What Happens When HTTP Adaptive Streaming Players
Compete for Bandwidth?

Saamer Akhshabi,
Lakshmi Anantakrishnan,
Constantine Dovrolis,
College of Computing
Georgia Institute of Technology

Ali C. Begen
Video and Content Platforms Research and
Advanced Development
Cisco Systems

abegen@cisco.com

s.akhshabi, lakshmi3, constantine@gatech.edu

ABSTRACT

With an increasing demand for high-quality video content
over the Internet, it is becoming more likely that two or
more adaptive streaming players share the same network
bottleneck and compete for available bandwidth. This com-
petition can lead to three performance problems: player in-
stability, unfairness between players, and bandwidth under-
utilization. However, the dynamics of such competition and
the root cause for the previous three problems are not yet
well understood. In this paper, we focus on the problem of
competing video players and describe how the typical be-
havior of an adaptive streaming player in its Steady-State,
which includes periods of activity followed by periods of in-
activity (ON-OFF periods), is the main root cause behind the
problems listed above. We use two adaptive players to ex-
perimentally showcase these issues. Then, focusing on the
issue of player instability, we test how several factors (the
ON-OFF durations, the available bandwidth and its relation
to available bitrates, and the number of competing players)
affect stability.

Categories and Subject Descriptors

C.4 [Computer Systems Organization|: Performance of
Systems

General Terms

Performance, Measurement, Algorithms

Keywords

Adaptive streaming, video streaming over HTTP, player com-
petition, available bandwidth competition, stability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV’12, June 7-8, 2012, Toronto, Ontario, Canada.

Copyright 2012 ACM 978-1-4503-1430-5/12/06 ...$10.00.

1. INTRODUCTION

Adaptive video streaming over HTTP is quickly getting
adopted as the technology of choice for the delivery of video
over IP networks. At the same time, the popularity of
Internet-based high-quality streaming for various end-user
devices such as HDTVs, mobile phones, gaming devices,
and computers is on a steady rise as well. The bandwidth
requirement for such devices is rapidly increasing as the con-
tent quality is improving to meet end-user demands. With
abundant video content and increasing bandwidth demands,
it is becoming likely that two or more adaptive streaming
players have to share a network bottleneck and compete for
available bandwidth. Such competition can take place, for
example, when several people in the same house watch dif-
ferent movies at the same time. In that case the residential
broadband access link is probably going to be a shared bot-
tleneck. Another instance of such competition is when many
users watch the same live event (such as Super Bowl) online.
An edge network link may constitute the shared bottleneck
in that case. It has been previously observed that such com-
petition can lead to performance issues [1, 3, 4]. However,
the dynamics of such competition and the root cause for the
previous performance problems are not yet well understood.

Our goal in this paper is to identify the underlying root
cause of the performance problems that take place when
multiple adaptive streaming players compete. We group
these problems into three categories: The first relates to
the stability of the players in terms of requested bitrates
and video quality. The second is the unfairness among com-
peting players. The third is the potential bandwidth under-
utilization when multiple adaptive players compete.

We first give a short overview of how a typical adaptive
streaming algorithm works. Then, we show that this typical
behavior can lead to periods during which the player stays
idle — downloading nothing from the server. The player can-
not estimate the available bandwidth in the bottleneck dur-
ing these idle times. Depending on when these idle times
start and end for each competing player, the previous three
issues (instability, unfairness, and underutilization) can arise.
In this paper we only focus on the performance of the players
in the Steady-State in which the player has already built its
playback buffer. We experimentally evaluate two adaptive
streaming players, the Smooth Streaming player [7] and a
variant of the AdapTech Streaming player introduced in [2],
when two or more players compete with each other. Finally,
focusing on the instability issue, we examine how 1) the rel-

ative duration of the player idle periods, 2) the “fair share”
of each player and its relation to the available bitrates, and
3) the number of competing players, affect the stability of
the system.

To the best of our knowledge, there have only been two
prior studies focusing on the competition between adap-
tive streaming players. Cloonan and Allen [3] developed
a simulator to explore corner-case scenarios that may oc-
cur with competing streaming sessions. They reported re-
quested bitrate oscillations and unfairness when multiple
adaptive streaming players compete and they observed that
the instability tends to increase with the number of com-
peting players (we disagree with this point in Section 5).
Houdaille and Gouache [4] observed instability and unfair-
ness with competing adaptive streaming players and they
proposed a traffic shaping method at home gateways to re-
duce the extent of these problems.

The rest of this paper is organized as follows: In Section
2, we describe the root cause of the previous performance
problems when multiple players compete. In Section 3, we
describe the experimental methodology and metrics that we
use. In Section 4, we showcase how competition in real sce-
narios can lead to performance degradation. Section 5 fo-
cuses on the stability of the competing adaptive streaming
players and studies the various factors that can affect it. We
conclude the paper in Section 6.

2. MULTIPLE COMPETING PLAYERS

In this section we describe qualitatively three performance
issues that can take place when two or more adaptive stream-
ing players share a network bottleneck and compete for avail-
able bandwidth. An important point is that the issues we
focus on in this paper, are not due to TCP dynamics, as is
often reported, but they mainly arise from the rate adapta-
tion algorithms at the application layer.

Server Client
Buffering
< State
o
o
o

Request
< T
Response seconds
Steady .
St < ON period
OFF period

q

\/ v

Figure 1: The request-response timing between
client and server in the Buffering and Steady states.

An adaptive streaming player typically starts a streaming
session in the Buffering-State [1]. At this phase, the goal
of the player is to build up its playback buffer as quickly as
possible and to reach a maximum buffer size. To do so the

Player 1 ON

,,,,,,,,,,,,,,, >
a)
Player 2 ON
,,,,,,,,,,,,,,,, >
T seconds
Player 1 ON
,,,,,,,,,,,,,,,,,,,,,,,,,, >
b)
Player 2 ON
,,,,,,,,,,, R >
—
T seconds
Player 1 ON
,,,,,,,,,,, - - ,>
©)
Player 2 ON
,,,,,,,,,,, T >
—
T seconds

Figure 2: Three instances of the ON-OFF periods of
two competing players during one chunk download
period.

player requests a new chunk (also known as “fragment” or
“segment”) as soon as the previous chunk is downloaded.

Once the playback buffer size reaches a certain target (e.g.,
30 seconds), the player switches to the Steady-State during
which it aims to maintain a constant playback buffer size.
Assuming for simplicity that each chunk corresponds to T
seconds of content, the player requests one chunk every T
seconds (if the download duration is less than T') or as soon
as the previous chunk is received (otherwise). This can lead
to an activity pattern in which the player is either ON, down-
loading a chunk, or it is OFF, staying idle. This pattern is
illustrated in Figure 1.

In parallel, the player estimates its fair share in the un-
derlying network path by measuring the per-chunk TCP
throughput, and computing a running average of those mea-
surements over time [1]. The player then uses that running
average to select the bitrate for the next requested chunk.

Depending on the temporal overlap of the ON-OFF periods
among competing players, they may not estimate their fair
share correctly. This can cause the following three perfor-
mance problems: instability, unfairness, and underutiliza-
tion. Specifically, consider a simple model with two adap-
tive players sharing a bottleneck of capacity C. Suppose
that both players have already reached the Steady-State
requesting a new chunk every T seconds. Also, let us ignore
for now the well-known TCP shortcomings, and assume that
a single active connection gets the whole capacity C, while
two active connections share the capacity fairly, receiving
% each. The fair share for each player, denoted by f, in
this model is % We denote by fi1 and f> the throughput re-
ceived by player-1 and player-2, respectively, during a chunk
download period. Ideally, it should be that fi = fo = f.

Figure 2-a shows the case where the ON periods of the
two players do not overlap during a chunk download period.
Both players measure a per-chunk throughput of C', and so

they estimate that fi = fo > f. In other words, both players
overestimate their fair share by a factor of two. When both
players overestimate their fair share, and depending on the
video bitrates, they may request a profile with higher bitrate
than f, causing congestion. When that happens, the players
will measure that their TCP throughput is less than their
previous fair share estimate, and so they will switch back to
a lower video bitrate. This oscillatory scenario can repeat,
causing instability.

Figure 2-b shows the situation where the ON period of one
player falls within the ON period of the other player. This can
happen if one player is requesting a chunk with lower bitrate
than the other player. In this case, the former observes a
throughput of % and the latter observes a throughput that
is more than % So the two players estimate that fi >
f2 = f, which means that one player overestimates its fair
share. When only one player overestimates its fair share, it
can be that the two players converge to a stable but unfair
equilibrium in which the player with the larger fair share
estimate requests a higher bitrate video.

Figure 2-c shows the situation where the ON period of the
two players are perfectly aligned. Both players observe a
throughput of % and so fi = fo = f. In this case the two
players estimate their fair share correctly. Note however
that even in this case we can have bandwidth underutiliza-
tion. To illustrate, suppose that the video has two available
profiles with bitrates b1 and b2, respectively. Then, both
examples in Figure 2-b and 2-c¢ can be stable if by < %,
b1 +b2 < C, and by > % However, the case shown in
Figure 2-c, where both players request the b1 profile, causes
underutilization, even though it is stable and fair.

Instability can also cause underutilization. Suppose that
b1 << by and b1 + ba ~ C. Consider the case that one
player requests b1 and the other requests b2, which is stable
and the capacity of the bottleneck is completely utilized. On
the other hand, consider the case that the players oscillate
between by and b2, given that it is not possible that they both
receive the by profile. This oscillatory scenario will lead to
significant underutilization, when both players request b;.

The previous examples illustrate some competition sce-
narios for two adaptive streaming players. In reality, several
other factors can play an important role in the appearance
and extent of instability, unfairness and underutilization,
such as the exact player adaptation algorithm, TCP dy-
namics, bandwidth fluctuations, and the variability of the
video encoding rate. In the rest of this paper, we use actual
adaptive streaming players to demonstrate that the previous
issues can still arise in reality.

3. METHODOLOGY AND METRICS

In this section, we give an overview of the experimental
methodology and define the metrics we focus on. The ex-
perimental set up is similar to that in [1]. The host that
runs the video players also runs a packet sniffer (Wireshark
[5]) and a network emulator (DummyNet [8]). Wireshark
allows us to capture and analyze offline the traffic from and
to the HT'TP server. DummyNet allows us to control the
downstream available bandwidth (also referred to as avail-
bw) that the players can receive. That host is connected to
the Georgia Tech campus network through a Fast Ethernet
interface. The TCP connections that transfer video and au-

dio streams cannot exceed (collectively) the avail-bw at any
time.

We use two different players in the following experiments.
The first is a variant of the AdapTech-Streaming player in-
troduced in [2], which is based on the Adobe OSMF player
[6]. We have instrumented the player to log its internal
parameters such as playback buffer size, requested bitrate,
chunk download time, and chunk throughput over time. The
second is the commercial Smooth Streaming player [7]. We
infer the previous parameters for that player by using packet
captures, as described in [1]. Due to space constraints, we
do not repeat the details in this paper.

We represent by P, an encoding bitrate of » Mbps that is
available for a given video stream at the server (e.g., P2.75).
We test competing players under constant avail-bw. We do
not, however, control the servers and the content ourselves
and so we select the avail-bw according to the bitrates avail-
able at the servers. An experiment ends when at least one
of the players finishes receiving the whole video.

We define the following three performance metrics:

1. The instability metric, denoted by 0, is the fraction of
successive chunk requests by a player in which the requested
bitrate does not remain constant.

2. The unfairness metric (for two players) is the average of
the absolute bitrate differences between the corresponding
chunks requested by each player.

3. The utilization metric is defined as the aggregate through-
put during an experiment (measured from the Wireshark
captures) divided by the avail-bw in that experiment.

We first test the Smooth Streaming player when two play-
ers compete under constant avail-bw. We also use this player
to study the effect of two factors: the duration of the ON-0OFF
periods, and the fair share of each player relative to the
available bitrates. Due to resource constraints, for example
CPU and GPU power, on the machine hosting the players,
we cannot run multiple instances of the Smooth Streaming
player to investigate the effect of the number of competing
players. Therefore, we have developed a simpler player that
mimics the behavior of Smooth Streaming at a qualitative
level, without actually decoding and displaying the video
streams, to study the effect of the number of players (see
Section 4.2).

All experiments are performed on a Windows 7 Profes-
sional host with an Intel(R) Core(TM)i5 CPU M480 2.67GHz
processor, 4.00 GB physical memory, and an Intel(R) HD
Graphics processor with 1307 MB total memory.

4. BASIC EXPERIMENTS

We performed many experiments with the Smooth Stream-
ing player and observed that the performance issues de-
scribed in Section 2 also take place in practice. Due to space
constraints, we show results here for only one of those exper-
iments. We also show results from a single experiment with
a simpler player, which is based on the AdapTech Streaming
player introduced in [2].

4.1 Smooth Streaming Player

We use Microsoft Silverlight Version 5.0.61118.0 provided
by Microsoft at the IIS Web site.! The manifest file for the
video that is provided there declares eight video encoding bi-
trates ranging from 350Kbps to 2.75 Mbps. Figure 3 shows

"http://www.iis.net /media/experiencesmoothstreaming

the requested bitrates, the chunk throughputs as well as the
number of active (i.e., ON) players for an experiment with
two Smooth Streaming players sharing a bottleneck with
1.6 Mbps avail-bw. Note that we only focus on the time
interval between ¢ = 80 s and ¢t = 280 s, when both players
are in Steady-State. When the ON periods of the two play-
ers do not overlap (i.e., the number of active players is less
than two, e.g., between ¢t = 140 s and ¢ = 160 s), the chunk
throughputs are much larger than the fair share (0.8 Mbps).
This happens when the players are requesting lower bitrates
(Po.47 and Po.63). We do not know exactly how the Smooth
Streaming player uses the chunk throughput measurements
to estimate the avail-bw but we can observe that the players
decide then to switch to a higher bitrate (e.g., at ¢ = 157 s
to Po.sas) that is larger than the fair share, which is unsus-
tainable. The durations of the ON periods increase then, the
number of active players becomes two, and the measured
throughput by each player decreases. Consequently, the
players switch back to the lower bitrates at around ¢ = 182
s. This oscillatory pattern continues throughout the stream-
ing session. Overall, this experiment’s instability is 12%, the
unfairness is 0.085 Mbps, and the utilization is 94%.

T T
Number of active players

Player-1 chunk throughput =

Player-2 chunk throughput

25 Fair share of the avail-bw q

Player-1 requested bitrate -+

Player-2 requested bitrate

o
2 2 =
s
[
2 2
1.5 § 3]
: ARl et :
o
‘Lﬁff A,\] j\/m 5-4%\ 115
SR ik i =z
By ! ¥ v f
PHHHHHHE R i i S i 4'1
0.5 | v d
0 . . \ . 0
80 120 160 200 240 280

Time (seconds)

Figure 3: Requested bitrates and chunk through-
puts for two competing Smooth Streaming players.

4.2 Simpler Player

Our goal here is to design a simpler player that behaves
similar to Smooth Streaming, at least qualitatively, while al-
lowing us to run a large number of players at the same host.
To do so, we use a variant of the AdapTech Streaming player
introduced in [2]. We simplify the player and choose the
parameters of the adaptation algorithm based on our exper-
iments in [2] to match the Smooth Streaming player. This
player also has two states: Buffering and Steady-State.
The maximum buffer size is set to 30 seconds. The player
maintains two throughput-related metrics, the throughput
of the latest downloaded chunk, denoted by A, and a run-
ning average of A, denoted by A. If A(i) is the throughput

of the ¢’th chunk, the running average A is:
Ao SA@G—1)+ (1 -0)AGE) >0
~ o i=0
with 6 = 0.8.

The player starts a streaming session requesting the lowest
available profile. It selects the next profile based on A, as

follows. Assume that the bitrate of the ith profile is b; and
the rank of the current profile is ¢cyur. Then the index of the
next candidate profile ¢ is given by

¢=max{i:b; <cx A}

where ¢ is a slack parameter (0 < ¢ < 1) that is necessary
due to the variability of the video encoding rate and the
temporal bandwidth fluctuations — we use ¢=0.8. The re-
quested profile for the next chunk is determined as follows

if ¢ > ¢cur then

Increase the requested bitrate by one profile.
else if ¢ < ¢cyr then

Decrease the requested bitrate by one profile.
else

Stay with the current requested bitrate
end if

T T T
Player-1 chunk throughput
Player-2 chunk throughput
Player-1 requested bitrate +

5F Player-2 requested bitrate g
Fair share of the avail-bw

Number of active players

Mbps
w
o
=
Ly, .
>
?
o
e
Bl
K
L
Number of active players

7
e
>
P
——
3
—
a——
o

. i i |
Ay

it O || e ke

0 . . . | . . . 0
40 60 80 100 120 140 160 180 200

Time (seconds)

Figure 4: Requested bitrates and chunk through-
puts for two competing “simpler” players.

In the following experiment, we use a movie trailer (“Free-
way”) provided by Akamai’s HD-video Web site for Adobe
HTTP Dynamic Streaming.? We use four different encoding
bitrates between 0.9 Mbps and 2.5 Mbps. Figure 4 shows the
requested bitrates, the chunk throughputs, and the number
of active players from ¢t = 40 s to ¢t = 200 s for two com-
peting players sharing a bottleneck with 4 Mbps avail-bw.
The players show an instability pattern similar to that with
the Smooth Streaming players. The instability metric for
this experiment is around 16%, the unfairness metric is 0.27
Mbps, while the utilization is 92%.

The experiments with Smooth Streaming as well as with
our simpler player show that these clients do a reasonable job
regarding fairness and utilization. However, the players fail
to address the root cause of the instability problem described
in Section 2. In the next section, we focus on the instability
issue and show how certain key factors affect the stability of
the adaptive streaming players.

http://zeridemo-f.akamaihd.net /content /inoutedit-
mbr/inoutedit_h264 3000.f4m

S. STABILITY

In this section we focus on three factors that affect the
instability of competing adaptive players. The first factor
is the relative duration of the OFF periods in the activity
pattern of each player. The second factor is the fair share
of each player relative to the bitrates of the available video
profiles. The third factor is the number of competing play-
ers. For the first two factors we use the Smooth Streaming
player, while for the third factor we use our simpler player.
We summarize the metrics and parameters used in this sec-
tion in Table 1.

| Metric | Summary |

Bandwidth fair share for each player
Instability metric

Fraction of time: exactly one player is idle
Fraction of time: both players overestimate f
Overlap factor

Number of competing players

ZV‘EQ%\

Table 1: List of metrics and parameters in Section
5

5.1 Duration of ON-OFF Periods

How does the duration of the competing players’ ON-0FF
periods affect their stability? We denote the fair share of
each player, i.e., the total avail-bw divided by the number
of competing players, by f. We use two competing Smooth
Streaming players, starting with f = 400Kbps and increas-
ing the fair-share in steps of 100Kbps until f=3 Mbps. We
repeat each experiment four times for each value of f.

We measure the instability metric 6 for each streaming
experiment. Additionally, we denote by ~ the fraction of
the streaming session’s duration in which exactly one player
is idle, i.e., in the OFF state. v = 1 if at any point in time
exactly one player is in the OFF state while the other player
in the ON state. v = 0 when the players’ ON-OFF periods are
perfectly aligned in time (as in Figure 2-c). We then match
each player-1 request to the player-2 request that is closest
in time. We denote by u the fraction of time where both
players estimate a throughput that is larger than f, based
on these time-matched requests.

1 0.8 _
08 g o -
06 g 01 . nin
o > 009 e aya
0.4 % 0.06) ; *,%;x e
Eom| A
0 0 o X L
0 015 03 045 0 015 03 045
¥ v

Figure 5: a) u, the fraction of time where both play-
ers estimate a throughput that is larger than their
fair share f, and b) the instability metric (0) as a
function of the fraction of time in which exactly one
player is idle (7).

Figure 5-a shows a scatter plot of © and « for all exper-
iments. The correlation between the two metrics is 0.70.

When only one player is OFF, the ON player observes the en-
tire capacity and so it overestimates the fair-share f. Recall
that the overestimation of f, as described in Section 2 and
showcased in Section 4, can trick the player to switch to a
bitrate that is higher than f, which is unsustainable. This
in turn leads to unnecessary bitrate changes and instability.
Figure 5-b shows a scatter plot of the instability metric 0
and the fraction . Again, we see a clear positive corre-
lation between the fraction of time in which one player is
idle (v) and the instability of the requested bitrates. The
correlation coefficient is 0.52.

5.2 Fair Share and Available Profiles

Does the fair share of each player (f) affect the stability
of the system? Suppose that there are only two available
profiles at the video server. We perform the following set
of experiments: start with a fair share that is equal to the
lower profile bitrate, and increase f in steps of 50Kbps until
it exceeds the higher profile bitrate. For each value of f,
two Smooth Streaming players compete for bandwidth. We
repeat the experiment eight times for each value of f.

01 ————————— 0.1
0.08 o

0.06 ‘ x*
0.04
0.02

0.08
0.06
0.04
0.02

¥ x
g ikx x
0 o L1111 T | 0
600 800 1000 1200 1400 1600 1800 03 04 05 06 07 08 09
Fair share of avail-bw f L

Instability metric ®
x
x
x
x
Instability metric ®

Figure 6: a) The instability metric 0 as a function of
the fair share f, and b) 0 as a function of the player
overlap factor \.

Figure 6-a is a scatter plot showing the instability metric
0 as function of the fair-share f. The two profile bitrates are
470Kbps and 1.52 Mbps. Note that instability is always 0
when f < 1 Mbps. This is because the avail-bw in that range
is not sufficient for even one player to switch to the higher
profile (that would require at least 2.1 Mbps of avail-bw,
including audio). At the other extreme, if f > 1.8 Mbps the
avail-bw is sufficient for both players to switch to the higher
profile and so the instability is again close to 0.

The more interesting case is the range 1 < f < 1.8 Mbps,
in which there is high variability in the stability of the play-
ers across different experiments. In this range of f at least
one of the players can switch to the higher profile, triggering
instability.

However, there are also several experiments in that range
of f in which the instability is close to 0. Further analysis of
those experiments revealed that they correspond to the case
of Figure 2-b, where the ON period of one player almost falls
within the ON period of the other. The former is requesting
the lower profile, while the latter is requesting the higher
profile. To demonstrate this point, we calculate the fraction
of the ON duration of one player in which the other player
is also ON. We then take the maximum of that value among
the two players. We denote this maximum by A. A = 1 if
the ON period of one player always falls within the ON period
of the other.

Figure 6-b shows a scatter plot with the instability met-
ric @ and the “overlap” factor A\. There is a clear negative
correlation between the two metrics (correlation coefficient
—0.61). The more overlapping the ON periods of the two
competing players are, the more stable they become, as ex-
pected based on Figure 2-b.

5.3 Number of Competing Players

Assuming that the capacity of the bottleneck link is fixed,
is there a relation between the stability of the system and
the number of competing players? We examine this question
with the following experiments using our simpler player.

0.25
0.2 1
@
L
@ 0.15 1
IS
=
'S 0.1 1
2]
<
0.05 1
0 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13

Number of players N

Figure 7: The instability metric 0 as a function of
the number of competing players N.

Figure 7 shows the instability metric 6 as a function of the
number of competing players, denoted by N. The players
share an 11 Mbps bottleneck. Note that the lowest and
highest available profiles are Py.9 and P> 5 with two other
profiles in between. Each point is obtained by repeating the
experiment four times and averaging the instability values
across all experiments. The corresponding 95% confidence
intervals are also shown.

The players start streaming about five seconds apart. When
N < 4, the fair share of each player f is sufficient for all play-
ers to switch to the highest profile P>5. So, the instability
factor is then small (only a few initial rate changes before
stabilizing). On the other extreme, when N > 10, the fair
share f is less than 1.1 Mbps and so it is barely sufficient for
the players to receive the lowest profile (including the audio
stream, which requires 64 Kbps). The players would then
stay in the Buffering-State and rarely switch to a higher
profile, meaning that the instability is close to 0.

As N increases from 4 to 10, however, f falls within the
lowest and the highest available bitrates. Then, the players
are mostly in the Steady-State, and they go through the
previously discussed ON-OFF activity pattern. The insta-
bility increases until it peaks at N = 5 or 6. This corre-

sponds to approximately a fair share value that is half way
between the lowest and highest profiles. As we increase N
further, f decreases, all players are forced to request lower
bitrates, and instability decreases.

6. CONCLUSIONS

We described how the competition for available band-
width between multiple adaptive streaming players can lead
to instability, unfairness, and bandwidth underutilization.
We identified the root cause of the problem as the behavior
of adaptive players in the Steady-State phase; that phase
includes periods of activity (ON periods) followed by peri-
ods of inactivity (OFF periods). A player cannot estimate
the available bandwidth during OFF periods because it does
not transfer any data then. We conducted experiments with
real adaptive streaming players and showed that the pre-
vious issues can arise in practice. Finally, we showed how
certain factors, namely the duration of ON-OFF periods, the
fair share relative to the available profile bitrates, and the
number of competing players, can affect the stability of the
system.

In future work, we plan to expand the previous study with
analytical and computational models for adaptive streaming
systems. Another goal is to propose a solution that takes
into account the several dimensions of this problem includ-
ing the complexity of the player’s adaptation logic and its
interaction with the underlying transport protocol and con-
gestion control mechanism.

7. REFERENCES

[1] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over http. ACM MMSys, 2011.

[2] S. Akhshabi, S. Narayanaswamy, A.C. Begen, and
C. Dovrolis. An experimental evaluation of
rate-adaptive video players over http. Signal
Processing: Image Communication, 27:271-287, 2012.

[3] T. Cloonan and J. Allen. Competitive analysis of
adaptive video streaming implementations. SCTFE
Cable-Tec Expo Technical Workshop, 2011.

[4] R. Houdaille and S. Gouache. Shaping http adaptive
streams for a better user experience. ACM MMSys,
2012.

[5] A. Orebaugh, G. Ramirez, J. Burke, and J. Beale.
Wireshark and Ethereal network protocol analyzer
toolkit. Syngress Media Inc, 2007.

[6] OSMF Player. http://www.osnf.org.

[7] Smooth Streaming Player.
http://www.iis.net/download/SmoothClient.

[8] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. SIGCOMM CCR,
27(1):31-41, 1997.

