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Abstract

Maximizing the revenue from selling more than one good (or item)

to a single buyer is a notoriously difficult problem, in stark contrast

to the one-good case. For two goods, we show that simple “one-

dimensional” mechanisms, such as selling the goods separately, guar-

antee at least 73% of the optimal revenue when the valuations of the

two goods are independent and identically distributed, and at least

50% when they are independent.

For the case of k > 2 independent goods, we show that selling

them separately guarantees at least a c/ log2 k fraction of the optimal

revenue; and, for independent and identically distributed goods, we

show that selling them as one bundle guarantees at least a c/ log k

fraction of the optimal revenue.
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Additional results compare the revenues from the two simple mech-

anisms of selling the goods separately and bundled, identify situations

where bundling is optimal, and extend the analysis to multiple buyers.
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1 Introduction

Suppose that a seller has one good (or “item”) to sell to a single buyer whose

willingness to pay (or “value”) for the good is x. While x is known to the

buyer, it is unknown to the seller, who knows only its distribution (given by

a cumulative distribution function F ). If the seller offers to sell the good for

a price p then the probability that the buyer will buy is 1 − F (p), and the

seller’s revenue will be p · (1 − F (p)). The seller will choose a price p∗ that

maximizes this expression.

This problem is the classic monopolist-pricing problem. Looking at it

from an auction point of view, one may ask whether there are mechanisms

for selling the good that yield a higher revenue. Such mechanisms could be

indirect, could offer different prices for different probabilities of getting the

good, and so on. Yet, the characterization of optimal mechanisms of Myerson

(1981) (see also Riley and Samuelson 1981 and Riley and Zeckhauser 1983)

concludes that the take-it-or-leave-it offer at the above price p∗ yields the

optimal revenue among all mechanisms. Even more, Myerson’s result also

applies when there are multiple buyers, in which case p∗ would be the reserve

price in a second-price auction.

Now suppose that the seller has two (different) goods that he wants to

sell to a single buyer. Furthermore, consider the simplest case where the

buyer’s values for the two goods are independently and identically distributed

according to the distribution F (“i.i.d.-F” for short), and where, furthermore,

his valuation is additive: if the value of the first good is y and that of the

second is z, then the value of the bundle consisting of both goods is1 y + z.

It would seem that since the two goods are completely independent of each

1Our buyer’s demand is thus not limited to one good (as is the case in some of the
existing literature; see “unit-demand” in Section 1.1).
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other, then the best one should be able to do is to sell each of them separately

in the optimal way, and thus extract exactly twice the revenue one would

make from a single good. Yet this turns out to be false.

Example 1 Consider the one-good distribution F taking values 1 and 2,

each with probability 1/2. Let us first look at selling a single good optimally:

the seller can either choose to price it at 1, selling always2 and getting a

revenue of 1, or choose to price the good at 2, selling it with probability 1/2,

again obtaining an expected revenue of 1, and so the optimal revenue from

a single good is 1. Now consider the following mechanism for selling both

goods: bundle them together, and sell the bundle for price 3. The probability

that the sum of the buyer’s values for the two goods is at least 3 is 3/4, and

so the revenue is 3 ·3/4 = 2.25—larger than the revenue of 2 that is obtained

by selling them separately.

However, that is not always so: bundling may sometimes be worse than

selling the goods separately.

Example 2 Consider the one-good distribution F taking values 0 and 1,

each with probability 1/2. Selling the two goods separately yields a revenue

of 1/2 from each good (set the price at 1), and so 1 in total, whereas the

revenue from selling the bundle is only 3/4 (the optimal price for the bundle

is 1).

In other cases neither selling separately nor bundling is optimal.

Example 3 Consider the one-good distribution F taking the values 0, 1,

and 2, each with probability 1/3. The unique optimal mechanism for two

such i.i.d. goods turns out to be3 to offer to the buyer the choice between

2Since we maximize revenue we can assume without loss of generality that ties are
broken by the buyer in a way that maximizes the seller’s revenue. This “seller-favorable”
property can always be achieved by appropriate small perturbations of the mechanism;
for instance, by the seller giving a small fixed proportional discount on all payments. See
Hart and Reny (2015a, Section 1.2, and Remark (a) after Corollary 18).

3For distributions with finite support, finding the optimal mechanism amounts to solv-
ing a linear programming problem.
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any single good at price 2 and the bundle of both goods at a “discount” price

of 3. This mechanism gets a revenue of 13/9 ≈ 1.44, which is larger than the

revenue of 4/3 ≈ 1.33 obtained either from selling the two goods separately

or from selling them as a single bundle.

A similar situation obtains for the uniform distribution on [0, 1], for which

neither bundling nor selling separately is optimal (Manelli and Vincent 2006).

In still other cases the optimal mechanism is not even deterministic and

must offer lotteries for the goods. This happens for instance in the following

example, taken from Hart and Reny (2015a, Example 4).4

Example 4 Consider the distribution taking the values 1, 2, and 4, with

probabilities 1/6, 1/2, and 1/3, respectively. It turns out that the unique

optimal mechanism for two such i.i.d. goods offers the buyer a choice of one

of the following options: buying a lottery ticket that has price 1 and gives

the first good with probability 1/2, buying a similar lottery ticket for good 2,

buying the bundle of both goods for a price of 4, and buying nothing (and

paying nothing); indeed, any deterministic mechanism has a strictly lower

revenue.

Thus, it is not clear what optimal mechanisms for selling two goods look

like, and indeed characterizations of optimal mechanisms even for this sim-

ple case are not known (see Section 1.1). The two-dimensional problem is

extremely difficult, and the simple mechanisms that amount to solving only

one-dimensional problems—such as separate selling and bundling—do not

maximize the revenue in general.

This leads to the following question: how good are such simple mecha-

nisms for selling two goods? That is, how much of the optimal revenue is

guaranteed when using them? Consider a class of mechanisms N (such as

separate selling or bundled selling) and a class of environments X (such as

two independent and identically distributed goods, or k independent goods);

4Examples in which randomization increases the revenue appear in the literature, start-
ing with Thanassoulis (2004) in the somewhat different setup of unit demand, and Manelli
and Vincent (2006, 2007, 2012). See Section 1.1.
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we then define the Guaranteed Fraction of Optimal Revenue (GFOR) as

that maximal fraction α between 0 and 1 such that for every environment in

X there is a mechanism in N that yields a revenue of at least the fraction

α of the optimal revenue (it is thus the reciprocal of the “competitive ratio”

often used in the computer science literature; see Section 2.2 for the formal

definition and a discussion of these concepts).

We start with two independent goods, and consider selling them sepa-

rately. Our first result is:

Theorem A For any two independent goods, selling each good separately at

its optimal one-good price guarantees at least 50% of the optimal revenue;

i.e.,

GFOR(separate; 2 independent goods) ≥ 1

2
.

This result applies to any distribution of values (we make no assumptions,

such as monotone hazard rate or increasing virtual values), and it holds also

for any number of buyers (see Section 7.3).

When the two goods are identically distributed, separate selling is guar-

anteed to perform even better.

Theorem B For any two independent and identically distributed goods, sell-

ing each one at the one-good optimal price guarantees at least 73% of the

optimal revenue; i.e.,

GFOR(separate; 2 i.i.d. goods) ≥ e

e+ 1
≈ 0.73.

Thus, for two i.i.d. goods with distribution F , setting the price at p∗ that

maximizes the one-good revenue (i.e., p∗(1−F (p∗)) = maxp p(1−F (p))) and

allowing the buyer to buy any number of units—0, 1, or 2 units—at price p∗

per unit guarantees at least 73% of the optimal revenue.

We next consider the case of more than two goods. It turns out that,

as the number k of goods grows, the fraction of the optimal revenue that is

obtainable from selling them separately may become arbitrarily small (specif-

ically, of the order of 1/ log k, cf. Corollary 26; the reader may refer to the
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tables in Appendix A.8 that summarize all these comparisons). Our main

positive result here is:

Theorem C There exists a constant c > 0 such that for any k ≥ 2 and

any k independent goods, selling each good separately at its optimal one-good

price guarantees at least c/ log2 k of the optimal revenue; i.e.,

GFOR(separate; k independent goods) ≥ c

log2 k
.

Finally, we move to the other simple one-dimensional mechanism, the

bundling mechanism, which offers a single price for the bundle of all goods.

We first show that for general independent goods, bundling may do much

worse and yield only a 1/k-fraction of the optimal revenue (Example 27).

However, when the goods are independent and identically distributed, then

bundling does much better. It is well known (Armstrong 1999, Bakos and

Brynjolfsson 1999) that for every fixed distribution F , as the number of goods

distributed independently according to F increases, the bundling mechanisms

become close to being optimal (for completeness we provide a short proof in

Appendix A.5). This, however, requires k to grow as F remains fixed. On

the other hand, we show that this is not true uniformly over F : for every

large enough k, there are distributions where the bundling mechanism on k

goods gives less than 57% of the optimal revenue (Example 32). Our main

result for the bundling mechanism in the i.i.d. case is:

Theorem D There exists a constant c > 0 such that for any k ≥ 2 and any

k independent and identically distributed goods, selling them as one bundle at

the bundle-optimal price guarantees at least c/ log k of the optimal revenue:

GFOR(bundled; k i.i.d. goods) ≥ c

log k
.

The paper is organized as follows. Section 1.1 presents a survey of the

relevant literature, including work done following the circulation of the early

versions of this paper in 2012. In Section 2 we present the model and the basic

concepts, followed by a number of useful preliminary results. Section 3 deals
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with the case of two independent goods, and provides the proof of Theorem

A; the more complex proof of Theorem B is relegated to Appendix A.1. The

main argument of these proofs is then extended to a general decomposition

theorem in Section 4. Section 5 studies the relations between the revenues

from separate and bundled selling (with some of the proofs and additional

results in Appendices A.3 and A.4); these relations are not only interesting

in their own right, but are also used as part of the general analysis, and

provide us with most of the examples that we have of gaps in revenue. The

results for more than two goods, Theorems C and D, are then proved in

Section 6, making use of the decomposition of Section 4 and the comparisons

of Section 5. Additional relevant results, namely, upper bounds on GFOR, a

two-good setup where bundling is shown to be optimal, and the extension to

multiple buyers, are stated in Section 7 (with proofs relegated to Appendices

A.6 and A.7). In Section 8 we discuss open problems. Finally, Appendix A.8

provides two tables: the first summarizes the lower and upper bounds that we

have obtained on the fraction of optimal revenue that is guaranteed for both

separate and bundled selling, and the second summarizes the comparisons

between separate and bundled selling.

1.1 Literature

We briefly describe some of the existing work on these issues. McAfee and

McMillan (1988) identify cases where the optimal mechanism is determin-

istic. However, Thanassoulis (2004) and Manelli and Vincent (2006) found

a technical error in the paper and present counterexamples. These last two

papers contain good surveys of the work within economic theory, with more

recent analysis by Fang and Norman (2006), Jehiel, Meyer-ter-Vehn, and

Moldovanu (2007), Pycia (2006), Lev (2011), Pavlov (2011), and Hart and

Reny (2015a). In the past few years algorithmic work on these types of

topics was carried out. One line of work (e.g., Briest, Chawla, Kleinberg,

and Weinberg 2015; Cai, Daskalakis, and Weinberg 2012a; Alaei, Fu, Hagh-

panah, Hartline, and Malekian 2012) shows that for discrete distributions the

optimal mechanism can be found by linear programming in rather general
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settings. This is certainly true in our simple setting where the direct repre-

sentation of the mechanism constraints provides a polynomial-size linear pro-

gram. Thus we emphasize that the difficulty in our case is not computational,

but is rather one of characterizing and understanding the results of the ex-

plicit computations: this is certainly so for continuous distributions, but also

for discrete ones.5 Another line of work in computer science (Chawla, Hart-

line, and Kleinberg 2007; Chawla, Hartline, Malec, and Sivan 2010; Chawla,

Malec, and Sivan 2010; Alaei, Fu, Haghpanah, Hartline, and Malekian 2012;

Cai, Daskalakis, and Weinberg 2012b) attempts to approximate the optimal

revenue by simple mechanisms. This was done for various settings, especially

unit-demand settings and some generalizations.6 One particular conclusion

from this line of work is that for many subclasses of distributions (such as

those with a monotone hazard rate) various simple mechanisms can extract

a constant fraction of the expected value of the goods.7 This is true in our

simple setting, where for such distributions selling the goods separately pro-

vides a constant fraction of the expected value and thus of the optimal rev-

enue. The case of multiple goods with correlated distributions was studied by

Briest, Chawla, Kleinberg, and Weinberg (2010) and Hart and Nisan (2013)

and turns out to be quite different from the independently distributed case:

classes of simple mechanisms (even the class of all deterministic mechanisms)

may well yield only an arbitrarily small fraction of the optimal revenue.

5This suggests that a notion of “conceptual complexity” may be appropriate here. The
usual computational complexity may not capture all the difficulty of a problem, since, even
after computing the precise solution, one may not understand its structure, what it means
and represents, and how it varies with the given parameters (e.g., Hart and Reny 2015a,
where it is shown that the optimal revenue may decrease when the buyer’s valuations
increase).

6“Unit demand” means that buyers are willing to buy at most one of the goods. The
relations between the revenues in the additive setup and those in the unit-demand setup are
discussed in our paper Hart and Nisan (2013, Appendix 1). It is thus possible that bounds
obtained in the unit-demand literature lead, in the additive setup, to weaker versions of
our Theorem A. Our direct approach is simpler—cf. Section 3—and generalizable—cf.
Section 4.

7In our setting this is true even more generally, for instance, whenever the ratio between
the median and the expectation is bounded (which happens in particular when the tail of
the distribution is “thinner” than x−α for α > 1). Indeed, posting a price equal to the
median yields a revenue of one-half of the median, and hence at least a constant fraction of
the expectation (which is, by IR, the most that the seller can extract as expected revenue).
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Since the circulation of early versions of this paper in 2012 (Hart and

Nisan 2012), there has been a flurry of work on optimal mechanisms for mul-

tiple goods for various cases: Daskalakis, Deckelbaum, and Tzamos (2013,

2017), Giannakopoulos (2014), Giannakopoulos and Koutsoupias (2014), Menicucci,

Hurkens, and Jeon (2015), and Tang and Wang (2017). The general prob-

lem was studied from a computational perspective in Daskalakis, Deckel-

baum, and Tzamos (2014), where it is shown to be computationally in-

tractable (formally, #P -hard). Several developments have occurred regard-

ing GFOR for multiple goods. Li and Yao (2013) improved our lower bound

onGFOR(separate) for k goods from c/ log2 k to the tight c/ log k. For the

case of k independent and identically distributed goods, Li and Yao (2013)

proved that GFOR(bundled) is bounded from below by a constant that

is independent of the number of goods k. Babaioff, Immorlica, Lucier, and

Weinberg (2014) showed that, for k independent (but not necessarily identi-

cally distributed) goods, GFOR({separate, bundled}) is bounded from

below by a constant that is independent of k (that is, there is c > 0 such

that for any number k and any k independent goods, either separate selling

or bundling yields at least the fraction c of the optimal revenue). This was

generalized by Yao (2014) to the case of multiple bidders and by Rubinstein

and Weinberg (2015) to buyers with submodular (rather than just additive)

valuations for the goods. Measures quantifying how complex mechanisms

need to be in order to yield a good proportion of the optimal revenue were

studied in Hart and Nisan (2013), Dughmi, Han, and Nisan (2014), Mor-

genstern and Roughgarden (2016), and Babaioff, Gonczarowski, and Nisan

(2017).

2 Preliminaries

In this section we present the model formally and define the concepts that

we use, followed by a number of preliminary results.

10



2.1 The Model

One seller (or “monopolist”) is selling a number k ≥ 1 of goods (or “items,”

“objects,” etc.) to one buyer.

The goods have no value or cost to the seller. Let x1, x2, ..., xk ≥ 0 be the

buyer’s values for the goods. The value for getting a set of goods is additive:

getting the subset I ⊆ {1, 2, ..., k} of goods is worth∑i∈I xi to the buyer (and

so, in particular, the buyer’s demand is not restricted to one good only). The

values are given by a random variable X = (X1, X2, ..., Xk) that takes values

in R
k
+, (we thus assume that valuations are always nonnegative); we will refer

to X as a k-good random valuation. The realization x = (x1, x2, ..., xk) ∈ R
k
+

of X is known to the buyer, but not to the seller, who knows only the

distribution F of X (which may be viewed as the seller’s belief). The buyer

and the seller are assumed to be risk neutral and to have quasi-linear utilities

(i.e., the utility is additive with respect to monetary transfers; e.g., getting

good 1 with probability 1/2 and paying 8 with probability 1/4 is worth

(1/2) · x1 − (1/4) · 8 to the buyer and (1/4) · 8 to the seller).

The objective is to maximize the seller’s (expected) revenue.

As has been well established by the so-called “Revelation Principle”

(starting with Myerson 1981; see for instance the book of Krishna 2010),

we can restrict ourselves to “direct mechanisms” and “truthful equilibria.”

A (direct)8 mechanism µ consists of a pair of functions (q, s), where q =

(q1, q2, ..., qk) : R
k
+ → [0, 1]k and s : Rk

+ → R, which prescribe the allocation of

goods and the payment, respectively. Specifically, if the buyer reports a value

vector x ∈ R
k
+, then qi(x) ∈ [0, 1] is the probability that the buyer receives

good9 i (for i = 1, 2, ..., k), and s(x) is the payment that the seller receives

from the buyer. When the buyer reports his value x truthfully, his payoff is10

b(x) =
∑k

i=1 qi(x)xi − s(x) = q(x) · x− s(x), and the seller’s payoff is11 s(x).

8“Mechanism” will henceforth always mean “direct mechanism.”
9When the goods are infinitely divisible and the valuations are linear in quantities (i.e.,

the value of a quantity λ of good i is λxi), we may interpret qi also as the quantity of good
i that the buyer gets.

10When y = (yi)i=1,...,n and z = (zi)i=1,...,n are n-dimensional vectors, y ·z denotes their
scalar product

∑n

i=1 yizi.
11In the literature the payment to the seller is called transfer, cost, price, revenue, and

11



The mechanism µ = (q, s) satisfies individual rationality (IR) if b(x) ≥ 0 for

every x ∈ R
k
+, and incentive compatibility (IC) if b(x) ≥ q(x̃) · x − s(x̃) for

every alternative report x̃ ∈ R
k
+ of the buyer when his value is x, for every

x ∈ R
k
+. Let M denote the class of all IC and IR mechanisms µ = (q, s).

The expected revenue from a buyer with random valuation X using a mech-

anism µ = (q, s) ∈ M is12 R(µ;X) := E [s(X)] , and the optimal rev-

enue from X is, by the Revelation Principle, Rev(X) := supµ∈M R(µ;X),

the highest revenue that can be obtained by any IC and IR mechanism µ.

The revenue can never exceed the expected valuation of all goods together:

Rev(X) ≤ E [
∑

iXi] (since s(x) ≤ q(x) · x ≤∑i xi by IR and x ≥ 0).

When there is only one good, i.e., when k = 1, Myerson’s (1981) result is

that

Rev(X) = sup
p≥0

p · P [X ≥ p] = sup
p≥0

p · P [X > p] = sup
p≥0

p · (1− F (p)), (1)

where F is the cumulative distribution function of X. Optimal mechanisms

correspond to the seller “posting” a price p and the buyer buying the good

for the price p whenever his value is at least p; in other words, the seller

makes the buyer a “take-it-or-leave-it” offer to buy the good at price p.

Besides the maximal revenue, we are also interested in what can be ob-

tained from certain classes of mechanisms. Thus, given a class N ⊂ M of

IC and IR mechanisms, let N -Rev(X) := supν∈N R(ν;X) be the maximal

revenue that can be extracted from a buyer with random valuation X when

restricted to mechanisms ν in the class N . Some classes of mechanisms are:

• Separate: Each good i is sold separately. The maximal revenue from

separate mechanisms is denoted by SRev, and so

SRev(X) := Rev(X1) +Rev(X2) + ...+Rev(Xk).

so on, and is denoted by t, c, p, ...; this plethora of names and notations applies to the
buyer as well. We hope that using the mnemonic s for the seller’s final payoff and b for
the buyer’s final payoff will avoid confusion.

12In Hart and Reny (2015a, Proposition 16) it is shown that for IC and IR mechanisms
one may assume without loss of generality that s is measurable; since s is bounded from
below by s(0) (which follows from IC at 0), the expected revenue E [s(X)] is well defined
(but may be infinite).
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• Bundled: All goods are sold together in one “bundle.” The maximal

revenue from bundled mechanisms is denoted by BRev, and so

BRev(X) := Rev(X1 +X2 + ...+Xk).

• Deterministic: Each good i is either fully allocated or not at all,

i.e., qi(x) ∈ {0, 1} (rather than qi(x) ∈ [0, 1]) for every x ∈ R
k
+ and

1 ≤ i ≤ k. The maximal revenue from deterministic mechanisms is

denoted by DRev.

The separate and the bundled revenues are obtained by solving one-dimensional

problems (where one uses (1)), whereas the deterministic revenue is a multi-

dimensional problem. Examples where these classes yield revenues that are

smaller than the maximal revenue are well known (see also the examples in

the Introduction, and the references in Section 1.1).

The following is a useful characterization of incentive compatibility that

is well known (starting with Rochet 1985).

Proposition 5 Let µ = (q, s) be a mechanism for k goods with buyer payoff

function b. Then µ = (q, s) satisfies IC if and only if b is a convex function

and for all x the vector q(x) is a subgradient of b at x (i.e., b(x̃) − b(x) ≥
q(x) · (x̃− x) for all x̃).

Proof. µ is IC if and only if b(x) = q(x) ·x−s(x) = maxx̃∈Rk
+
(q(x̃) ·x−s(x̃))

for every x, which implies that b is a convex function of x (as the maximum

of a collection of affine functions of x). Moreover, for every x and x̃ we have

b(x̃)− b(x)− q(x) · (x̃− x) = b(x̃)− (q(x) · x̃− s(x)), and so the subgradient

inequalities are precisely the IC inequalities.

Thus s(x) = q(x) · x − b(x) = ∇b(x) · x − b(x), where ∇b(x) stands for

a (sub)gradient of b at x, and so the revenue can be expressed in terms of

the buyer payoff function13 b. We also note that there is no loss of generality

13The function b, being convex, is differentiable almost everywhere, and so ∇b(x) is the
gradient (∂b(x)/∂xi)i=1,...,k for almost every x. As pointed out in Hart and Reny (2015a,
Appendix A.1), when maximizing revenue one may use “seller-favorable” mechanisms and
replace the term ∇b(x) ·x with b′(x;x), the directional derivative of b at x in the direction
x, which is well defined for every x.
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in assuming that the mechanism µ is defined and satisfies IC and IR on the

whole space R
k
+, rather than just on some domain D ⊂ R

k
+, such as the set

of possible values of X ; see Hart and Reny (2015a, Appendix A.1).

We conclude with a useful property: a mechanism µ = (q, s) satisfies

the no positive transfer 14 (NPT) property if s(x) ≥ 0 for every x ∈ R
k
+.

Proposition 6 below shows that NPT can always be assumed without loss of

generality when maximizing revenue.15 Moreover, the revenue from any IC

and IR mechanism on a subdomain of valuations cannot exceed the overall

maximal revenue—even when the mechanism does not satisfy NPT.16

Proposition 6 Let µ = (q, s) be an IC and IR mechanism, and let X be a

k-good random valuation in R
k
+, where k ≥ 1. Then:

(i) µ satisfies NPT if and only if s(0) = 0, which occurs if and only if

b(0) = 0.

(ii) There is a mechanism µ̂ = (q, ŝ) with the same q and with ŝ(x) ≥ s(x)

for all x ∈ R
k
+, such that µ̂ satisfies IC, IR, and NPT.

(iii) Rev(X) = supµR(µ;X) where the supremum is taken over all IC, IR,

and NPT mechanisms µ.

(iv) Let A ⊆ R
k
+ be a set of values of X ; then17

E [s(X) 1X∈A] ≤ Rev(X 1X∈A) ≤ Rev(X).

Proof. (i) IC at 0 yields s(x) ≥ s(0) for all x, and IR at 0 yields s(0) ≤ 0; the

minimal payment is thus s(0), which cannot be positive. Therefore, s(x) ≥ 0

for all x if and only if s(0) = 0. Now s(0)+b(0) = q(0) ·0 = 0, and so s(0) = 0

if and only if b(0) = 0.

14The “transfer” is from the seller to the buyer, i.e., −s(x).
15This is not true in more general setups; for instance, when there are multiple buyers

that are correlated, Bayesian Nash implementation may require using positive transfers,
i.e., s(x) < 0 (cf. Crémer and McLean 1988; see also Appendix A.7 below).

16This is used in our proofs, e.g., in Section 3, where we construct mechanisms for which
s may take negative values.

17We write 1W for the indicator of the event W : it takes the value 1 when W occurs
and the value 0 otherwise.
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(ii) Put ŝ(x) := s(x) − s(0) ≥ s(x) for all x (recall that s(0) ≤ 0 by IR

at 0). Then µ̂ = (q, ŝ) satisfies IC since the payment differences have not

changed (i.e., ŝ(x) − ŝ(x̃) = s(x) − s(x̃) for all x, x̃); it satisfies IR since

q(x) · x − s(x) ≥ q(0) · x − s(0) ≥ −s(0) (by IC); and it satisfies NPT since

ŝ(0) = 0.

(iii) Follows from (ii) since µ̂ yields at least as much revenue as µ (because

ŝ(x) ≥ s(x) for all x).

(iv) For the first inequality, use (ii) to get E [s(X) 1X∈A] ≤ E [ŝ(X) 1X∈A] =

E [ŝ(X 1X∈A)] ≤Rev(X 1X∈A) (the equality since ŝ(0) = 0 by (i)). For the

second inequality, E [s(X 1X∈A)] = E [s(X) 1X∈A] ≤ E [s(X)] for any µ that

satisfies NPT; apply (iii).

2.2 Guaranteed Fraction of Optimal Revenue (GFOR)

Let X be a class of random valuations (such as two independent goods, or

k i.i.d. goods; formally, it is a class of random variables X with values in

R
k
+ spaces), and let N be a class of IC and IR mechanisms (such as separate

selling, or deterministic mechanisms; formally, N is a subset of the class M
of all IC and IR mechanisms). The Guaranteed Fraction of Optimal Revenue

(GFOR) for the class of random valuations X and the class of mechanisms

N is defined as the maximal fraction α such that, for any random valuation

X in X, there are mechanisms in the class N that yield at least the fraction

α of the optimal revenue. Formally,18

GFOR ≡ GFOR(N ;X) := inf
X∈X

N -Rev(X)

Rev(X)
= inf

X∈X

supν∈N R(ν;X)

supµ∈MR(µ;X)
.

Thus GFOR≥ α if and only if for every random valuation X in X there

is a mechanism ν in N such that its revenue is R(ν;X) ≥ α·Rev(X) (we

are ignoring here the trivial issues of “max” vs. “sup”), and GFOR≤ α if

there exists a random valuation X in X such that for every mechanism ν in

N its revenue is R(ν;X) ≤ α·Rev(X).

Remarks. (a) One may argue that there is no need for results that are uni-

18Put 0/0 = 1.
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form with respect to the values’ distributions, on the grounds that the seller

knows that distribution. However, in the case of multiple goods, knowing

the distribution does not help find the optimal mechanism (even for simple

distributions), whereas simple mechanisms, such as separate selling, are al-

ways easy to compute (as they use only optimal prices for one-dimensional

distributions). It is thus important to know how far from optimal these mech-

anisms are guaranteed to be, particularly when one does not know what that

optimum is or how to find it.

(b) Ratios. Why are we considering ratios? The reason is that the

revenue is covariant with rescalings, but not with translations. Indeed,

Rev(λX) = λ·Rev(X) for any λ > 0, but Rev(X + c) is in general dif-

ferent from Rev(X) + c for constant c > 0 (this happens already in the

one-good case; see (1)).

(c) Competitive ratio. The computer science literature uses the concepts

of “competitive ratio” and “approximation ratio,” which are just the recipro-

cal 1/GFOR of GFOR. While the two notions are clearly equivalent, using

the optimal revenue as the benchmark (i.e., 100%) and measuring everything

relative to this basis—as GFOR does—seems to come more naturally.

3 Two Independent Goods

We start by proving our first result, Theorem A, stated in the Introduction.

Its proof forms the basis of more complex proofs later—including Theorem

B, whose significantly more intricate proof is relegated to Appendix A.1.

Theorem A can be restated as follows: for every two-good random valuation

X = (Y, Z) with Y, Z independent goods (i.e., one-dimensional nonnegative

random variables),

Rev(X) ≤ 2 · SRev(X) = 2(Rev(Y ) +Rev(Z)). (2)

Proof of Theorem A. Let µ = (q, s) be a two-good IC, IR, and NPT

mechanism (recall Proposition 6 (iii)); we will prove that its revenue from

16



X satisfies R(µ;X) ≤ 2Rev(Y ) + 2Rev(Z). To do so, we split the revenue

into two parts, according to which one of Y and Z is higher, and show that

E [s(Y, Z) 1Y≥Z ] ≤ 2Rev(Y ), and (3)

E [s(Y, Z) 1Z≥Y ] ≤ 2Rev(Z). (4)

Since R(µ;X) = E [s(Y, Z)] ≤ E [s(Y, Z) 1Y≥Z ] + E [s(Y, Z) 1Z≥Y ] (the in-

equality is due to the diagonal Y = Z being counted twice; recall that s ≥ 0

by NPT), adding (3) and (4) gives (2).

We now prove (3) (which then yields (4) by interchanging Y and Z). For

every fixed value z ≥ 0 of the second good define a mechanism µz = (qz, sz)

for the first good by replacing the allocation of the second good with an

equivalent decrease in payment; that is, the allocation of the first good is

unchanged, i.e., qz(y) := q1(y, z), and the payment is sz(y) := s(y, z) −
q2(y, z) · z, for every y ≥ 0. The one-good mechanism µz is IC and IR for y,

since µ = (q, s) was IC and IR for (y, z) (for IC, only the constraints (ỹ, z)

vs. (y, z) matter; for IR, the buyer payoff function of µz is bz(y) = b(y, z)).

Now s(y, z) = sz(y)+ q2(y, z) · z ≤ sz(y)+ z (because z ≥ 0 and q2 ≤ 1), and

so

E[s(Y, Z) 1Y≥Z | Z = z] = E [s(Y, z) 1Y≥z] ≤ E [sz(Y ) 1Y≥z] + E [z 1Y≥z]

(the equality uses the independence of Y and Z). The first term is the revenue

from a subdomain of values of Y, and so is at most its maximal revenue

Rev(Y ) by Proposition 6 (iv).19 As for the second term, we have

E [z 1Y≥z ] = z · P [Y ≥ z] ≤ Rev(Y ), (5)

since posting a price of z, and the buyer buying when Y ≥ z, constitutes an

19µz need not satisfy NPT, as sz may take negative values.
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IC and IR mechanism for20 y. Thus

E[s(Y, Z) 1Y≥Z | Z = z] ≤ 2Rev(Y )

holds for every value z of Z; taking expectation yields (3), completing the

proof.

In Appendix A.2 we provide a number of observations arising from this

proof.

4 The General Decomposition Result

We generalize the decomposition of the previous section from two goods to

two sets of goods. Let now Y be a k1-dimensional nonnegative random

variable, and Z a k2-dimensional nonnegative random variable (with k1, k2 ≥
1). While we assume that the vectors Y and Z are independent, we allow for

arbitrary interdependence among the coordinates of Y , and likewise for the

coordinates of Z.

The main decomposition result is:

Theorem 7 Let Y and Z be multi-dimensional nonnegative random vari-

ables. If Y and Z are independent then

Rev(Y, Z) ≤ Rev(Y ) +Rev(Z) +BRev(Y ) +BRev(Z) (6)

≤ 2 (Rev(Y ) +Rev(Z)). (7)

The second inequality (7) follows immediately from the first (6), because

BRev≤Rev. When Y and Z are one-dimensional, both inequalities become

(2) of Theorem A.

We start with the basic argument that uses the “marginal” mechanism

on y generated from a mechanism on (y, z) (as in the previous section). For

20We are not using here the characterization (1) of optimal one-good mechanisms as
posting-price mechanisms, but only the simple fact that these mechanisms are IC and IR.
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a k-dimensional random valuation X = (X1, ..., Xk), we use the notation

Val(X) := E

[

k
∑

i=1

Xi

]

=
k
∑

i=1

E[Xi]

for the expected total sum of values (for one-dimensionalX we have Val(X) =

E[X ]).

Lemma 8 (Marginal Mechanism on Subdomain) Let Y and Z be multi-

dimensional nonnegative random variables, and let A ⊆ R
k1+k2 be a set of

values of (Y, Z). If Y and Z are independent then

Rev((Y, Z) 1(Y,Z)∈A) ≤ Rev(Y ) + Val(Z 1(Y,Z )∈A).

Proof. For every z put Az := {y|(y, z) ∈ A}. Take an IC and IR mecha-

nism (q, s) for (y, z), and fix some value of z = (z1, . . . , zk2). The induced

mechanism on the y goods is IC and IR, but it also hands out quantities of

the z goods. If we modify it so that instead of allocating zj with probability

qj = qj(y, z), it reduces the buyer’s payment by the amount of qjzj , we are

left with an IC and IR mechanism, call it (qz, sz), for the y goods. Now

s(y, z) = sz(y) +
∑

j qjzj ≤ sz(y) +
∑

j zj , and so, conditioning on Z = z,

E
[

s(Y, Z) 1(Y,Z)∈A | Z = z
]

= E [s(Y, z) 1Y ∈Az
]

≤ E [sz(Y ) 1Y ∈Az
] + E

[(

∑

j

zj

)

1Y ∈Az

]

(the equality in the first line is because Y is independent of Z). The first

term in the second line is bounded from above by Rev(Y ) by Proposition 6

(iv), and the second term is E
[

∑

j(Zj 1(Y,Z)∈A) | Z = z
]

; taking expectation

over the values z of Z completes the proof.

In the case of two goods, i.e., one-dimensional Y and Z, the set of values

A for which we bound Val(Z 1(Y,Z )∈A) is the set A = {(y, z) : y ≥ z}.
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Lemma 9 (Smaller Value) Let Y and Z be one-dimensional nonnegative

random variables. If Y and Z are independent then

Val(Z 1Y≥Z) ≤ Rev(Y ).

Proof. For every value z of Z, setting the price for Y at z yields a revenue

of z · P[Y ≥ z], which is therefore at most Rev(Y ). Thus Val(Z 1Y≥Z) =

Ez∼Z [E[Z 1Y≥Z | Z = z]] = Ez∼Z [z · P[Y ≥ z]] ≤ Ez∼Z [Rev(Y )] =Rev(Y ).

In the multi-dimensional case we take A = {(y, z) :
∑

i yi ≥ ∑

j zj}
(where yi and zj are the coordinates of y and z, respectively), and get:

Lemma 10 (Smaller Value for Multiple Goods) Let Y and Z be multi-

dimensional nonnegative random variables. If Y and Z are independent then

Val(Z 1∑
i Yi≥

∑
j Z j

) ≤ BRev(Y ).

Proof. Apply Lemma 9 to the one-dimensional random variables
∑

i Yi and
∑

j Zj, and use Rev(
∑

i Yi) =BRev(Y ).

We can now prove our result.

Proof of Theorem 7. We divide the space as follows:

Rev(Y, Z) ≤ Rev
(

(Y, Z)1∑
i Yi≥

∑
j Z j

)

+Rev
(

(Y, Z)1∑
j Z j≥

∑
i Yi

)

(the inequality by NPT; see Proposition 6 (iii)). The first term is at most

Rev(Y ) + Val
(

Z 1∑
i Yi≥

∑
j Z j

)

≤ Rev(Y ) +BRev(Y )

by Lemmas 8 and 10. The second term is bounded similarly.

See Appendix A.2 for some comments on possible generalizations of this

decomposition approach.
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5 Separate and Bundled Selling

In this section we compare the revenue obtainable from the two simple mech-

anisms of selling the goods separately and selling them as one bundle. These

mechanisms are simple as they reduce to one-good mechanisms, for which the

Myerson (1981) characterization (1) applies. The results below are not only

interesting in their own right, but also useful when we make comparisons to

the optimal revenue (Theorems C and D; cf. Section 6 below).

One advantage of one-good mechanisms is that revenue is monotonic with

respect to valuation: increasing the buyer’s values can only increase the

seller’s revenue. As natural and appealing as this may sound, monotonicity

does not extend to the multiple good case; see Hart and Reny (2015a).

Formally, for X and Y real random variables, X is (first-order) stochas-

tically dominated by Y if for every real p we have P [X ≥ p] ≤ P[Y ≥ p];

essentially,21 what this says is that Y gets higher values than X . We have:

Proposition 11 (Monotonicity for One Good) Let X and Y be one-

good random valuations. If X is stochastically dominated by Y then Rev(X) ≤Rev(Y ).

Proof. Rev(X) = supp p ·P[X ≥ p] ≤ supp p ·P[Y ≥ p] =Rev(Y ) by (1).

This monotonicity property leads one to consider the highest one-good

random valuation with a given revenue. Normalizing the revenue at 1, this

is the real random variable V that takes values V ≥ 1 with probabilities

P [V ≥ p] = 1/p for every p ≥ 1. We refer to a good with random valuation

V as an equal-revenue (ER) good, and to its distribution, i.e., FV (p) = 1−1/p

and fV (p) = 1/p2 for p ≥ 1, as the equal-revenue (ER) distribution.22 Indeed,

the revenue Rev(V ) = 1 of an ER good is obtained at any posted price p ≥ 1

(recall (1)).23 Note that while the revenue of V is finite, its expected value

is infinite: E [V ] =
∫∞

1
p · (1/p2) dp = ∞.

21One may indeed take X and Y to be defined on the same probability space Ω and to
satisfy X ≤ Y pointwise, i.e., X(ω) ≤ Y (ω) for almost every realization ω ∈ Ω (this is
called “coupling” of X and Y ). See, e.g., Shaked and Shantikumar (2010, Theorem 1.A.1).

22Also known as the Pareto distribution with index 1 and scale 1; interestingly, V is ER
if and only if 1/V is Uniform on (0, 1].

23Moreover, an IC and IR mechanism µ = (q, s) is optimal for V if and only if it
does not sell the good for values below 1, i.e., q(x) = s(x) = 0 for all x < 1, and
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The result (1) for one good may now be restated as follows: Rev(X) ≤
1 if and only if X is stochastically dominated by an ER good V (indeed,

Rev(X) ≤ 1 if and only if 1−FX(p) ≤ 1/p = 1−FV (p) for all p ≥ 1). That

is, the revenue from a one-good random valuation X is at most 1 if and only

if one can increase the values of X and obtain a new random valuation V

that is ER-distributed.

The following proposition collects the above observation together with a

number of useful results on the ER distribution; the proofs are relegated to

Appendix A.3. From now on we use the constant w ≈ 0.278 to denote the

solution of the equation24

wew+1 = 1.

Proposition 12 (i) Let X be a one-good random valuation, and let r ≥ 0.

Then Rev(X) ≤ r if and only if X is stochastically dominated by rV

where V is an ER valuation.

(ii) Let V1, V2, ..., Vk be i.i.d.-ER, let r1, r2, ...rk ≥ 0, and put r̄ := (1/k)
∑k

i=1 ri

for the average of the ri. Then
∑k

i=1 riVi is stochastically dominated by
∑k

i=1 r̄Vi.

(iii) Let V1 and V2 be i.i.d.-ER. Then

BRev(V1, V2) = 2(w + 1) ≈ 2.56.

(iv) There exist constants c1 > 0 and c2 < ∞ such that for all k ≥ 2 and

V1, V2, ..., Vk i.i.d.-ER,

c1k log k ≤ BRev (V1, V2, ..., Vk) ≤ c2k log k.

Remarks. (a) We will see below (Corollary 17) that bundling is in fact opti-

mal for two i.i.d.-ER goods, and so (iii) will becomeRev(V1, V2) =BRev(V1, V2)

supx≥1 q(x) = limx→∞ q(x) = 1 (but is otherwise arbitrary for x ≥ 1). Also, the ER

distribution is the only distribution (up to rescaling) for which the “virtual valuation” of
Myerson (1981) (used, for instance, when there are multiple buyers) vanishes everywhere
in the support: x− (1− F (x))/f(x) = 0 for all x ≥ 1.

24Thus wew = 1/e, and so w = W (1/e) whereW is the so-called “Lambert-W” function.
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=Rev(V1 + V2) = 2(w + 1).

(b) The fact that the revenue is not monotonic for multiple goods (Hart

and Reny 2015a) foils the following natural attempt to estimate GFOR for

separate selling. For concreteness, consider two i.i.d. goods X1 and X2,

without loss of generality normalized so that Rev(X1) = Rev(X2) = 1.

Let V1, V2 be i.i.d.-ER. Then each Xi is stochastically dominated by Vi, and

so X = (X1, X2) is stochastically dominated by V = (V1, V2). However, we

cannot deduce from this that Rev(X) ≤ Rev(V ) = 2(w + 1) (see Remark

(a) above)—which would have given a better bound of 1/(w+1) ≈ 0.78, and

with a much simpler proof, for GFOR(separate) in this case (cf. Theorem

B and its proof in Appendix A.1).

Using ER goods allows us to compare the separate selling revenue to the

bundling revenue.

Proposition 13 (i) For any two independent goods X1, X2,

SRev(X1, X2) ≥
1

w + 1
BRev(X1, X2) ≈ 0.78 ·BRev(X1, X2).

(ii) There exists a constant c > 0 such that for any k ≥ 2 and any k inde-

pendent goods X1, X2, ..., Xk,

SRev(X1, X2, ..., Xk) ≥
c

log k
BRev(X1, X2, ..., Xk).

Proof. Put ri :=Rev(Xi) and r̄ := (1/k)
∑

i ri = (1/k)SRev(X), and let

V1, ..., Vk be k i.i.d.-ER goods. Using Proposition 12 (i) and (ii): each Xi is

stochastically dominated by riVi, hence
∑

iXi is stochastically dominated
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by25
∑

i riVi, which is in turn dominated by r̄
∑

i Vi. Therefore

BRev(X1, ..., Xk) = Rev

(

k
∑

i=1

Xi

)

≤ Rev

(

r̄
k
∑

i=1

Vi

)

= r̄ Rev

(

k
∑

i=1

Vi

)

= r̄ BRev(V1, ..., Vk)

(the inequality is by monotonicity for one good, Proposition 11), and then

the two results follow from Proposition 12 (iii) and (iv), respectively.

Taking the goods Xi to be ER goods shows that 1/(w + 1) and c/ log k

above are both tight (cf. Proposition 12 (iii) and (iv)).

We conclude with comparisons in the other direction: the bundled revenue

as a fraction of the separate revenue; see Appendix A.4 for additional results.

Proposition 14 (i) For any k ≥ 1 and any k independent goodsX1, X2, ..., Xk,

BRev(X1, X2, ..., Xk) ≥
1

k
SRev(X1, X2, ..., Xk).

(ii) For any k ≥ 1 and any k i.i.d. goods X1, X2, ..., Xk,

BRev(X1, X2, ..., Xk) ≥
1

4
SRev(X1, X2, ..., Xk).

Proof. (i) For every iwe haveXi ≤
∑

j Xj and soRev(Xi) ≤Rev(
∑

j Xj) =

BRev(X1, ..., Xk); summing over j yields
∑

jRev(Xj) ≤ k BRev(X1, ..., Xk).

(ii) Let p be an optimal one-good price for each Xi and put α := P[Xi ≥
p]; thus Rev(Xi) = pα. We separate between two cases. If kα ≤ 1 then

consider setting the bundle price at p; the probability that the buyer will

25We use here the following fact: if Xi is stochastically dominated by Yi for every i,
then X1+ · · ·+Xk is stochastically dominated by Y1+ · · ·+Yk (this is immediate when all
the random variables are defined on the same probability space and Xi ≤ Yi pointwise for
every i—cf. the coupling in footnote 21—because then

∑

Xi ≤
∑

Yi); see, e.g., Shaked
and Shantikumar (2010, Theorem 1.A.3.(b)).
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buy is

P

[

∑

i

Xi ≥ p

]

≥ P [Xi ≥ p for some i] = P

[

⋃

i

[Xi ≥ p]

]

≥
∑

i

P [Xi ≥ p]−
∑

i<j

P [Xi ≥ p,Xj ≥ p]

= kα−
(

k

2

)

α2 ≥ 1

2
kα,

and so the revenue will be at least pkα/2 ≥ k Rev(Xi)/2. If kα ≥ 1

then consider setting the bundle price at p⌊kα⌋. Since the median in the

Binomial(k, α) distribution is at least ⌊kα⌋, the probability that the buyer

will buy is at least 1/2, and so the revenue will be at least p⌊kα⌋/2 ≥ pkα/4 =

k Rev(Xi)/4.

While the constant 1/k in (i) is tight, the 1/4 in (ii) is not (we have not

attempted to optimize it); see Example 27 in Appendix A.4 and Example 32

in Appendix A.5.

6 k Independent Goods

We now prove the two main results on k ≥ 2 goods, Theorems C and D stated

in the Introduction, using our general decomposition result of Theorem 7.

We start with separate selling. Viewing 2k goods as two sets of k goods

each and using (7) one can easily get by induction that
∑k

i=1Rev(Xi) ≥
(1/k)Rev(X1, ..., Xk), as follows:

Rev(X1, ..., X2k) ≤ 2(Rev(X1, ..., Xk) +Rev(Xk+1, ..., X2k))

≤ 2

(

k
k
∑

i=1

Rev(Xi) + k
2k
∑

i=k+1

Rev(Xi)

)

= 2k

2k
∑

i=1

Rev(Xi).

However, using the stronger inequality (6), together with the relations we
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have shown in the previous section between the bundling and the separate

revenues, gives us the better bound of c/ log2 k (instead of 1/k) of Theorem

C.

Proof of Theorem C. We will first prove by induction thatRev(X1, ..., Xk) ≤
(1/c′) log22 k

∑k
i=1Rev(Xi) for every k ≥ 2 that is a power of 2, where

c′ := min{c, 1/2} > 0 with c > 0 given by Proposition 13 (ii). This in-

equality holds for k = 2 by Theorem A (since c′ ≤ 1/2). For k ≥ 4 we apply

Theorem 7 to Y = (X1, ..., Xk) and Z = (Xk+1, ..., X2k), to get

Rev(X1, ..., X2k) ≤ Rev(X1, ..., Xk) +Rev(Xk+1, ..., X2k)

+BRev(X1, ..., Xk) +BRev(Xk+1, ..., X2k). (8)

First, using Proposition 13 (ii) (and c′ ≤ c) on each of the BRev terms shows

that their sum is bounded by (1/c′) log2 k
∑2k

i=1Rev(Xi). Second, using the

induction hypothesis on each of the Rev terms shows that their sum is

bounded by (1/c′) log22 k
∑2k

i=1Rev(Xi). Now log2 k + log22 k ≤ log22(2k), and

so adding the two bounds gives the result.

Next, when 2m−1 < k < 2m we can “pad” to 2m goods by adding goods

that have value identically zero, and so do not contribute anything to the

revenue; this at most doubles k.

In Appendix 5 we show that bundling may, by contrast, extract only a

1/k fraction of the optimal revenue. However, bundling does much better for

identically distributed goods, and in fact we have a tighter result, Theorem

D, with log k instead of k.

Proof of Theorem D. Let Xi be i.i.d., and put Rk :=Rev(X1, ..., Xk) and

Bk :=BRev(X1, ..., Xk). We want to show that there is a finite c > 0 such

that Rk ≤ c log k Bk for all k ≥ 2. If k ≥ 2 is a power of 2 we apply Theorem

7 inductively to obtain Rk ≤ 2Bk/2+4Bk/4+ ...+(k/2)B2+kB1+kR1. Each

of the log2 k + 1 terms in this sum is of the form (k/ℓ)Bℓ = (k/ℓ)Rev(X1 +

...+Xℓ), and is thus bounded from above by 4Bk (apply Proposition 14 (ii)

to k/ℓ i.i.d. random variables each distributed as X1 + ... +Xℓ). Altogether

we have Rk ≤ 4(log2 k + 1)Bk.
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When 2m−1 < k < 2m we have Rk ≤ R2m and Bk ≥ B2m−1 (adding goods

can only increase the revenue: take the optimal mechanism for the original

set of goods and extend it so that it ignores the additional goods), and

B2m ≤ 2(w+1)B2m−1 ≤ 2(w+1)Bk (apply Proposition 13 (i) to the two i.i.d.

random variables X1 + ...+X2m−1 and X2m−1+1 + ...+X2m), which together

with the above inequality for 2m goods yields Rk ≤ 8(w + 1)(log2 k + 2)Bk.

7 Additional Results

7.1 Upper Bound on GFOR for Two Goods

Our results for two goods give lower bounds on GFOR (50% and 73% for

selling separately two independent goods and two i.i.d. goods, respectively).

Now what about upper bounds? That is, how high can GFOR(separate)

actually be? The best estimate we have is that it cannot exceed approxi-

mately 78%: there exist two i.i.d. goods where selling separately yields only

that fraction of the optimal revenue (while GFOR may well be lower for

independent goods than for the more restricted i.i.d. goods, we have not

found a better example—i.e., with a lower fraction—in the former class).

Proposition 15 In the case of two independent goods, selling separately can-

not guarantee more than 78% of the optimal revenue; i.e.,

GFOR(separate; 2 independent goods)

≤ GFOR(separate; 2 i.i.d. goods) ≤ 1

w + 1
≈ 0.78.

Proof. Let V = (V1, V2) with V1 and V2 two i.i.d.-ER goods. The revenue

from selling separately is SRev(V ) =Rev(V1)+Rev(V2) = 2, whereas, as

shown in the next section (Corollary 17), the optimal revenue is Rev(V ) =

2(w + 1) (obtained by bundling).
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7.2 When Bundling Is Optimal

Interestingly, we have identified a class of two-good i.i.d. distributions for

which bundling is optimal.

Theorem 16 Let F be a continuous one-good distribution with values in

[a,∞) for some a > 0, and density function f that is differentiable and

satisfies

xf ′(x) +
3

2
f(x) ≤ 0 (9)

for every x > a. Then bundling is optimal for two i.i.d.-F goods X1, X2:

Rev(X1, X2) = BRev(X1, X2) = Rev(X1 +X2).

Theorem 16 is proved in Appendix A.6. Condition (9) is equivalent to
(

x3/2f(x)
)′ ≤ 0, i.e., x3/2f(x) is nonincreasing in x (the support of f is thus

either some finite interval [a, b] or the half-line [a,∞)). When f(x) = cx−γ ,

(9) holds whenever γ ≥ 3/2. In particular, the ER distribution (where γ = 2)

satisfies (9), and so does any general Pareto distribution with index α ≥ 1/2.

Together with Proposition 12 (iii) we thus get:

Corollary 17 Let V1, V2 be two i.i.d.-ER goods. Then

Rev(V1, V2) = BRev(V1, V2) = 2(w + 1) ≈ 2.56.

7.3 Multiple Buyers

Up to now we have been dealing with a single buyer, but our result for two

independent goods turns out to hold also when there are multiple buyers. Un-

like the simple decision-theoretic problem facing a single buyer, we now have

a multi-person game among the buyers. Two main notions of equilibrium are

considered: dominant strategy equilibrium and Bayesian Nash equilibrium

(corresponding to “ex-post” and “interim” implementations, respectively);

see Appendix A.7 for details. Our result holds for both concepts.
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Theorem 18 In the case of n independent buyers and two goods, if the

random valuations of the two goods are independent, then selling each good

separately using its optimal one-good mechanism guarantees at least 50% of

the optimal revenue:

GFOR(separate) ≥ 1

2
;

this holds when the optimal revenue is taken throughout26 with respect to

either dominant strategy implementation or Bayesian Nash implementation.

That is, let the one-dimensional random variable Xj
i ≥ 0 denote the

value of good i to buyer j, for i = 1, 2 and j = 1, ..., n. Write Xj =

(Xj
1 , X

j
2) ∈ R

2
+ for the random valuation vector of buyer j for both goods,

and Xi = (Xj
i )j=1,...,n ∈ R

n
+ for the vector of values of all buyers for good i.

Independent buyers means that the random vectors X1, X2, ..., Xn are inde-

pendent; independent goods means that the random vectors X1 and X2 are

independent.27 Theorem 18 is proved in Appendix A.7, which also contains

the precise notations and statements; the proof is again a generalization of

the proof of Theorem A for one buyer (Section 3).

Remarks. (a) Dependent buyers and dominant strategy implementation. In

the dominant strategy case, our proof does not use the independence be-

tween the buyers’ random valuations; thus GFOR(separate ) ≥ 1/2 holds

under dominant strategy implementation for two independent goods and any

number of buyers, whether independent or not; see Theorem 33 in Appendix

A.7.

(b) Dependent buyers and Bayesian Nash implementation. In the Bayesian

Nash case our proof does not extend when the buyers are not independent

(see Appendix A.7). However, for this case Crémer and McLean (1988)

show that, under a certain general “correlation-between-buyers” condition,

the seller can extract all the surplus from any single good: Rev(Xi) =

E
[

max1≤j≤nX
j
i

]

. Since the most that the seller can extract from the two

26I.e., for the two goods, as well as for each good separately.
27Independent buyers together with independent goods means that the 2n random vari-

ables Xj
i are all independent.
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goods is, by IR,28 E
[

maxj X
j
1

]

+ E
[

maxj X
j
2

]

, it follows that in this case

Rev(X1, X2) =Rev(X1)+Rev(X2), and so GFOR(separate) = 1. We do

not know what GFOR(separate) is when the buyers are neither indepen-

dent nor satisfy the Crémer–McLean condition.

8 Open Problems

Many interesting problems remain open. As attested by the long time that

has passed since Myerson’s (1981) work in the one-good case, characterizing

the optimal mechanisms in the multiple-goods case—even when there are just

two goods—is an extremely difficult problem.29 While the general problem

appears very complex, one may well be able to obtain results for certain

useful classes of random valuations and mechanisms. Following are some

specific questions that arise from our study:

1. Characterize distributions where separate selling is optimal (cf. Theo-

rem 16 for bundling).

2. Provide bounds for GFOR(deterministic), the fraction of optimal

revenue that is guaranteed by mechanisms that do not use random-

izations. In addition, characterize distributions where deterministic

mechanisms are optimal.30

3. Tighten the bounds on GFOR(separate). While the gap in the i.i.d.

case (73% vs. 78%) is quite small, we do not know what the right

value is; also, is GFOR in the independent case in fact lower than in

the i.i.d. case? Is 50% the right bound?

4. Evaluate GFOR(separate) for Bayesian Nash implementation when

there are multiple buyers that are neither independent nor satisfy the

28Indeed (see Appendix A.7 for notations), bj(x) ≥ 0 implies that sj(x) ≤ qj(x) · xj ,
and so

∑

j s
j(x) ≤∑j q

j(x) · xj =
∑

i

∑

j q
j
i (x)x

j
i ≤

∑

imaxj x
j
i .

29Recall footnote 5 on conceptual complexity.
30The recent work of Babaioff, Immorlica, Lucier, and Weinberg (2014) implies in par-

ticular that GFOR(deterministic) is bounded from below by a constant that is inde-
pendent of the number of goods.
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Crémer–McLean condition (see Remark (b) in Section 7.3).

5. Find simple mechanisms different from separate selling that can guar-

antee a larger fraction of the optimal revenue.

6. Study the case of two or more goods that are not necessarily indepen-

dent (see Hart and Nisan 2013).31

7. Obtain useful ways to quantify the complexity (vs. simplicity) of mech-

anisms, and analyze the tradeoffs between complexity and revenue (see

Hart and Nisan 2013 for such an approach: “menu complexity”).

A Appendix

A.1 Proof for Two I.I.D. Goods

In this appendix we prove Theorem B, stated in the Introduction, which says

that selling two i.i.d. goods separately yields at least e/(e+1) of the optimal

revenue. The proof follows a line of argument similar to that of the proof of

Theorem A in Section 3, but is more intricate as we make all the estimates

much tighter.

Proof of Theorem B. Let X = (Y, Z), where Y and Z are i.i.d. nonneg-

ative one-dimensional random variables, and let r :=Rev(Y ) =Rev(Z) =

supt≥0 t · G(t) be the revenue from each good separately, where G(t) :=

P [Y ≥ t]. We want to prove that

Rev(Y, Z) ≤ e+ 1

e
(Rev(Y ) +Rev(Z)) = 2

(

1 +
1

e

)

r.

Take a two-good IC and IR mechanism µ = (q, s) with buyer payoff

function b (i.e., b(x) = q(x) · x − s(x) for all x). Without loss of generality

assume that it also satisfies NPT, i.e., s(x) ≥ 0 for all x, and b(0, 0) =

s(0, 0) = 0 (recall Proposition 6 (iii)). Since X is symmetric we will also

31Where it is shown that no simple class of mechanisms can guarantee any positive
fraction of the optimal revenue; i.e., GFOR= 0.
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assume that µ is symmetric, i.e., q1(y, z) = q2(z, y) and s(y, z) = s(z, y)—

and thus b(y, z) = b(z, y)—for all y, z ≥ 0. Indeed, µ can be replaced by

its “symmetrization” µ̄ = (q̄, s̄) given by q̄1(y, z) = q̄2(z, y) := (q1(y, z) +

q2(z, y))/2 and s̄(y, z) = s̄(z, y) := (s(y, z) + s(z, y))/2 for all y, z ≥ 0, which

also satisfies IC, IR, and NPT, and yields the same revenue, E [s̄(Y, Z)] =

E [s(Y, Z)] = E [s(Z, Y )] (because Y, Z are i.i.d.).

For every t ≥ 0 put Φ(t) := b(t, t)/2 and ϕ(t) := q1(t, t) = q2(t, t); Propo-

sition 5 implies that Φ is a convex function, ϕ(t) = Φ′(t) almost everywhere,

and Φ(u) =
∫ u

0
ϕ(t) dt (formally, use Corollary 24.2.1 in Rockafellar 1970 and

Φ(0) = b(0, 0) = 0).

Consider first the region Y ≥ Z. For each fixed z ≥ 0 such that P [Y ≥ z] >

0 define a mechanism µz = (qz, sz) for the first good by qz(y) := q1(y, z) and

sz(y) := s(y, z)− q2(y, z) · z for every y ≥ 0; the buyer’s payoff remains the

same: bz(y) = b(y, z). The mechanism µz is IC and IR for y, since µ is IC and

IR for (y, z). Let Y z denote the random variable Y conditional on the event

Y ≥ z, and consider the revenue R(µz; Y z) = E [sz(Y z)] = E [sz(Y )|Y ≥ z] of

µz from Y z. We have Y z ≥ z, qz(z) = ϕ(z), and sz(z) = s(z, z)−q2(z, z)·z =

q1(z, z) · z− b(z, z) = zϕ(z)− 2Φ(z), and so applying Lemma 19 below to Y z

yields

E [sz(Y )|Y ≥ z] ≤ (1− ϕ(z))Rev(Y z) + zϕ(z)− 2Φ(z). (10)

Since P [Y z ≥ t] = P [Y ≥ t] /P [Y ≥ z] = G(t)/P [Y ≥ z] for all t ≥ z, we get

from (1) that

Rev(Y z) = sup
t≥0

t·P [Y z ≥ t] = sup
t≥z

t· G(t)

P [Y ≥ z]
≤ supt≥0 t ·G(t)

P [Y ≥ z]
=

r

P [Y ≥ z]

(recall that r =Rev(Y )). Substitute this in (10), and multiply it by P [Y ≥ z] ,

to get

E [sz(Y )1Y≥z] ≤ r(1− ϕ(z)) + (zϕ(z)− 2Φ(z))P [Y ≥ z]

for all z ≥ 0 (trivially including those where P [Y ≥ z] = 0). Taking expec-
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tation over the values z of Z:

E
[

sZ(Y )1Y≥Z

]

≤ r(1− E [ϕ(Z)]) + E [(Zϕ(Z)− 2Φ(Z))1Y≥Z ] . (11)

Now s(y, z) = sz(y)+q2(y, z) z ≤ sz(y)+q2(y, y) z = sz(y)+zϕ(y) (use z ≥ 0

and the monotonicity of q2(y, z) = bz(y, z) in z, again from the convexity of

b), which together with (11) yields

E [s(Y, Z)1Y≥Z ] ≤ E
[

sZ(Y )1Y≥Z

]

+ E [Zϕ(Y )1Y≥Z ]

≤ r(1− E [ϕ(Z)]) + E [(Zϕ(Y ) + Zϕ(Z)− 2Φ(Z))1Y≥Z ]

= r(1− E [ϕ(Z)]) + E [(Λϕ(Y ) + Λϕ(Z)− 2Φ(Λ))1Y≥Z ]

where we put Λ := min{Y, Z}.
Consider next the region Z > Y. Interchanging Y and Z and using Z > y

instead of Z ≥ y throughout gives

E [s(Y, Z)1Z>Y ] ≤ r(1− E [ϕ(Y )]) + E [(Λϕ(Z) + Λϕ(Y )− 2Φ(Λ))1Z>Y ] .

Adding the last two inequalities yields

E [s(Y, Z)] ≤ r(2− E [ϕ(Y )]− E [ϕ(Z)])

+E [Λϕ(Y ) + Λϕ(Z)− 2Φ(Λ)] .

Because Y and Z are i.i.d. we have E [ϕ(Y )] = E [ϕ(Z)] and E [Λϕ(Y )] =

E [Λϕ(Z)] , and so

E [s(Y, Z)] ≤ 2r − 2rE [ϕ(Y )] + 2E [W ] (12)

where W := Λϕ(Y )− Φ(Λ).

We want to bound (12) from above. This expression is affine in ϕ (recall

that Φ(u) =
∫ u

0
ϕ(t) dt), which is a real nondecreasing function with values in

[0, 1]. Since every such function lies in the closed convex hull of the extreme

functions ϕ = 1[p,∞) for all
32 0 ≤ p ≤ ∞, it suffices to bound (12) for these

32Put weight θp = ϕ′(p) ≥ 0 on 1[p,∞) for (almost) every p > 0, weight θ0 = ϕ(0) on
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extreme functions.

Consider such an extreme ϕ = 1[p,∞) with p ≥ 0; then Φ(u) =
∫ u

0
ϕ(t) dt =

max{u− p, 0}. Substituting in the definition of W yields

W =











Λ− (Λ− p) = p, if Y ≥ p and Z ≥ p,

Z − 0 = Z, if Y ≥ p and Z < p,

0− 0 = 0, if Y < p.

Thus

E [W ] = pP [Y ≥ p] P [Z ≥ p] + P [Y ≥ p] E [Z 1Z<p]

= P [Y ≥ p] (E [p 1Z≥p] + E [Z 1Z<p])

= G(p)E [min{Z, p}]

(we have used the fact that Y and Z are independent and min{Z, p} =

p 1Z≥p+Z 1Z<p). Together with E [ϕ(Y )] = E
[

1Y ∈[p,∞)

]

= P [Y ≥ p] = G(p),

(12) becomes

E [s(Y, Z)] ≤ 2r − 2rG(p) + 2G(p)E [min{Z, p}]) = 2(r + ζ(p)) (13)

where we put ζ(p) := G(p) (E [min{Z, p}]− r). If p ≥ r then

E [min{Z, p}] =

∫ ∞

0

P [min{Z, p} ≥ u] du =

∫ p

0

P [Z ≥ u] du

=

∫ p

0

G(u) du ≤
∫ r

0

1 du+

∫ p

r

r

u
du = r + r ln

(p

r

)

,

where the inequality follows from G(u) ≤ 1 and G(u) ≤ r/u (because r =

supu≥0 u ·G(u)). Therefore

ζ(p) ≤ G(u)r ln
(p

r

)

≤ r

p
r ln

(p

r

)

= r
ln q

q
,

1[0,∞) ≡ 1, and the remaining weight θ∞ = 1 −
∫∞

0
ϕ′(p)dp − ϕ(0) = 1 − ϕ(∞) ≥ 0 on

1[∞,∞) ≡ 0; cf. Manelli and Vincent (2007, Lemma 4), where it is also shown how the
one-good result (1) easily follows from this claim.
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where q := p/r ≥ 1. Since maxq(ln q)/q = 1/e (attained at q = e), it follows

that ζ(p) ≤ r/e for all p ≥ r. If p ≤ r then ζ(p) ≤ 0 (since E [min{Z, p}] ≤
p ≤ r), and so altogether ζ(p) ≤ r/e for all p ≥ 0. Therefore E [s(Y, Z)] ≤
2r(1 + 1/e) (recall (13)), which completes the proof.

The auxiliary result that we have used is:

Lemma 19 Let X be a one-good random valuation that takes values X ≥ x0

for some x0 ≥ 0. Then for every IC and IR mechanism µ = (q, s) we have

R(µ;X) = E [s(X)] ≤ (1− q(x0)) Rev(X) + s(x0). (14)

Proof. The function q is nondecreasing (because q is the derivative of the

buyer payoff function b, which is convex), and so q(x) ≥ q(x0) for all x ≥ x0.

If q(x0) = 1 then q(x) = 1 for all x ≥ x0, hence s(x) = s(x0) for all x ≥ x0

by IC; therefore E [s(X)] = s(x0) and (14) holds as an equality.

If q(x0) < 1 then we define a new mechanism by rescaling q so that it uses

the full range from 0 to 1 (instead of q(x0) to 1). Specifically, define µ̂ = (q̂, ŝ)

by q̂(x) := (q(x) − q(x0))/λ and ŝ(x) := (s(x) − s(x0))/λ, where λ := 1 −
q(x0) > 0. It is immediate to verify that µ̂ is an IC and IR mechanism (for IC,

[q̂(x)·x−ŝ(x)]−[q̂(x̃)·x−ŝ(x̃)] = ([q(x) · x− s(x)]− [q(x̃) · x− s(x̃)]) /λ ≥ 0;

for IR, the resulting buyer payoff function b̂ satisfies b̂(x0) = q̂(x0) · x0 −
ŝ(x0) = 0). Therefore Rev(X) ≥ E [ŝ(X)] = (E [s(X)]− s(x0))/λ; multiply-

ing by λ yields (14).

A.2 Some Comments on Decomposition

We provide here a number of remarks related to the decompositions of The-

orems A, B, and 7.

Remarks. (a) In the proof of Theorem A in Section 3: For every fixed z,

applying the one-dimensional mechanism µz to the whole range of Y, rather

than to Y ≥ z, yields E[s(Y, z)] ≤Rev(Y )+z (recall that s(y, z) ≤ sz(y)+z),

and so, taking expectation over the values z of Z, and then maximizing over
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the mechanisms µ, we get33 Rev(Y, Z) ≤Rev(Y )+E [Z]. Unfortunately, this

inequality does not suffice: E [Z] may well be infinite, even when Rev(Z) is

finite (as is the case, e.g., for the Equal-Revenue (ER) distribution (defined in

Section 5). This explains the need to split the domain into the two regions,

Y ≥ Z and Y ≤ Z, which allows us to bound the resulting expectation terms

(see (5)).

(b) The proof of Theorem A also implies thatRev(Y )+Rev(Z) ≥ E [min{Y, Z}]
(take expectation of (5) over the values z of Z, interchange Y and Z, and

add the two resulting inequalities). Thus, while in the single-good case one

cannot guarantee any positive fraction of the expected value as revenue (take

again the ER distribution, with infinite expectation and revenue 1), in the case

of two independent goods one can at least guarantee the expectation of the

minimum of the values of the two goods. A mechanism that yields a revenue

of E [min{Y, Z}] consists of posting the random prices p1 for the y good and

p2 for the z good, where p1 and p2 are independent random variables, p1 is

distributed like Z, and p2 is distributed like Y ; this is a randomized separate

mechanism.34

(c) The decomposition of Section 4 holds in more general setups than

the totally additive valuation of this paper (where the value to the buyer of

the outcome q ∈ [0, 1]k is
∑

i qixi). Indeed, consider an abstract mechanism-

design problem with a set of alternatives A, valued by the buyer according

to a function w : A → R
k
+ (that he knows, whereas the seller knows only

that the function w is drawn from a certain distribution); assume also that

results such as those in Proposition 6 hold. If the set of alternatives A is

in fact a product A = A1 × A2 with the valuation additive between the two

33When Y and Z are not necessarily independent, this becomes Rev(Y, Z) ≤
E[Rev(Y |Z)] + E [Z] , where (Y |Z) is the random variable Y conditional on the value
of Z, and the expectation is over (the values of) Z.

34The inequality Rev(Y ) +Rev(Z) ≥ E [min{Y, Z}] is tight, as it becomes an equality
when Y, Z are i.i.d.-ER goods. It does not hold when Y and Z are not independent
(for an extreme case take the fully correlated case with Y = Z being ER); the correct
inequality here is E [Rev(Y |Z)] + E [Rev(Z|Y )] ≥ E [min{Y, Z}]. All this generalizes to
any k ≥ 2 independent goods, where we obtain

∑

iRev(Xi) ≥ E
[

(m− 1)X(m)
]

for every

m = 1, 2, ..., k (of course, only m ≥ 2 matters) with X(m) denoting the m-th order statistic
of X1, ..., Xk (thus X(1) = maxiXi and X(k) = miniXi).
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sets, i.e., w(a1, a2) = w1(a1) + w2(a2), with w1 distributed according to Y

and w2 according to Z, then Theorem 7 holds as stated. The proof now uses

Val(Z) = E[supa2∈A2
w2(a2)] (which, in our case, where A2 = [0, 1]k2 and

w2(q) =
∑

j qjzj, is indeed Val(Z) = E(
∑

j Zj) since supq w2(q) =
∑

j zj).

A.3 Equal Revenue (ER) Goods

In this appendix we prove the claims of Proposition 12 concerning ER goods:

Lemma 20, Propositions 24 and 25, and Corollary 23.

Lemma 20 Let X be a one-good random valuation. Then Rev(X) ≤ r if

and only if X is stochastically dominated by rV where V is an ER valuation.

Proof. By (1), Rev(X) ≤ r if and only if P[X ≥ p] ≤ r/p for every p ≥ 0;

this inequality matters only for p > r, for which r/p = P [rV ≥ p] .

Next we compute the distribution of a weighted sum of two independent

ER distributions.

Lemma 21 Let V1, V2 be i.i.d.-ER and let α, β > 0. Then

P [αV1 + βV2 ≥ z] =
αβ

z2
ln

(

1 +
z2 − (α+ β)z

αβ

)

+
α + β

z

for z ≥ α+ β, and P [αV1 + βV2 ≥ z] = 1 for z ≤ α+ β.

Proof. Let Z = αV1 + βV2. For z ≤ α + β we have P [Z ≥ z] = 1 since

Vi ≥ 1. For z > α + β we get

P [Z ≥ z] =

∫

f(x)

(

1− F

(

z − αx

β

))

dx

=

∫ (z−β)/α

1

1

x2

β

z − αx
dx+

∫ ∞

(z−β)/α

1

x2
1 dx

=
β

z

[

α

z
ln x− α

z
ln
( z

α
− x
)

− 1

x

](z−β)/α

1

+
α

z − β

=
αβ

z2

(

ln

(

z

β
− 1

)

+ ln
( z

α
− 1
)

)

− αβ

z(z − β)
+

β

z
+

α

z − β

=
αβ

z2
ln

(

1 +
z2 − (α + β)z

αβ

)

+
α + β

z
,
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completing the proof.

Weighted sums of independent ER distributions are used in the proof of

Proposition 13 (see Section 5 and recall Lemma 20). What we will show now

(Lemma 22 and Corollary 23) is that moving the weights in the direction of

equalizing them yields stochastic domination.

Lemma 22 Let V1, V2 be i.i.d.-ER and let α, β, a′, β′ > 0. If α + β = α′ + β ′

and35 αβ ≤ α′β ′ then αV1 + βV2 is stochastically dominated by α′V1 + β ′V2.

Proof. Let Z = αV1+βV2 and Z ′ = α′V1+β ′V2, and put γ = α+β = α′+β ′.

Using Lemma 21, for z ≤ γ we have P[Z ≥ z] = P[Z ′ ≥ z] = 1, and for z > γ

we get

P[Z ≥ z] =
αβ

z2
ln

(

1 +
z2 − γz

αβ

)

+
γ

z

≤ α′β′

z2
ln

(

1 +
z2 − γz

α′β′

)

+
γ

z
= P[Z ′ ≥ z],

since t ln(1 + 1/t) is increasing in t > 0, and αβ/(z2 − γz) ≤α′β ′/(z2 − γz)

by our assumption that αβ ≤ α′β′ together with z > γ.

Corollary 23 Let V1, V2, ..., Vk be i.i.d.-ER, let r1, r2, ..., rk ≥ 0, and put

r̄ = (1/k)
∑k

i=1 ri for the average of the ri. Then
∑k

i=1 riVi is stochastically

dominated by
∑k

i=1 r̄Vi.

Proof. If, say, r1 < r̄ < r2, then Lemma 22 above implies that r1V1+ r2V2 is

stochastically dominated by r̄V1 + r′2V2, where r′2 = r1 + r2 − r̄ > 0, and so36
∑k

i=1 riVi is stochastically dominated by r̄V1 + r′2V2 +
∑k

i=3 riVi. Continue

this way until all coefficients become r̄.

We now calculate the revenue obtainable from bundling two independent

ER goods. Recall that w ≈ 0.278 is the solution of the equation wew+1 = 1,

or lnw + w = −1.

35Equivalently, α′, β′ are closer to one another than α, β are; i.e., |α′ − β′| ≤ |α− β|.
36Recall footnote 25: stochastic dominance is closed under convolutions.
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Proposition 24 Let V1, V2 be i.i.d.-ER. Then

BRev(V1, V2) = Rev(V1 + V2) = 2(w + 1) ≈ 2.56.

Proof. Using Lemma 21 with α = β = 1 yields p P [V1 + V2 ≥ p] = p−1 ln(1+

p2 − 2p) + 2 = 2p−1 ln(p − 1) + 2, which attains its maximum of 2w + 2 at

p = 1 + 1/w (i.e., 1/(p− 1) = w).

We estimate the bundling revenue from k independent ER goods.

Proposition 25 There exist constants c1 > 0 and c2 < ∞ such that for any

k ≥ 2 and k i.i.d.-ER goods V1, V2, ..., Vk,

c1k log k ≤ BRev(V1, V2, ..., Vk) = Rev(V1 + ... + Vk) ≤ c2k log k.

Proof. For a one-dimensional random variable X and a constant M, write

XM := min{X,M} for X truncated at M. When V is ER and M ≥ 1 it is

immediate to compute E
[

V M
]

= lnM + 1 and Var(V M) ≤ 2M .

• Lower bound : For every p,M > 0 we haveRev(
∑

i Vi) ≥ p·P [
∑

i Vi ≥ p] ≥
p · P

[
∑

i V
M
i ≥ p

]

.

WhenM = k ln k and p = (k ln k)/2 we get (kE
[

V M
]

−p)/
√

kVar(V M) ≥
√

ln k/8, and so p is at least
√

ln k/8 standard deviations below the mean

of
∑k

i=1 V
M
i . Therefore, by Chebyshev’s inequality, P

[

∑k
i=1 V

M
i ≥ p

]

≥ 1−
8/ ln k ≥ 1/2 for all k large enough, and then Rev(

∑k
i=1 Vi) ≥ p · 1/2 =

k ln k/4.

• Upper bound : We need to bound supp≥0 p · P
[

∑k
i=1 Vi ≥ p

]

.

Consider two cases for p. If p ≤ 6k ln k then p · P
[

∑k
i=1 Vi ≥ p

]

≤ p ≤
6k ln k.

If p ≥ 6k ln k, then, taking M = p, we have

p · P
[

k
∑

i=1

Vi ≥ p

]

≤ p · P
[

k
∑

i=1

V p
i ≥ p

]

+ p · P [Vi > p for some 1 ≤ i ≤ k] .

(15)

The second term on the right-hand side is at most p ·k ·(1−FV (p)) = k (since

FV (p) = 1 − 1/p). To estimate the first term, we again use Chebyshev’s
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inequality:
∑k

i=1 V
p
i has mean k(ln p + 1) and standard deviation

√
2kp.

When k is large enough we have p/(k(ln p+1)) ≥ 2 (recall that p ≥ 6k ln k),

hence (p − k(ln p + 1))/
√
2kp ≥ (p/2)/

√
2kp =

√

p/(8k), and so p is at

least
√

p/(8k) standard deviations above the mean of
∑k

i=1 V
p
i . Therefore

p ·P
[

∑k
i=1 V

p
i ≥ p

]

≤ p · (8k)/p = 8k, which implies p ·P
[

∑k
i=1 Vi ≥ p

]

≤ 9k

by (15).

Altogether, Rev(
∑k

i=1 Vi) ≤ max{6k ln k, 9k} = 6k ln k for all k large

enough.

Remark. A more precise analysis, based on a Generalized Central Limit

Theorem (see, e.g., Zaliapin, Kagan, and Schoenberg 2005), shows that

Rev(
∑k

i=1 Vi)/(k ln k) converges to 1 as k → ∞. Indeed, the sequence (
∑k

i=1 Vi−
bk)/ak with ak = kπ/2 and37 bk = k ln k + Θ(k) converges in distribution to

the Cauchy distribution as k → ∞. The revenue from a Cauchy distribution

can easily be shown to be bounded (by 1/π; use (1)), and so it follows that

Rev(
∑k

i=1 Vi) = k ln k +Θ(k).

As a corollary, we get that separate selling may yield no more than a

fraction of the order of 1/ log k of the optimal revenue.

Corollary 26 There exists a constant c < ∞ such that for any k ≥ 2 and k

i.i.d.-ER goods V1, V2, ..., Vk

SRev(V1, V2, ..., Vk) ≤
c

log k
Rev(V1, V2, ..., Vk).

Proof. We have Rev(V1, ..., Vk) ≥BRev(V1, ..., Vk) ≥ c1 log k · k = c1 log k ·
SRev(V1, ..., Vk) by Proposition 25, and SRev(V1, ..., Vk) = k (becauseRev(Vi) =

1).

37We use the standard computer science notations: f(k) = O(g(k)) means that there
exists a constant c < ∞ such that f(k) ≤ cg(k) for all k, and f(k) = Ω(g(k)) means that
there exists a constant c > 0 such that f(k) ≥ cg(k) for all k. Also, f(k) = Θ(g(k)) means
that f(k) = O(g(k) and f(k) = Ω(g(k)) both hold; i.e., there exist c1 > 0 and c2 < ∞
such that c1g(x) ≤ f(k) ≤ c2g(k) for all k.
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A.4 Separate vs. Bundled Selling

We start with an example showing that the 1/k bound for k independent

goods of Proposition 14 (i) is tight.

Example 27 BRev(X1, ..., Xk) = (1/k+ε)·SRev(X1, ..., Xk): Take a large

M and let Xi have support {0,M i} with P[Xi = M i] = M−i. Then

Rev(Xi) = 1 and so SRev(X1, ..., Xk) = k, while BRev(X1, ..., Xk) is easily

seen to be at most maxi M
i · (M−i + · · ·+M−k) ≤ 1 + 1/(M − 1). Because

SRev≤Rev this also shows that bundling may yield no more than a 1/k frac-

tion of the optimal revenue: BRev(X1, ..., Xk) ≤ (1/k+ ε)·Rev(X1, ..., Xk).

We next prove that a GFOR of the order of 1/k is tight.

Lemma 28 There exists a constant c > 0 such that for any k ≥ 2 and any

k independent goods X1, X2, ..., Xk,

BRev(X1, X2, ..., Xk) ≥
c

k
Rev(X1, X2, ..., Xk).

Proof. For k a power of two, we use (cf. the proof of Theorem C in

Section 6) the decomposition of (8) to obtain by induction, starting from

Rev(X1) =BRev(X1), the inequality Rev(X1, ..., Xk) ≤ (3k−2)·BRev(X1, ..., Xk)

(the induction step uses the fact that the bundled revenue from a subset of

the goods is at most the bundled revenue from all of them, since all the Xi

are nonnegative). Again, when k is not a power of 2 we can pad to the next

power of 2 with goods that have value identically zero, which at most doubles

k.

Next, we consider i.i.d. goods, where better bounds can be obtained: the

bundling revenue cannot be much smaller than the separate revenue.

Lemma 29 For any two i.i.d. goods X1, X2,

BRev(X1, X2) ≥
2

3
SRev(X1, X2).
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Proof. Let F be the distribution of the Xi, let p be the optimal one-good

price for F, and put α := 1 − F (p); thus, Rev(Xi) = pα. If α ≤ 2/3 then

the bundling mechanism can offer a price of p, and then the probability that

the bundle will be sold is at least the probability that one of the goods by

itself has value p, which is 2α− α2 = α(2 − α) ≥ 4α/3; the revenue is then

at least p · 4α/3 = (4/3)Rev(Xi). If α ≥ 2/3 then the bundling mechanism

can offer a price of 2p, and then the probability that it will be accepted is at

least the probability that both goods will get a value of at least p, which is

α2; the revenue is then 2p ·α2 ≥ (4/3)pα = (4/3)Rev(Xi). In both cases the

bundling revenue was at least (4/3)Rev(Xi) = (2/3)SRev(X1, X2).

This 2/3 bound is tight.

Example 30 BRev(X1, X2) = (2/3)·SRev(X1, X2): Let Xi have support

{0, 1} with P[Xi = 1] = 2/3; then Rev(Xi) = 2/3 while BRev(X1, X2) =

8/9 (which is obtained both at price 1 and at price 2).38

A.5 Many I.I.D. Goods

It is well known that when the goods are independent and identically dis-

tributed, and their number k tends to infinity, then the bundling revenue

approaches the optimal revenue. Even more, essentially all the buyer’s sur-

plus can be extracted by selling optimally the bundle of all goods. The logic

is quite simple: the law of large numbers tells us that there is almost no

uncertainty about the sum of many i.i.d. random variables, and so the seller

essentially knows this sum and may ask for it as the bundle price. For com-

pleteness we state this result and provide a short proof, which also covers

the case where the expectation is infinite.

Theorem 31 (Armstrong 1999, Bakos and Brynjolfsson 1999) Let Xi

be i.i.d. one-good random valuations. Then

lim
k→∞

BRev(X1, X2, ..., Xk)

k
= lim

k→∞

Rev(X1, X2, ..., Xk)

k
= E [X1] .

38It can be checked that the optimal revenue is attained here by selling separately, i.e.,
Rev(X1, X2) =SRev(X1, X2) = 4/3.

42



Proof. We always have BRev(X1, ..., Xk) ≤Rev(X1, ..., Xk) ≤ kE [X1] (the

second inequality follows from s(x) = q(x) · x − b(x) ≤ ∑

i xi by IR). Let

us assume first that the Xi have finite expectation and finite variance. In

this case if we charge a price of (1 − ε)kE [X1] for the bundle, then, by

Chebyshev’s inequality, the probability that the bundle will not be bought

is at most Var(X1)/(ε
2
E [X1]

√
k), and this goes to zero as k increases.

If the expectation or variance is infinite, then consider the truncated

distribution where values above a certain M are replaced by M , which has

finite expectation and variance. We can choose the finite M so as to bring

the expectation of the truncated distribution as close as we desire to the

original one (including as high as we desire, if the original distribution has

infinite expectation).

Despite the apparent strength of this result, it does not provide any guar-

antees for any fixed value of k. Indeed, we now show that for every large

enough k we have GFOR(bundled; k i.i.d. goods) ≤ 57% (recall that it

is at least 1/4 by Proposition 14 (ii)). Recently, Kupfer (2016) obtained the

precise value of the limit of this GFOR as k increases; it turns out to be

approximately 55.9%.

Example 32 For every k large enough, a one-dimensional distribution F

(which depends on k) such that BRev(X1, ..., Xk) ≤ 0.57·SRev(X1, ..., Xk),

and thus BRev(X1, ..., Xk) ≤ 0.57·Rev(X1, ..., Xk), where the Xi are i.i.d.-

F goods: For each k consider the distribution F on {0, 1} with P[X = 1] =

c/k where c ≈ 1.256 is the positive solution of 1−e−c = 2(1− (1+c)e−c); the

revenue from selling a single good is thus c/k, and so SRev(X1, ..., Xk) = c.

The bundling mechanism should clearly offer an integral price. If it offers

price 1 then the probability of selling is 1 − (1 − c/k)k, which converges to

1 − e−c ≈ 0.715 as k increases. If it offers price 2 then the probability of

selling is 1−(1−c/k)k−k(c/k)(1−c/k)k−1 → 1−(1+c)e−c, and the revenue

is twice that, again ≈ 0.715 in the limit (recall the equation that c satisfies).

If it offers price 3 then the probability of selling is 1− (1− c/k)k−k(c/k)(1−
c/k)k−1−

(

k
2

)

(c/k)2(1−c/k)k−2 → 1−(1+c+c2/2!)e−c ≈ 0.13, and the revenue

is three times that, which is less than 0.715. For higher integral prices m ≥ 4
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the probability of selling converges to 1− (1 + c+ ...+ cm−1/(m− 1)!)e−c ≤
cm/m! (because the corresponding remainder in the ec series is bounded by

eccm/m!), and the revenue is thus ≤ cm/(m − 1)!, which is even smaller.

Therefore for all large enough k the optimal bundle price is either 1 or 2, and

BRev(X1, ..., Xk)/SRev(X1, ..., Xk) is close to (1− e−c)/c ≈ 0.569.

A.6 When Bundling Is Optimal

In this appendix we prove Theorem 16, stated in Section 7.2: for two i.i.d.

goods, if the one-good distribution satisfies condition (9), then bundling is

optimal.

Proof of Theorem 16. Let X = (Y, Z) where Y, Z are i.i.d. with

cumulative distribution F and probability density function f that satisfies

(9). We will show that for every IC and IR mechanism µ there is a bundled

mechanism µ̂ that yields at least as much revenue, i.e., R(µ̂;X) ≥ R(µ;X);

this proves that Rev(X) = BRev(X).

Let µ = (q, s) be an IC and IR mechanism with buyer payoff function b;

as in the proof of Theorem B in Appendix A.1, we assume without loss of

generality that the mechanism is symmetric and satisfies NPT. Therefore

E [s(Y, Z)] = E [Y q1(Y, Z) + Zq2(Y, Z)− b(Y, Z)]

= E [2Y q1(Y, Z)− b(Y, Z)] ,

because E [Zq2(Y, Z)] = E [Zq1(Z, Y )] = E [Y q1(Y, Z)] by symmetry and then

by interchanging the i.i.d. variables Y and Z. Truncating at M therefore

yields (recall that s is nonnegative by NPT)

R(µ;X) = lim
M→∞

rM(b),

where

rM(b) := lim
M→∞

∫ M

a

∫ M

a

(2yby(y, z)− b(y, z)) f(y)f(z) dy dz (16)
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(because q1(y, z) = by(y, z), the derivative of b(y, z) with respect to its first

variable, for almost every (y, z) by Proposition 5, and the distribution F is

continuous).

For each fixed z integrate by parts the 2yby(y, z)f(y) term:

∫ M

a

2by(y, z)yf(y) dy = [2b(y, z)yf(y)]Ma −
∫ M

a

2b(y, z) (f(y) + yf ′(y)) dy

= 2b(M, z)Mf(M) − 2b(a, z)af(a)

−
∫ M

a

2b(y, z) (f(y) + yf ′(y)) dy.

Substituting this in (16) yields

rM(b) = 2Mf(M)

∫ M

a

b(M, z)f(z) dz

+2

∫ M

a

∫ M

a

b(y, z)

(

−3

2
f(y)− yf ′(y)

)

f(z) dy dz (17)

−2af(a)

∫ M

a

b(a, z)f(z) dz.

Define b̂(y, z) := b(y + z − a, a) = b(a, y + z − a) for every (y, z) with

y, z ≥ a. Then b̂ is a symmetric convex function on the quadrant [a,∞)2, it

coincides with b on the boundaries y = a and z = a, and is at least as large

as b everywhere39: indeed, the convexity of b yields

b(y, z) ≤ y − a

y + z − 2a
b(y + z − a, a) +

z − a

y + z − 2a
b(a, y + z − a) (18)

= b(y + z − a, a) = b̂(y, z)

for every (y, z) ∈ [a,∞)2. Replacing b with b̂ can only increase the first and

second terms of (17), since all the coefficients of b there are nonnegative (use

(9)), while it does not affect the third term. Therefore rM(b) ≤ rM(b̂) for all

M .

39The function b̂ is in fact the smallest function satisfying these three properties (i.e., it
is a convex function, coincides with b on the boundary, and is everywhere ≥ b); see Hart
(2012) for an interesting observation on this.
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Define q̂(y, z) := (q1(y+ z − a, a), q1(y+ z − a, a)) ∈ [0, 1]2 and ŝ(y, z) :=

q̂(y, z) · (y, z) − b̂(y, z); then q̂(y, z) is a subgradient of40 b̂ at (y, z), and so

µ̂ = (q̂, ŝ) is an IC and IR mechanism (by Proposition 5). Since R(µ̂;X) =

limM→∞ rM(b̂) and rM(b) ≤ rM(b̂) for all M, we get R(µ;X) ≤ R(µ̂;X).

Finally, µ̂ is a bundled mechanism, since q̂ and ŝ are functions of y + z (the

corresponding one-good mechanism for T := Y + Z is (q̃, s̃) with q̃(t) :=

q̂(t− a, a) and s̃(t) := ŝ(t− a, a)). This completes the proof.

A.7 Multiple Buyers

The generalization from one buyer to n ≥ 1 buyers is as follows (recall Section

2.1). One seller is selling k goods to n buyers; these goods have no value or

cost to the seller. For each buyer j = 1, ..., n and each good i = 1, ..., k,

buyer j’s value for good i is given by a nonnegative random variable Xj
i ;

put Xj = (Xj
i )i=1,..,k for the R

k
+-valued random valuation vector of buyer j,

and Xi = (Xj
i )j=1,...,n for the R

n
+-valued vector of values of good i; put also

X = (Xj
i )j=1,...,n;i=1,...,k, and let F be the joint distribution of all these kn

random variables. The distribution F is commonly known; in addition, each

buyer j knows the realization of his random valuation Xj . Finally, the seller

as well as all the buyers are risk-neutral and have quasi-linear utilities, and

the valuation of a set of goods to each buyer is additive.

A (direct) mechanism µ = (qj, sj)j=1,...,n consists of an allocation function

qj : Rkn
+ → [0, 1]k and a payment function sj : R

kn
+ → R for each buyer

j = 1, ..., n, where
∑n

j=1 q
j
i (x) ≤ 1 for every good i = 1, .., k; the payoff

of buyer j is bj(x) = qj(x) · xj − sj(x), and that of the seller is S(x) :=
∑n

j=1 s
j(x). Two standard equilibrium notions are used for the n-person game

among the buyers (once the mechanism µ is given): “dominant strategy” (ds)

and “Bayesian Nash” (bn), which yield the so-called ex-post and interim

equilibria, respectively. The corresponding conditions are:

• In the dominant strategy case: incentive compatibility (IC-DS) re-

40At points of differentiability b̂y(y, z) = b̂z(y, z) = by(y + z − a, a).
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quires that

bj(x) = qj(x) · xj − sj(x) = max
x̃j∈Rk

+

[

qj(x̃j , x−j) · xj − sj(x̃j , x−j)
]

for every j = 1, ..., n and x ∈ R
kn
+ ; individual rationality (IR-DS)

requires that bj(x) ≥ 0 for every j and x ∈ R
kn
+ .

• In the Bayesian Nash case: incentive compatibility (IC-BN) requires

that41

b̄j(xj) := E
[

bj(X)|Xj = xj
]

= max
x̃j∈Rk

+

E
[

qj(x̃j , X−j) · xj − sj(x̃j , X−j)|Xj = xj
]

for every j = 1, ..., n and xj ∈ R
k
+; individual rationality (IR-BN)

requires that b̄j(xj) ≥ 0 for every j and xj ∈ R
k
+.

Let R(µ;X) := E [S(X)] ≡ E

[

∑n
j=1 s

j(X)
]

denote the seller’s expected

revenue from the mechanism µ for the random valuations X. Let RevDS(X)

stand for the maximal revenue obtained from k goods and n buyers with ran-

dom valuations X using dominant strategy implementation, i.e., mechanisms

that satisfy IC-DS and IR-DS; let RevBN (X) stand for the maximal revenue

using Bayesian Nash implementation, i.e., mechanisms that satisfy IC-BN

and IR-BN (in the one-buyer case, i.e., when n = 1, these two concepts

clearly coincide).

Remarks. (a) Bayesian Nash implementation for independent buyers. In

the Bayesian Nash case, when the buyers’ random valuation vectorsX1, X2, ..., Xn

are independent, only the expectations of allocations and payments, condi-

tional on each buyer’s own values, matter: replacing qj(x) with q̄j(xj) :=

E [qj(X)|Xj = xj ] = E [qj(xj , X−j)] and sj(x) with s̄j(xj) := E [sj(X)|Xj = xj ] =

E [sj(xj , X−j)] throughout affects neither the IC-BN and IR-BN constraints

41The conditions in the Bayesian Nash case depend on the mechanism µ and (the dis-
tribution of) the valuations X, whereas in the dominant strategy case they depend only
on the mechanism µ.
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nor the revenue.42 We will thus assume without loss of generality that mech-

anisms in the Bayesian Nash case are given in this “reduced form” where qj

and sj depend only on xj (rather than on the entire x), for all j.

(b) Non-positive transfer (NPT) and subdomain. A mechanism µ =

(qj , sj)j=1,...,n for n ≥ 1 buyers and k ≥ 1 goods satisfies NPT if sj(x) ≥ 0

for every j and every x. The results (i)–(iv) of Proposition 6 in Section 2.1

extend to multiple buyers, as follows.

In the dominant strategy case, we consider separately each j = 1, ..., n

and each x−j ∈ R
k(n−1)
+ , and obtain, in particular, that NPT is equivalent to

sj(0, x−j) = 0 for all j and all x−j , that NPT can be assumed without loss of

generality when maximizing revenue, and that the subdomain property holds:

E

[

∑

j s
j(X) 1X∈A

]

≤RevDS(X 1X∈A) ≤RevDS(X) for every A ⊆ R
kn
+ .

In the Bayesian Nash case, when the buyers are independent (and each

payment sj depends only on xj ; see Remark (a) above), we obtain in par-

ticular that NPT is equivalent to s̄j(0) = 0 for all j, that NPT can be assumed

without loss of generality when maximizing revenue, and that E
[

∑

j s
j(X) 1X∈A

]

=

E

[

∑

j s̄
j(Xj) 1X∈A

]

≤RevBN(X 1X∈A) ≤RevBN(X) for every43 A ⊆ R
kn
+ .

We state the result separately for the two kinds of implementation, since

in the dominant strategy case the result is stronger: the requirement that the

buyers’ random valuations are independent is not needed (i.e., while there is

independence between the two goods—Xj
1 and Xℓ

2 are independent for any

two buyers j, ℓ = 1, ..., n—we allow, for each good i = 1, 2, the buyers’ values

X1
i , X

2
i , ..., X

n
i to be arbitrarily correlated). The two theorems below give

Theorem 18.

42However, the feasibility conditions
∑

i q
i
ℓ ≤ 1 on the allocations cannot be directly

expressed in terms of the q̄i (this is known as the “implementability” condition; see Border
1991 for a necessary and sufficient condition for implementability, and Hart and Reny
2015b for a simple restatement and proof).

43NPT need not hold in the Bayesian Nash case when the buyers’ random valuations
are not independent. In this case, optimal mechanisms may make use of negative pay-
ments sj(x) (i.e., positive transfers); cf. Crémer and McLean (1988). In addition, the
requirement that sj depends only on xj is needed because the restriction to a set A of
values of X may introduce dependencies between the coordinates of X 1X∈A, and then

E

[

∑

j s
j(X)1X∈A

]

= E

[

∑

j s̄
j(Xj)1X∈A

]

need not hold.
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Theorem 33 In the case of n buyers, two goods, and dominant strategy

implementation, if the random valuation vectors of the two goods X1 =

(Xj
1)j=1,...,n andX2 = (Xj

2)j=1,...,n are independent, then GFOR(separate) ≥
1/2, i.e.,

RevDS(X1) +RevDS(X2) ≥
1

2
RevDS(X1, X2).

Theorem 34 In the case of n independent buyers, two goods, and Bayesian

Nash implementation, if the random valuation vectors of the two goods X1 =

(Xj
1)j=1,...,n andX2 = (Xj

2)j=1,...,n are independent, then GFOR(separate) ≥
1/2, i.e.,

RevBN(X1) +RevBN (X2) ≥
1

2
RevBN (X1, X2).

Proof of Theorems 33 and 34. Put Y = X1 = (Xj
1)j=1,...,n and Z =

X2 = (Xj
2)j=1,...,n for the random valuation vectors of good 1 and good 2,

respectively; thus Y and Z are Rn
+-valued random variables and X = (Y, Z).

Let µ = (qj , sj)j=1,...,n be an NPT mechanism for the two goods that satisfies

either IC-DS and IR-DS, or IC-BN and IR-BN; in the BN case, we assume in

addition that it is in reduced form: qj and sj depend only on xj (cf. Remark

(a) above).44

We split the total expected revenue from µ into two parts, according to

which one of45 Y (1) = maxj Y
j and Z(1) = maxj Z

j is higher, and show that

E
[

S(Y, Z)1Y (1)≥Z(1)

]

≤ 2Rev(Y ) and (19)

E
[

S(Y, Z)1Z(1)≥Y (1)

]

≤ 2Rev(Z); (20)

adding the two inequalities yields our result (recall that S ≥ 0 by NPT).

To prove (19) (from which (20) follows by interchanging Y and Z), for

every fixed vector of values z ∈ R
n
+ of the n buyers for the second good

define a mechanism (q̂, ŝ) ≡ (q̂z, ŝz) for the first good by q̂j(y) := qj1(y, z)

and ŝj(y) := sj(y, z)− qj2(y, z) z
j for every y ∈ R

n
+ and j = 1, ..., n, and put

44Formally, put here qi(x) := q̄i(xi) and si(x) := s̄i(xi); this allows the proof to apply
mutatis mutandis to both implementations, dominant strategy and Bayesian Nash.

45We write a(1) := maxj=1,...,n a
j for the maximal coordinate of a vector a =

(aj)j=1,...,n ∈ R
n.
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Ŝ(y) :=
∑

j ŝ
j(y). The mechanism (q̂, ŝ) is IC and IR for y, since (q, s) was

IC and IR for (y, z) (for IC: only the constraints (ỹj, zj) vs. (yj, zj) matter;

for IR, b̂j(y) = bj(y, z) ≥ 0). Then S(y, z) =
∑

j s
j(y, z) =

∑

j ŝ
j(y) +

∑

j z
jqj2(y, z) ≤

∑

j ŝ
j(y) + z(1) = Ŝ(y) + z(1) (the inequality obtains because

0 ≤ zj ≤ z(1) and
∑

j q
j
2 ≤ 1). Since Y is independent of Z we get

E
[

S(Y, Z)1Y (1)≥Z(1) |Z = z
]

= E
[

S(Y, z)1Y (1)≥z(1)

]

≤ E

[

Ŝ(Y )1Y (1)≥z(1)

]

+ E
[

z(1)1Y (1)≥z(1)

]

.

The first term is the revenue from a subdomain of values of y, and so it is at

most the maximal revenue Rev(Y ) by Remark (b) above (in the BN case,

ŝj depends only on yj since sj and qj depend only on xj); as for the second

term,

E
[

z(1)1Y (1)≥z(1)

]

= z(1) P
[

Y (1) ≥ z(1)
]

≤ Rev(Y ), (21)

since posting a price of z(1) and giving the good y to a buyer j with yj ≥ z(1),

if there is any, constitutes an IC and IR mechanism for46 y. Thus

E
[

S(Y, Z)1Y (1)≥Z(1) |Z = z
]

≤ 2Rev(Y )

for every value z of Z; taking expectation over z yields (19).

A.8 Summary of Results

The two tables below summarize the results of this paper; X stands for

(X1, X2, ..., Xk), where X1, X2, ..., Xk are k independent goods (i.e., one-

dimensional nonnegative random variables).47 Table 1 provides the bounds

on the guaranteed fraction of optimal revenue for selling separately and for

selling as one bundle (with the four main results in bold). Table 2 provides

the comparisons between the separate and bundled revenues.48

46As in the Proof of Theorem A in Section 3, we are not using the characterization of
optimal mechanisms in the one-good case (Myerson 1981), but only the fact that posting
a price is IC and IR.

47o(1) means “converging to 0 as k → ∞”; see footnote 37 for the O, Ω, and Θ notations.
48When comparing SRev andBRev we obtained tight bounds in almost all cases (unlike

the results for GFOR). This is in part due to the fact that both SRev and BRev reduce
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k = 2 indep. k = 2 i.i.d. k ≥ 2 indep. k ≥ 2 i.i.d.

∀X SRev(X)

Rev(X)
≥ 1

2

e

e + 1
≈ 0.73 Ω

(

1

log2k

)

(Th.A) (Th.B) (Th.C)

∃X SRev(X)

Rev(X)
≤ 1

1 + w
≈ 0.78 O

(

1

log k

)

(Pr.15) (Co.26)

∀X BRev(X)

Rev(X)
≥ 1

2
· 1
2
=

1

4

e

e+ 1
· 2
3

Ω

(

1

k

)

Ω

(

1

log k

)

(Th.A+Pr.14(i)) (Th.B+Le.29) (Le.28) (Th.D)

∃X BRev(X)

Rev(X)
≤ 1

2
+ ε

2

3

1

k
+ ε ≈ 0.57 + o(1)

(Ex.27) (Ex.30) (Ex.27) (Ex.32)

Table 1. Summary of results for GFOR

k = 2 indep. k = 2 i.i.d. k ≥ 2 indep. k ≥ 2 i.i.d.

infX
SRev(X)

BRev(X)
=

1

1 + w
≈ 0.78 Θ

(

1

log k

)

(Pr.13(i)+Pr.12(iii)) (Pr.13(ii)+Pr.12(iv))

infX
BRev(X)

SRev(X)
=

1

2

2

3

1

k
∈
[

1

4
, 0.57 + o(1)

]

(Pr.14(i)+Ex.27) (Le.29+Ex.30) (Pr.14(i)+Ex.27) (Pr.14(ii)+Ex.32)

Table 2. Summary of results for SRev vs. BRev

to one-good revenues, for which monotonicity holds (see Proposition 11 and the extensive
use of ER goods; cf. Remark (b) after Proposition 12).
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