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When individuals in a social network make decisions that depend on what others have done earlier, there is
the potential for a cascade to form — a run of behaviors that are highly correlated. In an arbitrary network,
the outcome of such a cascade can depend sensitively on the order in which nodes make their decisions, but
to do date there has been very little investigation of how this dependence works, or how to choose an order
to optimize various parameters of the cascade.

Here we formulate the problem of ordering the nodes in a cascade to maximize the expected number
of “favorable” decisions — those that support a given option. We provide an algorithm that ensures an
expected linear number of favorable decisions in any graph, and we show that the performance bounds for
our algorithm are essentially the best achievable assuming P # NP.

1. INTRODUCTION

When people in a social network are influenced by each other’s decisions, one can see
long runs of behavior in which people’s choices become highly correlated, resulting
in a cascade of decisions. A striking aspect of such phenomena is the fact that the
population’s preferences might be quite heterogeneous at an individual level, but this
heterogeneity is washed away by a global pattern of behavior in which most people ar-
rive at the same observable decision. For example, it often happens that two competing
products A and B each perform well in preliminary market research, but one quickly
captures most of the market once they are both introduced.

Cascades of this type are sensitive to the order in which people make decisions;
when a group of people are choosing sequentially from among a set of options, the
consequences of certain early decisions can be magnified through the effects they pro-
duce on the rest of the population [Arthur 1989; Banerjee 1992; Bikhchandani et al.
1992; Salganik et al. 2006]. Thus, if we imagine the problem faced by a planner who
is trying to promote a certain option within a population — for example, to manage
the marketing of a new product — there is a complex scheduling problem inherent
in the question of how to bring this product to people’s attention over time. However,
despite considerable research on the properties of cascades, as well as approaches to
“seeding” cascades with initial adopters [Domingos and Richardson 2001; Kempe et al.
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2003; Richardson and Domingos 2002] and offering time-varying incentives [Hartline
et al. 2008], very little is known about this scheduling aspect of the problem.

In this paper, we provide an algorithm for this type of scheduling problem in an
arbitrary graph representing an underlying social network. We work within a model
adapted from a widely-used framework in the economic theory literature; in what fol-
lows, we first describe the model, and then our results.

A model: Sequential decisions with positive externalities. In an influential paper in
the economic theory literature, Brian Arthur proposed a simple model for how cascades
form [Arthur 1989]. He based his model on a scenario with two competing products )
and N (mnemonic shorthand for “yes” and “no”) that each exhibit positive externalities
— they become more valuable as more people use them.!

In the model, there are two types of consumers — those with a preference for )/, and
those with a preference for A/ . (We will refer to these two types of consumers as Y-
types and N-types, to avoid confusion between decisions and preferences.) We assume
that when there are no other users of a product, each type gets a payoff of m; from
using her preferred product, and a payoff of 7y from using her non-preferred product,
with m; > my. The positive externalities are manifested by a term that adds § > 0 to
the payoff of a product for each user it has; thus, if there are currently my users of )
and mys users of A/, then the payoff of a Y-type for product ) is m; + dmy, and the
payoff of a Y-type for product N is mg + dmu. Analogous payoffs hold for an N-type:
71 + dmys for product A and my + dmy for product ) .

Given this, if a consumer must decide which product to purchase based on the cur-
rent number of users of each product, then the decision rule is very simple: a Y-type
compares 7, + dmy to T + dm;, while an N-type compares m; + dmas to 7 + dmy.? In
both cases, if we define ¢ = [6 ! |7, — 7o|], the rule is equivalent to the following:

(x) When |my — myr| > c the consumer should choose the product with more
users; when |my — myr| < ¢, the consumer should choose based on her own
preference.

We will call ¢ the decision parameter in this rule.

Now, suppose that consumers make purchasing decisions one at a time, starting from
my = my = 0, and each new consumer who arrives is a Y-type with probability p > 0
and an N-type with probability 1—p > 0. The key point of the model is that if consumers
can observe the current values of my and my as they make their decisions, then as
soon as one product has ¢ users more than the other, it becomes “locked in” — all
future decisions will be in favor of the majority product. And since the decisions before
this moment will favor each consumer’s preferred product, the quantity my — mu over
time can be analyzed quite simply: it is performing a random walk in which it changes
by +1 each step with probability p and by —1 with probability 1 — p. Once this walk
reaches the value ¢ or —c, one of the products has become locked in. If (by symmetry)
we assume that p < 1/2, it is not hard to show that the probability product Y is the
one that becomes locked in is O(p°n).

Arthur’s model thus captures, in a very simple fashion, the way in which cascades
can lead to highly correlated behavior, and can be sensitive to the outcomes of a few
early decisions. Subsequent models by Banerjee [Banerjee 1992] and Bikhchandani,
Hirshleifer, and Welch [Bikhchandani et al. 1992], also very influential in economic

1Examples of such products include cell phones, social media sites, and computer operating systems, since
in all these cases they tend to acquire better service and more third-party applications as their audiences
grow.

2We can assume that in the case of an exact tie in payoffs, a consumer uses a canonical tie-breaking rule
such as following the majority.
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theory, have shown how similar phenomena can arise when people are influenced by
earlier decisions not because of positive externalities, but because these earlier deci-
sions convey information that they can use in their present decision.

Given the generality of the phenomenon, in what follows we abstract away from the
language of products and purchases, and instead cast the discussion more broadly sim-
ply in terms of decisions and types (or signals): each person chooses ) (which we also
refer to as “yes”) or NV (also referred to as “no”), and is of type Y or N (or, equivalently,
gets a positive or negative signal).

The problem: Scheduling a cascade in a graph. This model can be directly general-
ized to operate on an arbitrary graph G = (V, E), representing a social network on
the individuals. As before, each individual 7 is a Y-type (that is, individual 7 gets a
positive signal) with probability p > 0 and an N-type (the individual gets a negative
signal) with probability 1 — p > 0, and 7 has the same payoffs as before, except that
my and my now denote the number of neighbors of i in G who have already chosen Y
and N respectively. This reflects the fact that i only derives benefit when a neighbor
in G makes the same decision that i does. With this new definition of my and mys, the
decision rule governing i’s decision is the same as before. Note that Arthur’s original
model corresponds precisely to this generalized model in the case when G is a complete
graph.

We now return to the scheduling question raised at the outset. Suppose that people
choose between Y and N using rule (x) with some decision parameter c. Suppose fur-
ther that we are interested in helping to maximize the number of people who choose
Y . While the relative attractiveness of ) and A to any one individual is fixed by rule
(x), we have the ability to affect the order in which the cascade progresses — that is,
the order in which individuals will make their decisions. Can we do this in a way that
guarantees a reasonably large expected number ) decisions?

There are several points to note about this type of question. First, this scheduling
problem will turn out to be trivial in complete graphs, but as we will see, in general
graphs it becomes much more complex. Second, the question is interesting both when
p > 1/2 and when p < 1/2 — that is, both when Y is the majority preference and when
Y is the minority preference — and we will consider both of these; but our main focus
will be on the case when p < 1/2, since this is the more challenging situation when
we are trying to promote an option that is inherently favored by a smaller fraction of
people.

Finally, it is also important to note that Arthur’s model of cascades, which we are
following here, is distinct in some fundamental and important ways from the notion of
threshold contagion that has been studied in a number of recent papers (e.g. [Blume
et al. 2011; Centola and Macy 2007; Dodds and Watts 2004; Kempe et al. 2003; Mossel
and Roch 2007; Watts 2002]). In threshold contagion, an individual decides whether to
change to a state (say, ) ) based only on the number of neighbors who have previously
chosen ) . This makes the outcome order-independent, and hence there is no schedul-
ing issue. In Arthur’s cascade model, on the other hand, nodes base their decision on
the number of neighbors who have previously chosen ) and the number of neighbors
who have previously chosen N . As we will see, in general graphs this makes the out-
come sensitively dependent on the order in which the decisions are made, and hence
leads naturally to questions of scheduling.

Thus, concretely, the problem we consider is as follows. We are given a graph G and
the (constant) value of ¢ used as the decision parameter in rule (x) above; at the outset,
we do not know the types of the nodes. One at a time, we select a node from G, reveal
its type to be a Y-type or an N-type (with probability p and 1 — p respectively), and
then have it make its decision according to rule (x). The selection of the next node can
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depend on the outcome of the decisions made by earlier nodes. Our overall goal is to
have a large expected number of nodes choose ) ; note here that (even for deterministic
selection rules) the expectation is computed over the random exposure of a type (Y or
N) at each node as the selection proceeds.

Here is a basic question about the attainability of this goal. Let G = {G1, G2, Gs, ...}
be a family of graphs, with n; = |V(G;)| denoting the number of nodes in G;. We say
that the set G achieves constant adoption with decision parameter c if it is possible to
achieve a linear expected number of nodes choosing ) for all graphs in the family —
that is, if there exists a function f.(p) such that for all graphs G; in the family and
all p > 0, there is a way of selecting the nodes of G; for which the expected number of
decisions equal to )V is at least f.(p) - n;.

A natural question is then the following: which families of graphs achieve constant
adoption? We note first that the discussion of Arthur’s model above shows that the
family of complete graphs achieves constant adoption with f.(p) = p°. In a different
direction, it is not hard to see that the family of empty graphs (those with no edges)
achieves constant adoption with f.(p) = p, since in such a graph each node is simply
following its own preference. Of course, the scheduling problem in both of these types of
graphs is trivial, since all orderings yield the same expected value. But one intriguing
point about even this very simple pair of examples — cliques and empty graphs —
is that it shows how different families of graphs can achieve constant adoption for
very different reasons. In the former case, the tight dependence among all nodes in
the complete graph results in a constant probability that all but a constant number of
nodes will choose ) ; in the latter case, the complete independence among all nodes
in the empty graph ensures that a p fraction of them will choose ) in expectation. For
more complex graphs, it is not a priori clear whether the cascade dynamics can exhibit
properties qualitatively different from either of these.

Our Results. Our first main result is that the family of all graphs achieves constant
adoption. Specifically, we show that for any n-node graph G, there is a way of ordering
nodes so that the expected number of nodes choosing ) is at least ©(pn). Thus, the
family of cliques is in fact the worst case for ensuring many decisions equal to ) .

We prove this result through an explicit method for ordering the nodes, which
roughly speaking combines ideas from the analysis of the complete graph and the
empty graph. In particular, we first identify a maximal set S of nodes that is suf-
ficiently sparse that decisions within S can be made independently; we then try to
extend S by adding nodes whose decisions have been forced by the decisions made in
S.

We also show that there are some graphs in which it is possible to do much better
than is possible in either the complete graph or the empty graph: there exist n-node
graphs for which one can order the nodes to achieve an expected number of ) decisions
that is n — O(1/p), and this is the best possible for any graph. Moreover, it is computa-
tionally hard to distinguish among these extremes: for any integer ¢ > 1, we show that
it is NP-hard to distinguish between graphs for which the maximum expected number
of nodes choosing ) is at least n — o(n) and those for which it is at most p*~“n.

Thus far our model for ordering has been adaptive — when we go to choose the
next node in the ordering, we are able to see the types and decisions of all earlier
nodes. It is also interesting to consider a non-adaptive version of the problem; here the
requirement is that we choose an ordering of the full node set in advance, before seeing
the types or decisions of any nodes.

For this non-adaptive version of the problem, we show that when p < %, it is not

possible to get n — o(n) nodes in expectation to choose J . We also show that if p > 1,
then any ordering guarantees that the expected number of nodes choosing ) is at least
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% — so any ordering is a 2-approximation if p > % Finally, we prove that for small p, it
is NP-hard to distinguish between the case where the maximum expected number of

nodes choosing ) is at least p'*t¢n and the case where it is at most p¢~*n.

2. AN ALGORITHM

In this section we develop and analyze an algorithm that allows us to obtain an ex-
pected number of )’s that is at least p° - n in any graph. The algorithm makes use
of the notions of t-degenerate induced subgraphs and Erdos-Hajnal sequences, so we
begin by defining these here.

Given a graph G, the set of nodes S C V(G) induces a t-degenerate graph G[S] if
there exists an ordering vy, ...,vg| of the nodes in S such that, for each i = 1,...,|S|,
the degree of v; in G [{v1,...,v;—1}] is at most ¢. Such an ordering of the nodes in S
is called a Erdos-Hajnal sequence for the t-degenerate graph G[S], and can be easily
computed in polynomial time.

Finally, an induced subgraph G|S] is maximal t-degenerate if it is t-degenerate, and
for every node v € V(G) — S it holds that G[S U {v}] is not ¢-degenerate.

We are now ready to introduce Algorithm 1. If a node v has already made its choice
at some point in the process, we say that it has been “activated”; otherwise that it is
“unactivated”. Algorithm 1 starts by selecting a maximal induced subgraph S with the
informal properties that (i) any node in the subgraph will make its choice somewhat
independently from other nodes in the subgraph, (ii) every node outside the subgraph
will get a chance of being forced to choose ) with probability at least p°. Then, it
schedules the maximal induced subgraph S interleaved with the nodes in V(G) — S,
whenever they get a chance of being forced to choose ) .

ALGORITHM 1: A scheduling algorithm.

1: Let W C V(G) be any set inducing a maximal (¢ — 1)-degenerate graph in G

2: Let v1,v2,...,vw| be a Erdés-Hajnal sequence of the nodes in W

3:fori=1,...,|W|do

4:  Schedule v;

5.  while there exists an unactivated node v € V(G) — W with exactly c activated neighbors
in W, all of which have chosen )) do

6: Schedule v

N

: Schedule the remaining nodes arbitrarily

The following theorem characterizes the performance of Algorithm 1.

THEOREM 2.1. Let G be any graph on n nodes, let p be the probability that a node
receives a positive signal, and let ¢ > 1 be the threshold. Then, the random variable
X representing the number of nodes having chosen ) with the scheduling produced by
Algorithm 1, is such that E[X] > p°® - n.

We will prove Theorem 2.1, after having established a series of lemmas.
The first lemma claims that every node in V(G) — W will have exactly ¢ activated
neighbors in W at some point in the execution.

LEMMA 2.2. For every node v € V(G) — W, there will be (at least) one iteration k(v)
in which v will have exactly c neighbors in W that have been scheduled.

PROOF. By fixing a maximal (¢ — 1)-degenerate set W, we have that every node
v € V(G) — W will be connected to at least ¢ nodes in W (for otherwise, we could add
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v to W while still keeping W U {v} has a (¢ — 1)-degenerate graph, and therefore W
would not be maximal.)

Given W, v € V(G) — W, and the ordering vy, ..., v of the nodes in W, let k = k(v)
be the smallest integer such that v has at least ¢ neighbors in the prefix vy, v, ..., vg.
After having scheduled v, node v will have exactly ¢ activated neighbors in W. O

The next lemma shows how nodes in V(G) — W will not choose A until the end of
the algorithm.

LEMMA 2.3. Ifv e V(G)—W, either node v will choose Y at iteration k(v), or it will
remain unactivated until line 7.

PROOF. By induction, assume that ¢ > 0 nodes in V(G) — W have been scheduled.
By induction, each of them chose ) . By the test at line 5, if a new node v is scheduled
at line 6, its only c activated neighbors w1, ws, ..., w. in W have chosen ) — and by the
induction hypothesis all its actived neighbors (if any) in V(G) — W have also chosen Y
. Therefore v will choose ) . If, on the other hand, one of wy,ws, ..., w. chose N/, then
v will not be scheduled until line 7 is reached. O

We then prove that each node in W will choose Y if its random signal is positive.

LEMMA 2.4. When a node v € W is activated, it will choose ) if its random signal
is positive; therefore it will choose ) with probability at least p.

PROOF. Indeed, before reaching line 7, every activated node in V' (G) — W will choose
Y . Thanks to our choice of the ordering of 1W’s nodes, when we activate a node v € W,
there will be at most ¢ — 1 of its neighbors in W that have already been activated.
Therefore, either v will be forced to choose ), or its choice will be equal to its random
signal. O

We now prove a lower bound on the probability that a node in V(G) — W will choose
Y.

LEMMA 2.5. Every node v € V(G) — W will choose ) with probability at least p°.

PROOF. At iteration k(v), when v has exactly c active neighbors wy, ws, ..., w. in W,
we execute v iff each of the w;’s chose ) . Since, for i = 1,2,...,¢, w; will choose Y if
its signal is positive, and since w;’s signal is independent of other signals (and positive
with probability p), we have that w;, ws, ..., w. will all choose ) , and therefore v will
choose ) , with probability at least p¢. O

We can finally prove Theorem 2.1.

PROOF PROOF OF THM. 2.1. Since every node v of G is either part of W or V(G) —
W, we have that the expected value of the random variable indicating a yes-choice of
v is at least p°. Linearity of expectation then gives the claim. O

We observe how the previous proof actually entails the following stronger corollary:

COROLLARY 2.6. Let W* be a maximum (c — 1)-degenerate induced subgraph of G.
Then, there exists a scheduling that guarantees an expected number of V’s of value at
least

pIW* [ +p°[V(G) = W7

It is now useful to recall that the size of the (¢ — 1)-degenerate subgraph is lower
bounded by the size of the maximum independent set, and the size of the maximum
independent set is lower bounded by the size of the maximum (¢ — 1)-degenerate sub-
graph divided by c. Therefore, since ¢ is a constant, Corollary 2.6 claims that it is
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always possible to get a scheduling of value O (p- a(G) +p° - (n — a(G))), where a(G)
is the size of the maximum independent set of G.
We now give an easy example showing that Corollary 2.6 is tight:

OBSERVATION 2.1. Foranyn > ¢, and any ¢ < w < n, there exists a graph of n nodes
whose maximum (¢ — 1)-degenerate induced subgraph has size w, whose maximum
expected number of V’s has value

prw+O(p(n—w)).

PROOF. Take an independent set on w — ¢ nodes and a disjoint clique on n — w +
¢ nodes. Clearly the maximum expected number of )’s is the sum of the maximum
expected number of )’s for a scheduling of the clique plus the maximum expected
number of )’s for a scheduling of the independent set.

Any scheduling for the independent set, and for the clique, has the same expectation.
For the independent set it is p times its size. For the clique it is O(p°) times its size —
this is a consequence of the unfair gambler’s ruin problem. Suppose that two gamblers,
starting with c¢ coins each, play a sequence of games in such a way that player 1 will
win any fixed game independently with probability p < 1, and player 2 will win that
same game with probability 1 — p. After a game is played, the loser gives one coin to
the winner. The process ends when one player goes bankrupt. It is known (see, for
instance, exercise 7.20 of [Mitzenmacher and Upfal 2005]) that the probability that
player 1 will end up with 2c¢ coins (and therefore, the probability that player 2 will go

bankrupt) is
(=) -

(1;P>2C -1
P

Since the expected number of steps needed to end the process is a constant, if c is a
constant, the claim that the expected number of )’s in any scheduling of a clique of
size n —w is O (p® - (n — w)) is proved — therefore the main claim is also proved. O

=0 (p).

3. MAXIMUM NUMBER OF )’S

We just saw that, on every graph on n nodes, one can find a scheduling guaranteeing
at least p° - n J’s on expectation, and that this lower bound is tight. The next question
we answer is: what is the largest possible number of )’s ?

vn

LEMMA 3.1. There exists a graph G on n nodes that, for any p > ) (m) guaran-
tees an expected number of )’s , for the adaptive scheduling with threshold c, of at least
n—O(1/p).

PROOF. Let nben = c(%) +t+c, for a positive integer t. Create a clique A on c(%) +¢

nodes: ¢ nodes z1,x3,...,z. and one node v%lll } for each j = 1,...,c, and for each
(i, ...picke (W),
Also, create a disjoint independent set B on ¢t nodes w1, ..., w;. Connect each node w;

to each node v, such that i € A. We choose p > Q (22). Observe that t = © (y/n).

Now we describe the scheduling. Until we get ¢ distinct ) choices, activate in order
the nodes wy, wo, .. .. Suppose we get c choices of type ) at nodes w;,, w;,, ..., w;, . Ob-
serve that those c nodes form a side of a complete bipartite graph whose other side is

composed by the nodes X = {wj

11,82,.005%c

} . We execute the nodes in X in any order.
j=1

Since each of them has at least ¢ neighbors that have chosen ) (the w;,, ..., w; nodes)
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and zero A neighbors, they will all choose ) . We then schedule the nodes x1, zo, . .., z,
that are not connected to any node w;. They will all choose ) . We then schedule the
remainder of the clique — since every remaining node in the clique has at least 2¢
neighbors that have chosen YV, and at most ¢ neighbors that have chosen N, they will
all choose ) . Finally, we schedule every remaining w; node — each of them is only
connected to c different )) nodes in the clique. Therefore they will all choose ) .

The above scheduling has the property that after we obtain at least ¢ different )’s
every remaining node will choose ) . Furthermore each w; node activated before we
get the (c+ 1)st choice of type )V, is activated independently from the others. Therefore
the expected number of A’’s is at most

2 S () ) <;+n-<1—p>tC-C_:<tp>"=0<1)

i=0 i p
Therefore the expected number of )’s is at least n — O (%) O
Again, we prove tightness of the above bound.

OBSERVATION 3.1. For every graph G on n nodes, and for every p > (loﬂ), the

n

smallest expected number of N’s is at least ) (%)

PROOF. The expected number of A’s , with any scheduling, and on any graph is at
least the expected number of A’s until a positive signal is received, that is:

(-0 =p)"p) = H—(l—p)”“'(m;).

p

n

=0
O

4. APPROXIMATING THE MAXIMUM

Since the maximum number of )’s is at most n, Algorithm 1 gives a p© approximation
to the problem of finding the scheduling that maximizes the (expected) number of )’s
. In this section we show that a better approximation is not achievable if P = NP.

We start with a lemma that will turn out to be a crucial ingredient in the hardness
of approximation proof.

LEMMA 4.1. In the adaptive case, if G is a graph of order n, with maximum inde-
pendent set of size o, and if a-p > Q (%), then the maximum expected number of )’s

is at most O(n - a° - p°).
PrOOF. Ifp > m, there is nothing to prove. We assume the contrary.

We will base our analysis on the following consideration: if at most ¢ — 1 nodes chose
Y during the process, then if we activate a node v connected to 3¢ — 2 or more already
activated nodes, it will necessarily choose N since at least 2c — 1 of the 3¢ — 2 activated
neighbors will have chosen N themselves, and at most ¢ — 1 of them will have chosen
Y . Therefore in the neighborhood of v there will be at least ¢ more N’s than )’s .

Take any scheduling, and let S be the set of nodes that, at the moment they are
activated, are connected to at most 3¢ — 3 already-activated nodes.

If we induce G on S, we obtain a graph G[S] that is (3c—2)-colorable: indeed, a (3¢—2)-
coloring can be obtained by coloring the nodes of S greedily in the order dictated by the
scheduling. Since any independent set in G[5] is also an independent set in G, we have
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that the independence number of G[5] is at most o — since G[S] is (3c — 2)-colorable,
this implies that the cardinality of S is at most |S| < (3¢ —2) - a.

Suppose that at most ¢ — 1 nodes in S get a positive signal. Then, the number of
nodes in S that choose ) is at most ¢ — 1. Furthermore, every node outside S will
choose deterministically A/ . Therefore, the total number of V’s will be at most ¢ — 1.

We compute the probability that at least ¢ nodes in S will have a positive signal:

15| [S|
S (%)) < 2 (s1-7) <Z Be=2)aep) =
%m(@cmw2-<3c2>c‘a6~p5-

In general, the number of )’s we can get is at most n. It follows that the expected
number of V’s is at most n- O (c°a’p®)+c—1= O (n - a° - p°), where the last step follows

from ¢ = O(1) andapzﬂ(n 1) a

We are now ready to prove our hardness result. As already mentioned it makes use
of Lemma 4.1, and of ideas developed in the proof of Lemma 3.1.

THEOREM 4.2. In the adaptive case, it is NP-hard to distinguish between graphs G
for which the maximum number of V’s is at least n — o(n) and graphs for which the
maximum number of V’s is at most n - p°~¢, for p equal to an inverse polynomial in n.

PROOF. We reduce from an independent set instance H on k = |V (H)| nodes. Zuck-
erman [Zuckerman 2007] proved that it is NP-hard to distinguish whether H has an
independent set of size ) (k:l*e), or if the maximum independent set of H has size
O (k¢), for an arbitrary small constant ¢ > 0.

We choose p = k~172¢; our graph G will contain a copy of H and a disjoint clique C of
order c( ) + k9, where d is an arbitrary constant larger than c. Therefore, the number

of nodes will be n = k + ¢(*) + k. (Observe that it holds p = n~#+9(3) )
For each set S of k£ nodes in H, we choose a set S’ of k unique nodes in C, and we add
each edge from S to S’.

Observe that if the maximum independent set of H has size O (k¢), then the max-
imum independent set of G has also size O (k¢), and by Lemma 4.1 the maximum
expected number of )’s in G will be at most

19) (n . kce .pc) -0 (k}d . kCe . kaJrQCE) -0 (kdchche) =n. pcfo(e).
Lemma 4.1 can be applied since k- p = k - k= 112¢ = k2 > 1.

On the other hand, if the maximum independent set of H has size ) (kl_ﬁ), by
scheduling all the nodes in that independent set we will have that with probability
1 —o(1) at least ¢ nodes in the independent set will choose ) . Let T be the set of ¢
nodes in the independent set that chose ) , and let 77 be the set of ¢ nodes in the clique
that they were mapped to by the reduction. We schedule all the nodes in 7" — they
will all choose )V deterministically; then we can schedule the subset (of size k) of the
nodes in C that are not connected to any node in H. Every such node will choose Y
deterministically.

Since k% = n — o(n) (for any d > ¢), the claim is proved. O
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5. THE NON-ADAPTIVE PROBLEM

Here, we consider the “non-adaptive” version of the scheduling problem: first we fix a
scheduling, and then we activate the nodes in the ordering it dictates.

As the next theorem shows, in the non-adaptive case there is an interesting thresh-
old phenomenon at p = 1:

THEOREM 5.1. Ifp > i (resp., p < 1), then for each non-adaptive scheduling, the
expected number of )’s is greater than or equal (resp., less than or equal) % N,

PROOF.

Let us label the nodes in terms of an arbitrary scheduling, vy, vs,...,v,, so that
node v; will be activated before node v; iff i < j. Our random process assigns a signal
X; € {Y, N} to each node v; independently — in such a way that Pr[X; = Y] = p. Fur-
thermore, after having fixed a schedule, and having sampled the variables X3, ..., X,
the process becomes deterministic.

Take the ith node in the scheduling v;, for any 1 < ¢ < n. Let X; be the random
vector X; = (X1, Xs,..., X;).

For now, let us assume p = % Then, clearly, every realization of X; is equiprobable.

Given a realization z = (z1, z2,...,x;) of X; (that is, given a boolean vector on i co-
ordinates), we denote its coordinate-wise complement by z = (%, Zo, ..., Z;). Observe
that the ith node chooses ) with realization z iff the ith node chooses N with realiza-
tion z. This is trivially true if ¢ = 1 (since in that case, v; = v; will make the choice
based only on its signal). Now, if it is true up until ¢, then it is also true at i + 1: indeed,
each neighbor of v;,; has an index less than or equal i, and therefore will change its
choice. If, given z, the neighbors of v;; forced it to make a choice, then — with z — they
will force it to make the opposite choice: that is, if, with =, there were at least ¢ more
V’s than A’s (resp., N’s than )V’s ), then v; 1 was forced to choose ) (resp., N' ) — but,
the opposite will happen on z and the ith node will be forced to choose N (resp., ) ).
If on the other hand, given z, v; 1 made its choice according to its signal, it will make
the choice dictated by the opposite signal with z.

Since all realizations of X, are equally likely, and since we gave a perfect matching
between that guarantees that only contains edges connecting a realization where v;
chose Y with a realization where v; chose A/, it holds that the probability that node i
chooses Y is exactly 1.

Therefore the claim for p = %, follows from linearity of expectation.

Let us now consider p > % (resp., p < %). We define a coupling between the user
signal process P and a new process P’: namely, each node first get a positive signal
with probability 1 and a negative signal with probability 1 — if the first signal is
negative (resp., positive), then the node gets a second signal that is positive (resp.,
negative) with probability 2p — 1 (resp., 1 — 2p). The actual user signal in P’ will be the
last signal that the user receives. A simple calculation shows that the probability of a
positive signal in P’ is exactly p.

Since the function that maps a node’s neighbors’ choices and the node signal to the
node choice is monotonically non-decreasing in each coordinate (i.e., in the neighbors’
choices and the node signal), if p > % (resp., p < %), then the first signal that a node
receives is sufficient to guarantee that the probability that the node chooses ) is at
least (resp., at most) % The second signal can only increase (resp., decrease) that prob-
ability. O

Theorem 5.1 directly translates to a 2-approximation algorithm for finding the non-
adaptive schedule that maximizes the number of )’s , when p > 1: any scheduling will
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guarantee at least § )’s on expectation, and the maximum number of )’s is n. We will
show later that, for small p, a constant approximation is not achievable.

Clearly, the bound of 7 is not always tight: if p < %, and the graph is a clique, the

expected number of )’s is at most O(p©) - n; on the other hand, if p > %, then the
expected number of V’s is at least (1 — O(1 — p)°) - n.

Also, if the graph is an independent set, then the expected number of )’s is exactly
p - n. More generally, we have the following easy lemma:

LEMMA 5.2. Ifthe graph G contains an induced (c — 1)-subgraph of size k, then the
maximum expected number of )’s , with a non-adaptive scheduling, is at least k - p.

PROOF. The scheduling is similar to the one of Algorithm 1. Specifically, given a set
W of nodes that induces a (¢ — 1)-degenerate subgraph of G, we schedule the nodes in
W according to some Erdos-Hajnal sequence (that is, we schedule them in such a way
that whenever a node gets activated, that node has at most ¢ — 1 activated neighbors).

The choice of v € W, then, depends only on its private signal; that is, v will choose Y
independently with probability p. The claim follows from linearity of expectation. O

We observe that the upper bound of Lemma 4.1, that held in the adaptive setting,
holds also in the non-adaptive case.

We now show that the non-adaptive scheduling problem cannot be approximated to
better than Q (p°~!~) for sufficiently small p.

THEOREM 5.3. In the non-adaptive case, it is NP-hard to distinguish between
graphs G for which the maximum number of V’s is at least n-p' ¢ and graphs for which
the maximum number of )’s is at most n - p¢~¢, for p equal to an inverse polynomial in
n.

PROOF. As in our other reduction, we start from an independent set instance G on
n = |V(G)| nodes. It is NP-hard to distinguish whether G has an independent set of
size 2 (n'~¢), or if the maximum independent set of G has size O (n), for an arbitrary
small constant ¢ > 0 (see [Zuckerman 2007]).

We choose p = n— e,

Now, if the independent set of G had size at most O (n¢), then Lemma 4.1 guaran-
tees that in the adaptive-case, and therefore in the non-adaptive case, the maximum

number of )’s is at most
9] (n . pc . nce) =-n- pc—O(e).

Suppose instead that the independent set of G had size at least Q (nlff), then
Lemma 5.2 guarantees that in the non-adaptive case the maximum number of )’s
is at least

19) (nlfe . p) =n. p1+0(6)'
O
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