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ABSTRACT
Simulation-based verification is an integral part of a modern micro-
processor’s design effort. Commonly, several checking techniques
are deployed alongside the simulator to detect and localize each
functional bug manifestation. Among these, a widespread tech-
nique entails comparing a microprocessor design’s outputs with a
golden model at the architectural granularity, instruction-by-instruc-
tion. However, due to exponential growth in design complexity, the
performance of software-based simulation falls far short of achiev-
ing an acceptable level of coverage, which typically requires bil-
lions of simulation cycles. Hence, verification engineers rely on
simulation acceleration platforms. Unfortunately, the intrinsic char-
acteristics of these platforms make the adoption of the checking
solutions mentioned above a challenging goal: for instance, the
lockstep execution of a software checker together with the design’s
simulation is no longer feasible.

To address this challenge we propose an innovative solution for
instruction-by-instruction (IBI) checking tailored to acceleration
platforms. We provide novel design techniques to decouple event
tracing from checking by including specialized tracing logic and by
adding a post-simulation checking phase. Note that simulation per-
formance in acceleration platforms degrades when increasing the
number of signals that are traced; hence, it is imperative to gener-
ate a compact summary of the information required for checking,
collecting and tracing only a few bits of information per cycle.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Verification

General Terms
Design,Verification

Keywords
Simulation Acceleration, Checking, Checking on Acceleration

1. INTRODUCTION
Verification remains one of the most challenging and time con-

suming activities in the modern microprocessor design process.
Shrinking transistor sizes have enabled a massive increase of micro-
architectural complexity in microprocessors over the past decades.
As a result, the verification effort needed for these designs has
also increased tremendously. Simulation-based validation is still
the workhorse of verification in the industry: a large collection of
test regression suites are simulated on different models (architec-
tural, RTL-level, structural) of the processor under verification, to
check whether the design adheres to the original specification. To
attain an acceptable degree of functional verification coverage for a
modern microprocessor, billions of simulation cycles are executed
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on each new revision of the processor in development. Clearly, the
success of simulation-based validation is closely tied to simulation
performance. Unfortunately, the performance of software simula-
tion tools on complex designs, such as microprocessors, falls far
short (1-10 cycles per second) of what is required to complete vali-
dation in a reasonable amount of time. Hence many functional ver-
ification teams in the industry rely on acceleration and prototyping
platforms to meet their verification performance needs. However,
even if simulation performance is much higher on these platforms,
checking the functional correctness of a complex system, such as a
processor design, presents many new challenges:

Mapping checkers to acceleration platforms: Many software-
based checkers designed for microprocessor validation are expected
to execute in lock-step with the RTL or gate-level simulation of the
processor model. However, acceleration platforms can only simu-
late synthesized logic descriptions. Hence, if a software checker is
sufficiently complex that it cannot be easily mapped into hardware,
the checking solution cannot be brought onto the acceleration plat-
form. Lock-step execution of software checkers in the host is in-
feasible since it would require frequent transfers of values from the
platform and thus hinder performance unacceptably.

Acceleration performance: The performance of acceleration de-
grades when increasing the number of recorded/monitored signals
or events. This effect is present even in software simulation-based
validation; however, it is much more prominent in acceleration. In-
deed, tracking a large number of signals in acceleration can degrade
its performance to the point of cancelling its benefits over software
simulation (as discussed in Section 4). Given an accelerator ar-
chitecture and a design mapped to it, it is possible to estimate the
slowdown incurred from the number of bits being traced. Thus,
checkers that require to monitor a large number of signals cannot
be adopted in acceleration in a straightforward fashion.

In the wake of these challenges there is a growing need of in-
novation to transform traditional microprocessor checking method-
ologies so that they fit in the constraints of accelerator/prototyping
platforms while still delivering comparable verification quality and
accuracy as their software simulation-based counterpart.

In this work, we present an architectural checking solution for
microprocessor cores on acceleration platforms. Our solution per-
forms what we call “instruction-by-instruction" (IBI) checking, that
is, it verifies the outcome of each instruction completed in the accel-
erated simulation by comparing it with an architectural golden mo-
del. We achieve our goal by applying a number of major transfor-
mations to a baseline software simulation-based validation method-
ology. We solve the challenge of mapping complex logic to the
platform by decoupling the recording of events from their check-
ing. We also address the challenge of poor performance due to
large data tracking by computing a summary of the information re-
quired by the checker before transferring the data off-platform. The
proposed solution retains almost all the capabilities of its software
counterpart but does not compromise the performance of acceler-
ation. We successfully deployed and evaluated this solution in the
validation of an upcoming IBM POWER processor.
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2. RELATED WORK
Simulation accelerators and emulation platforms have been tra-

ditionally used to boost the productivity of the microprocessor vali-
dation effort [8, 12], and they play an even more critical role today,
in light of the increased complexity of these designs. However,
acceleration-based flows usually have a coarse checking granular-
ity, that is, they can label a test as passed or failed after its com-
pletion but, in case of failure, no additional information is available
related to the time/location of the bug manifestation. Comparing
architectural state between a purely software-simulated design mo-
del and a golden architectural software model at instruction bound-
aries, or at other synchronizing boundaries, has also been a com-
monly deployed method for microprocessor validation[14, 5]. The
key reason why this methodology has not yet been considered for
acceleration, with the golden model running in software on a host
platform, is that connecting these two components (golden model
and accelerated design) is both difficult (due to lack of debugging
support) and detrimental to performance [5]. Obtaining scan val-
ues from a silicon prototype and comparing them to a RTL golden
model to detect divergence analysis during post-silicon debug has
been proposed in [4]; however, this solution is only used to diag-
nose electrical faults.

More recent silicon-debug solutions, such as IFRA [11], intro-
duce additional logic into the design to trace the flow of an instruc-
tion through various microarchitectural blocks and use this infor-
mation with a post-simulation analysis tool to locate the manifes-
tation of a possible design bug. Though our solution has a similar
organization, i.e., decoupled tracing and checking components, we
are interested in the manifestation of a failure in the architectural
state. Moreover, IFRA cannot detect divergence of the processor
execution from the ideal model on its own, in fact it relies on post-
triggers for this information. Our solution is focused on detect-
ing the first point of divergence in the architectural state, hence it
solves an orthogonal problem. Certain runtime verification tech-
niques such as DIVA [2], introduce a lightweight companion pro-
cessor to check the architectural state of the main processor, but
these solutions operate at runtime, past design debug. Standards
for hardware support for a variety of trace and control instrumenta-
tion for system debug has been proposed for the embedded domain
[10], though they are not meant to be used for debugging the pro-
cessor core design.

3. IBI BACKGROUND
Instruction by instruction (IBI) checking, or golden model based

validation, is a well known checking technique that has been used
in processor verification for many years [9, 13]. IBI compares
the architectural events produced by each executed instruction with
those required by the processor specification. This technique pro-
vides a simple way to distinguish deviations from the desired be-
havior. It does not depend on the internal implementation of the
processor, and can be used with any microarchitecture implement-
ing the same instruction set. An additional benefit of this approach
is the relative ease of debugging: the corresponding checker recog-
nizes the exact spot of the deviation in time and thus it enables the
time localization of the problem.

A typical IBI checking methodology works as follows. A test
generator (e.g. [7, 1]) produces a test program containing the re-
sults expected by the processor specification after each instruction
(the expected results). These results are usually obtained using a
software that can calculate the expected results after each instruc-
tion, known as a golden model. Then the checker environment
compares these results to the ones produced by the processor sim-
ulator for the same test program [9, 13]. The checker environment
needs to identify when an instruction execution completes and what
resources were modified because of the instruction execution. It

also needs to account for the behavior that cannot be predicted by
the golden model (e.g. external interrupts), or are not fully defined
by the specification (e.g. values of some registers become “unde-
fined" when exceptions occur).

4. ACCELERATION BACKGROUND
To boost the performance of simulation, a number of platforms

have recently attracted interest as alternatives to software-based
simulation: acceleration [6], emulation / proto-typing platforms [3]
and post-silicon validation [11]. Hardware-accelerated simulation
platforms are composed of large arrays of customized ASIC pro-
cessors, specifically designed to simulate logic gates concurrently.
To target these platforms, the design under verification (DUV)must
be synthesized into a structural netlist, and then the corresponding
logic gates are mapped to the execution substrate. Acceleration
platforms have limited logic capacity, and even within their capac-
ity limit, they may experience a performance penalty for large de-
signs and depth of simulation. This logic capacity limit prohibits
the mapping of any arbitary checking solution into equivalent hard-
ware and simulating it alongside the design. Thus, only checkers
that result in low logic overhead can be tolerated. In our case, we
evaluated our solution on a single core of an upcoming POWER
processor, which in itself fit within the capacity limit of the accel-
erator used in our evaluation. The limit was also maintained after
the addition of the logic required by our technique.

Acceleration platforms usually allow the collection and transfer
of waveforms for debugging purposes [6], but the transfer slows
down the simulation, eroding the key benefit of acceleration. In
general, the more signals are observed and transferred, the lower
the acceleration performance. However, the precise relation be-
tween acceleration performance impact and signals traced depends
on the architecture of the accelerator. Reducing the number of
recorded signals per cycle (thus the trace data generation rate) is
extremely important for a successful checking solution for accel-
eration platforms. Emulation platforms have very similar trade-
offs, except that the hardware acceleration fabric consists of pro-
grammable look-up tables (FPGAs). Hence, our solution could be
adapted to emulation.

5. IBI FORACCELERATIONPLATFORMS
In this section we present our instruction-by-instruction checker

solution for acceleration platforms. Our technique enables this val-
idation methodology on fast accelerated simulations, thus boost-
ing the amount of simulation cycles that can be checked within a
given amount of time. In our solution, we run the same test on
the processor model simulated in the acceleration platform and on
the golden model running on the off-platform host, and then com-
pare results. To make the comparison possible, we need to collect
relevant information about the retired instructions and architectural
resources modified from the acceleration platform, and transfer it
off-platform. The actual comparison is then performed by a dedi-
cated software checker, capable of running the golden model on the
same test and compare the two sets of results. As mentioned earlier,
the acceleration advantage decreases when increasing the amount
of recorded information and the size of simulated logic. Hence, one
of our design goals is to record as little information as possible and
incur as little hardware overhead as possible, all while delivering
accurate bug detection capabilities.

Based on the observations above, our solution comprises the fol-
lowing two components: i) a dedicated, on-platform, logic block
to record a compact summary of architectural events and ii) an
off-platform software checker module that considers the recorded
data and analyzes it in light of a golden model output. This de-
coupled approach enables us to get around one of the fundamen-
tal challenges discussed previously, minimizing on-platform logic
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Figure 1: Overview of our solution to provide IBI checking on
acceleration platforms. The Figure illustrates the test running on
the platform (left) and on the off-platform software (right). The
bottom left table shows an example of data transferred off-platform.

overhead. However, it also imposes a substantial redesign of the
checking approach. We will check instruction completions and reg-
isters only (similar to many other IBI solutions) because memory
behavior is very difficult to trace and predict in modern architec-
tures. To achieve this we will record two types of events on the
acceleration platform - instruction retirements and register updates.
We do not focus on memory behavior, as it is common for other
golden model solutions, since that requires specialized solutions
beyond the scope of this work. We then compress the collected in-
formation on-platform to minimize the amount of data transferred.
As a result, we must only record and transfer a few bits per cycle,
thus maintaining the acceleration performance advantage. The on-
platform tracing logic is simulated along with the processor in the
acceleration platform. To minimize data recording, we do not track
information that ties registers to a specific instruction; instead, we
rely on the off-platform software, to reconstruct these connections
based on the information recorded. Figure 1 presents an overview
of our solution showing the components on the accelerator and on
the off-platform software. It also outlines the type of data that is
traced and transferred.

5.1 Hardware-based data tracing
From a high level standpoint the collection of information for

our purposes appears to be straightforward; however, when applied
to an industry processor, many aspects become challenging. The
processor in question is a modern, server class, superscalar out-
of-order processor with simultaneous multi-threading allowing 8
simultaneous threads per core. Hence, each architectural event is
a complex combination of several microarchitectural events. To
correctly identify and log individual architectural events, we need
a number of microarchitectural monitor points, mapped together
with the design onto the accelerator. The main architectural events
to be collected for our purposes can be grouped into the following
3 major classes:

Instruction completion: Since the underlying processor is out-of-
order, we can only obtain a finalized instruction retirement event
when an instruction is committed. This information is gathered
from the group completion table of the processor design, where
instruction completion events are built from micro-operation com-
pletion information.

General purpose register activity: This group of registers in-
cludes integer general purpose registers (GPR), floating point regis-
ters and vector registers (VR). Accessing update events and values
incurs an additional layer of indirection due to register renaming
deployed in out-of-order microarchitectures.

Special purpose register activity: Special purpose registers (SPR),

such as several status registers, are easier to handle, since they are
directly mapped and have explicit signals that identify a write to
a special purpose register. We chose to collect information on a
subset of special purpose registers that are either part of or closely
related to the architectural state.

Note that we record all instruction completion events and all up-
date events on the monitored registers. However, we perform lossy
compression on the data associated with each event, i.e. completed
instruction addresses or values written to a register, to reduce the
number of bits recorded on the acceleration platform.

5.2 Off-platform software checker
As discussed in previous sections, our instruction-by-instruction

checker strives to identify all discrepancies between the simulated
processor behavior and its golden model. A processor’s architec-
tural state is defined by the values of the architectural registers (in-
cluding general purpose registers, certain special purpose registers
that affect execution flow and program counter) and the contents
of memory. We assume that events that are not captured by the
golden model (such as memory updates due to shared memory) do
not appear in the test case. Thus, our single core processor mo-
del can be considered to be executing correctly, as long as program
flow and architectural state are identical to that of the golden mo-
del. Hence, tracking the completion of instructions (program flow)
and any modification to architectural registers is sufficient to check
the correctness of execution. We encountered two key challenges
in developing the off-platform checker, discussed below:

Reconstruction of instruction flow: A significant problem we had
to address was the lack of close time correlation between an instruc-
tion retirement and its register events. This information cannot be
reconstructed simply from the acceleration trace. Thus, in our so-
lution we maintain a list of all registers that should have been mod-
ified by a completed instruction. We expect that for each such reg-
ister, the first modification report that appears after the completed
instruction will contain the correct value, and this report will appear
within a bounded number of cycles. This solution is based on the
assumption that registers are modified only after the corresponding
instruction completes, and all associated register modifications are
reported within a bounded number of cycles. However, we also had
to consider the case where a register update is received before its
corresponding instruction completion: in this case we must search
for a matching event from the golden model over a few instructions
downstream. If we do not find the matching event within a few
instructions, we flag an error. We have run experiments to com-
pare the results reported by a state-of-the-art software-based IBI
checker to the results reported by our solution. We learned that
the only difference lies in identifying which instruction is the root
of the execution path deviation from the golden model execution
(when such deviation exists). Our checker may report an instruc-
tion that is close to the actual deviating instruction (usually the next
instruction), which we found satisfactory for effective debugging.

Handling interrupts for checking purposes: External interrupts
and other non-deterministic events are not predictable by the golden
architectural model; however, they are still included in the accel-
eration traces. External interrupts can still be identified from the
address of the corresponding interrupt handler and specific values
of the related control registers. Our solution mimics the effect of
the interrupt routine by modifying the associated status registers
and other architectural resources in the golden model and then it
resynchronizes the model with the trace.

6. DATA COMPRESSION
As discussed in Section 5.2, a central goal of our work is to keep

the amount of data recorded per cycle at a bare minimum, to main-
tain the performance advantage of acceleration, while still provid-
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ing acceptable detection accuracy. To this end, we compress the
data associated with each event, such as register update values and
addresses of completed instructions. A lossy compression scheme,
such as a checksum is ideal for this purpose, since we are only
interested in identifying value deviations. So, as long as a differ-
ent value produces a different checksum with high likelihood, it
serves the purpose. Moreover, another important aspect in the de-
velopment of our solution, is that the additional hardware required
to implement the compression scheme should have minimal logic
overhead and minimal logic depth. Hence, a compression scheme
that involves little additional logic and does not add substantial de-
lay to the critical path is favored over a more complex scheme.

6.1 Register update values
Value discrepancies in register updates can often be discerned

using a checksum over a small subset of the bits, without requiring
a complete value comparison. We strive to use only a few (say, less
than 8) bits of encoded information for each register value field (32
bit / 64 bit). The basic idea is to compute a checksum from the
value generated by the simulated hardware and perform the same
operation on the value generated by the reference model for each
register update in the software checker. For the sake of our checker
solution, a checksum match is considered a valid register update.
Since all checksum schemes are a hash function from a set of size
264 (for 64 bit registers) to a set of size 2c, where c is a small value,
some amount of aliasing is unavoidable. However, we found that
blocked parity schemes, presented below, provide sufficient accu-
racy in practice for the typical error scenarios that we encountered.

Blocked parity schemes partition the data vector into several dis-
tinct blocks and then compute single bit checksums for each block.
The concatenation of these bits provides the final checksum. This
approach is guaranteed to detect any bit value difference, as long
as the number of single bit errors within each block is odd. A ben-
efit of this approach is that its computation is extremely low cost
in hardware, simply requiring a few XOR gates. However, this ap-
proach is ineffective for scenarios where errors manifest with an
even number of localized bit-flips, which may occur all within one,
or a few, blocks. To address this situation we build blocks on non-
contiguous bits, scattering the bits over the checksum blocks. With
this technique, an error affecting a few contiguous bits has a much
higher chance of detection. The experimental evidence presented
in Section 8 supports this intuition.

6.2 Retired instruction addresses
The data associated with each retired instruction is the address

of the committed instruction. To compress this values we use a
very simple scheme, recording only the last few bits of the address.
Even though this scheme is prone to aliasing, it works very well in
practice. Indeed, it allows us to identify an execution divergence
from the golden model fairly precisely, since the probability of ex-
ecution starting at an aliased address leading to the same sequence
of register updates as the correct execution is extremely low.

7. ON-PLATFORM TRACING UNIT
As discussed earlier, there are several types of data collected on

the acceleration platform originating in different regions of the de-
sign at a variable rate. To manage this flow of data, we developed
a novel unified scheme to collect and organize it for on-platform
storage, before it can be transferred off-platform. To this end, we
first need a mechanism to identify which registers are updated on
a particular cycle or which instruction groups have completed, so
that we only record new values for the relevant registers/addresses.
Second, we need a mechanism to present this data in a structured
fashion, so that it can be recorded efficiently by the acceleration
platform’s data logging mechanism. We note that, although the

maximum number of simultaneous events in a clock cycle can be
quite high, the average number of events per cycle is fairly small.
Hence, a recording mechanism that can handle transient peaks in
the number of events and can present data at a constant rate to the
platform’s debug support unit would be ideal. A possible solution
to this second requirement is a first-in first-out buffer that allows the
storing of up to a few entries at a time and it is drained at a constant
rate. This section discusses how we achieved these requirements.

7.1 Select and encode logic
The first task of the tracing unit focuses on selecting and en-

coding different types of events as they are flagged during a clock
cycle. In the platfom there are a number of data lines and corre-
sponding valid lines coming from different parts of the processor
and corresponding to different special purpose registers or instruc-
tion completion events that we want to track. Our goal is to be able
to store the relevant data at each cycle (as signaled by the corre-
sponding valid lines) while also tracking the correct source for the
data. By doing so the off-platform software is able to reconstruct
the sequence of events to be checked against the golden model.

The goal of the select and encode logic unit can be formally ex-
pressed as follows: given a collection of N signal lines, presented
as an ordered list, up to any M lines among those can request data
logging on any given clock cycle. The task of this unit is to identify
and encode the position in the list of the M lines in preparation for
storing them along with the data itself. Ultimately, these positions
will be used to identify the source of the corresponding data value.
This problem is also known as the “detect and encode all ones"
problem: one straightforward solution would be to use a chain of
priority encoders: the first encoder is responsible for the highest or-
der position, which is then masked and the entire vector of N lines
is passed down to the next encoder. While simple, this solution
creates a deep combinational logic block, which could hamper the
performance of acceleration.

Figure 2: Detector block to identify the source of data to be
logged in a given clock cycle of simulation acceleration.

Our goal in developing this unit is to develop a design that is
most suited for acceleration platforms, even if it may entail a non-
minimal area footprint in silicon. To this end, we devised an alter-
native solution, that has a much smaller logic depth. Our solution
uses a parallel detection scheme, where each detection block is re-
sponsible for generating a one-hot encoded vector corresponding to
the line position for which the block is responsible, if that line has
data available. If no logging data is generated from that line during
a cycle, the block should simply output a vector of zeros. Figure 2
illustrates our solution: we use M detection blocks, since we have
at most M lines generating data within one cycle. Each block re-
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ceives in input a value K, and generates a one-hot encoded vector
where the 1-bit is in the position of the K-th line producing data in
that cycle. For instance, if during a cycle lines 4, 7 and 11 produce
data to be logged, then block 1 should have a one in position 4,
block 2 should have a one in position 7 and block 3 should have a
one in position 11.

Figure 3: Trace buffer writing unit. Each buffer entry is associ-
ated with a writing unit. Each unit determines which data logged in
the cycle should be stored in the position for which it is responsible.

7.2 Trace buffer
Once the relevant data has been selected and encoded for log-

ging, we need a hardware block to record the architectural events.
To this end we use a trace buffer that must be capable of handling
up to M entries in each clock cycle, while allowing a constant R
entries to be read. Such a buffer is typically realized via a cir-
cular buffer with read and write pointers. However, multiplexors
are needed to realize these pointers. Unfortunately, they also in-
crease the logic depth of the design, particularly when the number
of buffer entries is large. Hence, we adopted an alternative de-
sign, where the buffer is implemented as a shift-buffer, so that the
constant number of read operations in each simulation cycle corre-
sponds to a constant number of shifts. A bit is associated with each
entry to indicate the first free entry, and independent write units are
associated with each buffer entry. Each write unit has access to its
corresponding entry and the M preceding ones, and it determines
what to write in its entry based on the number of write operations
to be completed in the cycle. This design is shown in Figure 3: the
implementation is parallel and logic depth is kept minimal.

8. OPTIMIZING DESIGN PARAMETERS
In this section we discuss a number of analyses that we con-

ducted to optimize our checker design. The most influential pa-
rameter for the performance of our checker is the number of bits
traced per cycle. This parameter is determined by the product of
two other parameters: (i) the number of trace buffer entries being
drained per clock cycle and (ii) the number of bits per entry in the
trace buffer. The first one has to be equal or greater than the average
rate of traced events generated by the processor, since we are using
a finite size buffer. The other is determined by the number of bits
required to describe the event type (which is a fixed value), along
with the number of data-bits associated with each entry (a variable
value). Below we discuss how we computed the near ideal value
for each of these components.

Trace buffer size: Since the number of write operations to the
buffer varies from cycle to cycle, while draining rate remains con-
stant, we need to ensure that the average draining rate is higher
than the average generation rate. Even then, bursts of generation
may create backlogs in the buffer. In Figure 4 we show how differ-
ent buffer draining rates affect instantaneous buffer occupancy. We
derived a queuing theory-based estimate for our buffer size, which

Figure 4: Buffer occupancy peaks at varying rates of draining.

ensures a very low probability of overflow, while using the low-
est possible draining rate. Assuming a pessimistic generation rate,
a draining rate of 3 entries/cycle was found to be sufficient and a
corresponding buffer size of 512 is adequate.

Figure 5: Detection accuracy of a range of checksum schemes.
Register value discrepancies can be either detected at register up-
date (direct), or in downstream computation (indirect), or missed.

Checksum width: The number of bits recorded per buffer entry
is dictated by the number of data bits. We want to store a min-
imal number of bits in the checksum, while still detecting value
discrepancies caused by a functional bug. Hence, we investigated
the detection accuracies of several blocked parity schemes, as de-
scribed in Section 6.1, over buggy traces diverging on a register
value update.

To this end, we varied the number of checksum bits from 1 to 7,
while the original register values are 64-bits wide. We studied three
different checksum schemes as reported in Figure 5, and estimated
the minimum checksum bit width required to detect typical value
discrepancies. The schemes we evaluated are: (i) Simple blocked
parity, where a single parity bit is computed from each portion of
register data and appended to the final checksum. (ii) XOR sum of
blocks, where the checksum is obtained by applying bitwise XOR
to all same size sub-blocks of the register value. (iii) Overlapping
block parity, similar to (i), but with overlapping partitions. The
sample size for this study was 500 traces with register value cor-
ruptions similar to those of actual buggy traces. From Figure 5, it
can be gathered that typical discrepancies can be detected with as
little as 5 bits of XOR sum of blocks. This allows storing only 8
(event-type ID, one out of 256) +3 (thread ID) +5 (checksum)=16
bits in each trace buffer entry. In addition to this we have 1-bit
indicating that the values at the buffer output are valid and another
1-bit to indicate buffer overflow. These 2 bits are constant overhead
irrespective of number of entries read.
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9. EXPERIMENTAL RESULTS
Our solution was implemented for an upcoming POWER proces-

sor core design on the AWAN accelerator [6] platform. We eval-
uated the capability of our solution to detect bugs as well as its
performance. The IBM SixthSense tool-chain was used to design
and synthesize the hardware blocks for our solution. The processor
core netlist consisted of a few million logic gates, and the resulting
logic overhead was within 20%.

9.1 Bug detection capability
Any discrepancy of the processor’s behavior from the golden ar-

chitectural model due to a probable functional bug is detected as
one of the following situations (symptoms) by our IBI checker:

1. Register value mismatch: Updated value of a register does not
match with predicted value from golden model;
2. Unexpected register update: An architectural register update
event takes place in the design but not in the golden model;
3. Unaccounted register update: A register update event takes
place in the golden model but does not occur in the design;
4. Wrong instruction: The instruction address of an executed in-
struction is in disagreement with the golden model;

We obtained a set of 145 architectural event traces that exposed
actual functional bugs. These 145 constituted the entire set of
buggy traces that we had access to. To evaluate the bug detec-
tion capability of our checker, we ran the same traces on our off-
platform software checker to determine if our accelerator-based
checker could also detect the occurrence of the bugs. All 145 test-
cases exposed a bug in our setup; in addition the symptoms reported
matched those of the software-based golden model solution. We
report in Table 1 the distribution of the bugs detected according to
the type of symptom flagged by our checker. As it can be noted, a
large portion of the issues are due to unaccounted/unexpected regis-
ter updates. All these problems were detected within 5 instructions
from the first point of golden model/accelerator divergence.

Symptom #occurences
Register value mismatch 21
Unexpected register update 30
Unaccounted register update 89
Wrong instruction 5

Table 1: Distribution of bugs detected by our solution.

Since we do not compress the information regarding which ar-
chitectural register (among the monitored subset) is updated, we
detect all discrepancies that are not affected by checksum aliasing.
However, even in this latter case, often the program flow diverges
substantially due to the bug, and we can still flag the issue a few
instructions downstream.

9.2 Tracing overhead
The amount of logic added for on-platform tracing purposes may

impact the performance of the simulation. However, this is only
the case if the overall logic size mapped to the platform (design +
checkers) exceeds a certain threshold, dependent on the accelera-
tor’s characteristics. When abiding this threshold, the performance
degradation due to the tracing logic comes from two sources (i)
additional logic to simulate (ii) signal recording time.

To evaluate these effects, we measured the simulation accelera-
tion performance of the POWER core design in several situations.
The stimuli used for this study were regression tests lasting fewmil-
lion cycles. First, we run a baseline design with no tracing logic.
Then we added the tracing logic, but without observing the trace
buffer output. Then we also enabled tracing for the typical case,

that is, 3 buffer entries are read per cycle, amounting to 50 bits of
recorded information per cycle. Finally, we considered an extreme
situation where 10 buffer entries are read per cycle, for a total of
162 bits. Figure 6 summarizes our findings, normalized to the sim-
ulation performance (between 10-100 kHz) of the baseline design
with no tracing logic.

Figure 6: Impact of tracing logic on acceleration performance.

From Figure 6 we gather that our solution introduces only a 5%
slowdown due to the tracing logic alone, and another 15% due to
data logging. Even the extreme situation causes no more than a
50% slowdown in acceleration performance, a value still order of
magnitudes better than software-based simulation.

10. CONCLUSIONS
In this work we presented a novel microprocessor design check-

ing solution that provides architectural checking against a golden
model for simulation acceleration. Our solution provides the same
bug detection quality as its software-based counterpart. It enables
architectural validation on acceleration platforms with negligible
accuracy loss and moderate performance loss of approximately 20%.
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Supplementary material
S1: Insights on micro-architectural to architec-
tural event translation
Instruction completion: To properly sample the information re-
quired for each instruction at its correct completion time, we lever-
age the fact that instruction retirement is performed in the program
order. This remains true even when the processor has an out-of-
order microarchitecture. This observation is utilized to create in-
struction completion events from the retirement of an instruction
at the reorder buffer. However, there is another layer of complex-
ity associated with identifying instruction completion events. Even
though the processor has a RISC architecture, for performance rea-
sons each instruction is sub-divided into micro-operations. At the
retirement stage, the actual visible events are micro-operation re-
tirements. Hence, to generate retirement events at the architectural
level, micro-ops completions are collapsed together based on the
directives of the instruction dispatch table. The associated instruc-
tion address is also gathered from the instruction dispatch table.

General purpose registers: All general purpose architectural reg-
isters are dynamically mapped to registers in the physical register
file; hence, a map entry is associated to each register update event,
and it provides the architectural index along with the tag that in-
dexes the written value in the physical register file. From this infor-
mation, we collect the most recent written value to an architectural
register on the notification of a write event. This is achieved using
a significant amount of decoder and multiplexing logic.

S2: Select and encode logic - insights
Asmentioned in Section 7.1, a straightforward solution to this prob-
lem entails using a cascade of priority encoders. However, combi-
national implementations of this approach would lead to an unac-
ceptable logic depth, while sequential solutions would require more
than one clock cycle to compute the output value.

Though the cascade solution and some slight variations of it (op-
timizing the detection part but retaining the cascaded logic struc-
ture) describes a correct logic implementation, the problem that re-
mains is the enormous logic depth required for implementing even
a small cascade depth. This would lead to forming a very long
critical path in the logic and would severely limit simulation per-
formance in the accelerator. Solutions that employ sequential logic
to get around the cascading problem exist but we can not use this
solution since we are not assured to have a fixed number of idle
cycles where absolutely no request arrives, we need to finish detect
and encode in one cycle only.

In contrast, our solution, shown in Figure 2, is combinational
with a small logic depth. In the Figure, we use M concurrent de-
tection blocks, each receiving in input a distinct value K. Each
block outputs a one-hot vector with a 1 in position of the K-th in-
put line producing data in that cycle. Blocks for which the input
value K is larger then number of data lines producing data will
simply output a zero vector.

To achieve this functionality, each block is organized into N sub-
blocks in order, one for each of the incoming data lines. The input
value K is passed along to all sub-blocks. The one sub-block con-
nected to the line with the K-th data value must output a 1 is there
is a new value on the line, and a 0 otherwise. All other sub-blocks
simply output 0. In order for a sub-block to determine if it is con-
nected to the line with the K-th data value, it counts the number
of lines providing data values in line indices lower than its own

order position. The only logic required to implement this solution
includes a tree of few-bits adders and a comparator of only log2 M
bits for each sub-block.

S3: Trace buffer size selection
To determine an adequate size for the trace buffer, we applied the
following reasoning. Let’s call I the average number of instructions
completed per clock cycle (i.e. IPC) and W the average number of
register updates per completed instruction (including SPR updates).
Then, the average number of entries generated per cycle is: G =
I × (1 + W ). The draining rate of the tracebuffer (D) has to be
greater or equal than the generation rate to avoid overflow, i.e.,D ≥
G. In addition, we need to take burst into account: if the average
of G over a window of T clock cycles is GT > D, then a backlog
of (GT − D) × T entries has been created, which the buffer must
accommodate. As it can be noted, the buffer always drains at steady
state; however, its instantaneous behavior maybe adversely affected
by small draining rates. Our ideal situation is to have a minimal
draining rate and experience overflow rarely.

To determine the probability of overflow we use a theoretical
model from queuing theory: our problem can be modeled as a vari-
ant of a M/M/1 queuing model, where the average number of writes
per cycle is the arrival rate λ and the service rate μ is the number of
entries drained per clock cycle. This model holds since the number
of events reported per clock cycle can be considered as a Poisson
arrival process with mean rate λ = G, whereas the average rate of
departure is μ = D. Now, the probability of queue occupancy q ex-
ceeding a given value Q, P (q > Q) is given by (λ

μ
)Q+1. M/D/1 is

a more accurate model since our draining rate is constant; however,
since there is no closed form expression for this case, we conserva-
tively approximated it with M/M/1. We can plot this probability as
a function of buffer size, for the worst case generation rate. To ob-
tain the worst case generation rate we used an artificial regression
that dispatches a large number of independent ADD instructions for
each of the 8 threads simultaneously. This forces the processor to
operate at high throughput and approach the theoretical maximum
of the average rate of event generation.

Figure 7: Overflow probability for finite buffer size as-
suming M/M/1 queuing model.

We observed an average instruction completion rate I of 1.2 per
clock cycle, along with an average rate of register updates per in-
struction W of 1.0. We pessimistically assumed 0.4 SPR writes
per instruction completion, leading to a total generation rate of
1.2 × (1 + (1.0 + 0.4)) = 2.88, which is then rounded to the
closest larger integer, leading to a buffer draining rate of 3. With
these parameters, we plotted the overflow probability in Figure 7
for different buffer sizes and concluded that a buffer size of 512
corresponds to a minimal probability of overflow.
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