo(c,) =
ole:f) Jluse(F)] + [ir(c)]

To prevent undefined values let likep(c, f) = 0 if hit(¢) = (). The computation of the confidence is
identical to the Tarantula scheme.

4.2. Discussion

Early experiments with C'at, have shown that for hardware designs a large portion of the coverage
items is categorized as relevant even if it has nothing to do with the feature. This is due to the fact
that there is much code which is always executed, like always-blocks and assign-statements. For
overcoming these problems we propose an extension of C'at,. This extension Cat.,; introduces the
category common and redefines relevant as:

2a.Coverage items always covered:
common(f) ={c € C|Vr € R, c € coveredBy(r)}

2b.Coverage items always covered when f is used and sometimes covered when f is not used:
relevant..;(f) = {c € C| (pass(c, f) = use(f)) A (0 < |fail(c, f)| < |notuse(f)|)}

The three categorizations and the Tarantula scheme are related to each other. Categorization Cat,;
subsumes C'at; and C'at,. This means, it is possible to use Cat.,; to compute Cat; and Cats.
Computing C'at; from Cat, or vice versa, however, is not possible. The Tarantula scheme subsumes
all three categorizations. By partitioning the Tarantula scheme in different classes the categorizations
can be computed. Table 1 shows the relation between the four schemes and describes which color is
used for which category. The Ochiai scheme cannot be related to the other coloring schemes, because
this scheme also considers the total number of runs covering c.

As an advantage the Tarantula and the Ochiai scheme provide a continuous range preventing runs
with very high or very low coverage to have a disproportionately strong effect on the result. Both
schemes also identify coverage items that are not covered if and only if a certain feature is used. The
other three do not distinguish between not covered items while using a feature f, and items never
covered.

4.3. Prototype

Our prototype applies the coloring schemes and presents them to a user. The current implementation
considers line coverage and toggle coverage for the visualization. Thus, on the one hand we have a

Table 1: The relation between the different categorizations and the Tarantula coloring scheme and the colors
used for the different categorizations

Catq Cats Categt Tarantula
Category | Color Category | Color Category | Color equivalent class
uniquelylnvolved |bright green || specific bright green || specific bright green lcl(];;T_:l LA
commonly- bright yellow common bright yellow like = 0.5 A
[mvolved relevant ellow green con = 1
indispensably- | 4\ oreen ’ ¢ relevant ellow green || 00 < fiker < 1A
Involved £ ext y & con=1
cond{nonal- dark green Condz.tzonal— dark green likepr = 1 A
. Specific Specific con <1
potentially-
Involved yellow green (con=1A
shared dark yellow || shared dark yellow |0 < liker < 0.5) V
(0 <con<1)
unconsidered dark grey irrelevant dark grey irrelevant dark grey likepr =0

basic coverage metric often used for feature localization in software. On the other hand we have a
coverage metric which is unique to hardware design. Because it is not trivial to relate toggle coverage
to statements our current prototype computes and colors the different coverage metrics separately.
Combining several coverage metrics like in the work of Santelices et. al. [STYH09], will be an aspect
of future work. Currently, the supported HDL is Verilog. ModelSim [Mod] is used to collect the
coverage information in form of Unified Coverage Data Base (UCDB)-files.

Figure 1 shows screenshots of our prototype. At the top left the user can choose which feature of the
design shall be inspected. At the top right the coloring schemes can be chosen. Note that the user
may use different coloring schemes for statement coverage and toggle coverage. Below the user can
choose the sourcecode file for inspection. For each source code file there is a tab. In the source code
view below each line is colored with respect to its line coverage. Toggle coverage is represented by
over- and underlining variables. Overlining represents the toggle coverage from O to 1 of a variable
and underlining the toggle coverage from 1 to 0. Also each line is annotated with its corresponding
line number.

5. Case Studies

In order to evaluate our approach, we considered designs that have to fulfill the following require-
ments: they provide several different features, they are written in Verilog, the designs and the cor-
responding test benches run in ModelSim, and they have a well commented test bench either distin-
guishing the different features or allowing to easily use the test bench as template for use cases. Two
designs from the OpenCores website [Ope], fulfilling these requirements, are chosen.

When we conducted our case study we used our prototype to gather information about the imple-
mentations of the different features of the designs. Initially, the only information we had about these
designs was their brief description at OpenCores, the file name of the different Verilog files and
knowledge about the design of the test bench. While using our prototype we documented our findings
and which coverage metric and coloring scheme helped us to obtain them. After we were finished
with inspecting the design, we checked our findings against the documentation of the design.

Table 2 gives a brief overview of the designs used for the case studies. The column Design contains

Table 2: Overview of the designs used in the case studies

Design LOC | Files | use cases | features | computation time
double_fpu_verilog 2555 | 7 144 8 22.4 sec
SD/MMC Controller || 3840 | 17 5 5 2.8 sec

the title under which the designs are listed at the OpenCores website. Lines of code (LOC) is the
number of all non-comment and non-empty lines of the source files. The column computation time
shows the time the prototype required to compute all coloring schemes for the given design from the
coverage data. The results show that computing the coloring schemes is fast once the coverage data is
gathered. In many cases this coverage information will already be computed during the validation of
the design. Also in cases where the coverage information must be computed, the different use cases
can be simulated in parallel, reducing the overall time of gathering the coverage information.

5.1. Case Study: double_fpu_verilog

This case study considers a double precision FPU which requires 20 (addition) to 71 (division) clock
cycles per operation. The supported features are four arithmetic operations:

* addition

* subtraction

* multiplication

e division
and four rounding modes:

e round to nearest even

e round to zero

e round to +INF

e round to —INF
For each combination of operation and rounding mode, there exist nine use cases. The documentation
consists of a pdf-file with twelve pages and very few source-code comments.
There is a huge difference between the difficulty to localize arithmetic operations and to localize
rounding modes. For the arithmetic operations, the statement-coverage-based coloring schemes pro-
vide several locations related to the feature. But still 56% of the statements are executed for all use
cases. For these statements, statement coverage cannot help to decide whether they are relevant for
the feature or not. The information provided to the user based on statement coverage is identical for
all coloring schemes such that no qualitative difference can be found between them.
Toggle coverage allows to partition the statements always executed in statements that use toggling
signals and statements using signals that do not toggle. Since statements that use constant signals are
unlikely to be part of the computation, they can be filtered out. When considering toggle coverage all
coloring schemes support the user while locating features. However, the Tarantula coloring scheme
provides the strongest contrast and therefore shows the difference in toggle coverage very clearly.
The Ochiai scheme also provides the information clearly, but with less contrast, making it harder
to recognize. These two coloring schemes show that a coverage item is not covered if and only if
a feature is executed. When relating this information to toggle coverage, this translates to a given
register or wire staying constant if and only if a given feature is used. This information helps to
understand a feature, as already assumed in Section 4.2. The three other schemes do not provide this
information.

Feature: [MUL - Statmentcoverage Coloring Mode: [Tarantula | | Feature: [MUL - Statmentcoverage Coloring Mode: |Tarantula -

Togglecoverage Coloring Mode: Tarantula - Togglecoverage Coloring Mode: Tarantula -
fpu_add.v | fpu_div.v | fpu_double.v | fpu_exceptions.v | fpu_mul.v | fpu round.v | fpu_sub.v

fpu_add.v | fpu div.v | fpu double.v | fpu_exceptions.v | fpu_mulv | fpu_round.v | fpu_sub.v
0% =0

product_1sb <= 0; —
- exponent <= 0;
exponent_5 <= 0;
denorm_to_norm <= 0;
product_shift_2Z <= 0;
exponent_2 <= 0;

Sign <= Opal63] "~ Opb[63];

mantissa_a <= opal51:0];
mantissa_b <= Opb[51:0];
exponent_a <= opal62:52];
exponent_| opb[62:52];
&_1s_norm <= |exponent_a;

Figure 1: Screenshots of our prototype inspecting a part of the design related to a feature, as claimed by the
documentation (left), and a part of the design which are not related to the feature, as claimed by the
documentation (right)

Figure 1 gives two examples presenting the FPU design to the user. The design is partitioned in case of
the multiplication operation. For this example statement coverage provides a clear distinction
for some parts of the design. Toggle coverage provides additional information to further distinguish
statements always executed (yellow statements).

More difficult is the localization of the rounding features. Based on statement coverage there is no
difference between the rounding modes, forcing the user to completely rely on toggle coverage. Even
for toggle coverage there is only a small difference. In case of round to nearest even only
the Tarantula or the Ochiai scheme show a difference. For identifying the feature it is necessary
to compare the coloring with other rounding modes. Altogether in case of the rounding modes, the
feature localization results in two to four statements corresponding to each rounding mode.
Comparing our findings with the documentation shows the advantages of our approach. First the doc-
umentation only describes in which module a feature is implemented. All the positions found with
our approach are placed in the corresponding module. In conclusion, our approach retrieves results
that are at least as good as those contained in the documentation. Moreover, there are special cases
for addition and subtraction based on the signs of the operands. An addition may be
executed by the subtraction unit and vice versa. The documentation does not include this information
in the description of the two operations, but in the description of the design hierarchy. By this, some-
one only reading the operation descriptions would miss this peculiarity. Additionally, our approach
highlights the signal that defines which variant is used. This information does not even exist in the
documentation. After inspecting the corresponding code for the rounding modes we are confident
that the lines marked by the prototype are in fact the main parts implementing the rounding features.
In conclusion, the Tarantula coloring scheme has provided the best results and statement coverage
gives a first overview, where toggle coverage allows to further differentiate those statements which al-
ways are executed. The arithmetic operations were practically found at first glance, and except for the
round to nearest even all features were found faster than by looking at the documentation.
Finally, our prototype yields more information about the design than the documentation does.

5.2. Case Study: SD/MMC Controller

The design used for this case study is a controller chip for SD/MMC cards for up to 2GB. The
controller is accessed through a Wishbone-slave-interface. The test bench of the controller includes

Table 3: The definitions for the likelihood of a file to be related to a feature
Likelihood | Description

+++ More than 25% of statements colored bright green.
++ Statements colored bright green but less than 25%
+ No green statements but green toggles

0 Yellow toggles and statements

Yellow statements, most with yellow toggles, few with red toggles
- Yellow and red statements
— Red and yellow statements, including bright red statements

a Wishbone simulator and an SD-card simulator used for testing. The five features as defined by the
test bench are:

* Register access

e SPI bus access

e SD init

* SD write

e SD read
The test bench consists of only one function but clearly defines which feature is used. we used this
distinction to measure the different coverages for the corresponding executions. The documentation
of the controller consists of two pdf-files, one consisting of 23 pages and the other one consisting of
17 pages. Additionally, there are several source code comments.
In contrast to the first case study, all features are equally easy to find in the SD/MMC Controller.
The realated source code is less easy to spot than the arithmetic operations in the first case study, but
easier than the rounding modes. When comparing the different coloring schemes we observed that the
run for the Register access feature covers very few coverage items, resulting in the effect that
the categorization based schemes mark the coverage items which are covered by all the other runs as
relevant or indispensablylnvolved, respectively. This practically renders the categorization schemes
useless and is very similar to the effect which caused us to introduce C'at.,;. However, the Tarantula
scheme and the Ochiai scheme are not compromised. The computed likelihood is only minimally
affected by such use cases, because of the continuous range of the schemes. The Tarantula scheme
and the Ochiai scheme obtain good results, with no visible differences.
Because of the experience from the first case study that the feature implementation was not well
documented, we assign each source code file a likelihood to be related to the feature based on the
results of our technique. Those likelihoods are described in Table 3.
After we finished our inspection we checked the documentation to find out where which feature is
implemented. The pdf-files of the documentation did not help because they only explain how to use
the design. However, most of the source code files have a description explaining their purpose. In
many cases this description can directly be related to a feature. However, there are some files without
any description, e.g. sm_RxFifoBl.v, or files where the description could not be related to any feature,
e.g. sm_fifoRTL.v. Additionally, as the design is accessed through a Wishbone-interface the files
related to the Wishbone-interface are considered as commonly used by all features.
Table 4 compares our findings with the claims of the documentation. The column Most Likely shows
the files which we assigned the highest likelihood and the column Second Likely shows those files
with the second highest likelihood. In case of the feature SPI bus access there are no files
annotated with +++, +, or O such that the highest likelihood contains all files with ++ and the second
highest likelihood those with -. If the documentation clearly relates a file to a feature the file is listed

Table 4: Likelihood for the source code files compared to the documentation. The percentage given is the
percentage of statements colored as required by the definition of their likelihood, for +++ and ++ this
are bright green statements, for - this are yellow statements with yellow toggles

Feature Tarantula/Orchiai scheme documentation
Most Likely Second Likely Belongs Possible
Register Tt sm_TxFifoBl* 34% ++ sm_fifoRTL* 17%
access ctrlStsRegBlJr 36% sm_RxFifoBI* 20%
SDinit ||+++ initSD 39% | ++ spiCtrl 149 || MSD sendCMD
spiCtrl
sm_RxFifoBI* 20% .
SDread ||+++ readWriteSDBlock 31%|++ spiCtrl 12% Z;?gmmeSDBl“k sendCMD

spiMasterWishBoneBI' 24%
spiMasterWishBoneB1' 12% || readWriteSDBlock

readWriteSDBlock 41%

SD write || +++ sm_TxFifoBI* 68% |++ . . sendCMD
sm_fifoRTL* 58% spiCtrl 14% || spiCitrl
ctriStsRegBIT 4% .

SPI bus ++ spiCtrl 18% |- readWriteSPIWireData 64% || readWriteSPIWireData sp%Ctrl

access . spiTxRxData
spiTxRxData 9%

in column Belongs and those files where the documentation is unclear are listed in column Possible.

Columns Most Likely and Second Likely include all files the documentation relates to the feature. For
all additionally included files the documentation either relates them to all features, or does not contain
information about them, or is unclear regarding the feature. Again our approach yields information
that is as good as the documentation. Within each file our approach partitions the different parts of
the HDL source very clearly, as the percentages in Table 4 show. Because of the poor documentation,
we cannot verify this partitioning.

This case study shows clearly that the three categorization based coloring heuristics are inaccurate
when being faced with a single use case yielding very low coverage. The Tarantula and the Ochiai
scheme provide equally good results as there are no visible differences between both schemes. Again,
our approach gives at least as good information as the documentation. Moreover, the approach often
provides additional information for feature localization. Therefore techniques for feature localization,
like the one presented in this paper, are needed for design understanding.

6. Conclusion

We described an approach for feature localization in hardware designs. Our approach uses cover-
age information gathered by simulation to relate different coverage items to different features. The
current implementation only supports statement coverage and toggle coverage. Five different color-
ing schemes to present the results have been implemented. Three categorize the coverage items into
different groups. The other two schemes compute the likelihood of a coverage item to be related to
a feature and the confidence in this likelihood. These values are then presented as the hue and the
brightness of the coverage items.

The case studies emphasize the strength of our approach. They also showed that the Tarantula color-
ing scheme performs best and that coverage metrics typically used for feature localization in software
systems are not sufficient for feature localization in hardware designs. Therefore hardware specific

*File that is not documented or the documentation does not relate it to any feature
TFile that the documentation claims to belong to the Wishbone-interface and therefore is commonly used for all features

coverage metrics must be used as well. Additionally the two case studies showed that the main advan-
tages of the Tarantula and Ochiai scheme are their continuous range and their notion of not covering
a coverage item if a certain feature is used.

References

[AZvGO06] Abreu, R., P. Zoeteweij, and A. J. C. van Gemund: An evaluation of similarity coefficients for

software fault localization. In Pacific Rim International Symposium on Dependable Computing, pages
39 —46, 2006.

[AZvGO7] Abreu, R., P. Zoeteweij, and A. J. C. van Gemund: On the accuracy of spectrum-based fault lo-
calization. 1In Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION, pages 89 -98, 2007.

[EKS03] Eisenbarth, T., R. Koschke, and D. Simon: Locating features in source code. IEEE Transactions on
Software Engineering, 29:210-224, 2003.

[Fan02] Fantozzi, A.: Locating features in vim: A software reconnaissance case study. Technical report, 2002.

[IEEO6] IEEE 1364 Working Group: IEEE Standard for Verilog Hardware Description Language. 1EEE Std
1364-2005 (Revision of IEEE Std 1364-2001), 2006.

[ITRO9] ITRS Working Group: International technology roadmap for semiconductors 2009 update system
drivers, 2009. http://www.itrs.net.

[JHSO1] Jones, J. A., M. J. Harrold, and J. T. Stasko: Visualization for fault localization. In Proceedings of the
Workshop on Software Visualization, pages 71 =75, 2001.

[Mod] ModelSim Website. http://model.com/.
[Ope] OpenCores Website. http://opencores.org/.

[SJTYHO9] Santelices, R., J. A. Jones, Y. Yu, and M. J. Harrold: Lightweight fault-localization using multiple
coverage types. In International Conference on Software Engineering, pages 56—66, 2009.

[TKO1] Tasiran, S. and K. Keutzer: Coverage metrics for functional validation of hardware designs. Design
Test of Computers, IEEE, 18(4):36 —45, 2001.

[WC96] Wilde, N. and C. Casey: Early field experience with the software reconnaissance technique for pro-
gram comprehension. In Working Conference on Reverse Engineering, pages 270 —276, 1996.

[WS95] Wilde, N. and M. C. Scully: Software reconnaissance: Mapping program features to code. Journal of
Software Maintenance: Research and Practice, 7(1):49-62, 1995.

