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A left-to-right maximum in a sequence of n numbers s1, . . . , sn is a number that is strictly larger

than all preceding numbers. In this paper we present a smoothed analysis of the number of left-
to-right maxima in the presence of additive random noise. We show that for every sequence of

n numbers si ∈ [0, 1] that are perturbed by uniform noise from the interval [−ε, ε], the expected

number of left-to-right maxima is Θ(
√
n/ε+ logn) for ε > 1/n. For Gaussian noise with standard

deviation σ we obtain a bound of O((log3/2 n)/σ + logn).

We apply our results to the analysis of the smoothed height of binary search trees and the

smoothed number of comparisons in the quicksort algorithm and prove bounds of Θ(
√
n/ε+logn)

and Θ( n
ε+1

√
n/ε + n logn), respectively, for uniform random noise from the interval [−ε, ε]. Our

results can also be applied to bound the smoothed number of points on a convex hull of points
in the two-dimensional plane and to smoothed motion complexity, a concept we describe in this

paper. We bound how often one needs to update a data structure storing the smallest axis-aligned

box enclosing a set of points moving in d-dimensional space.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Computations on Discrete Structures; F.2.2

[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Prob-

lems—Sorting and searching; G.2.2 [Discrete Mathematics]: Graph Theory—Trees

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Binary search trees, convex hull, motion complexity, quick-

sort, smoothed analysis

1. INTRODUCTION

To explain the discrepancy between average-case and worst-case behavior of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed analy-
sis [Spielman and Teng 2004]. Smoothed analysis interpolates between average-case
and worst-case analysis: Instead of taking a worst-case instance or, as in average-
case analysis, choosing an instance completely at random, we analyze the complex-
ity of (possibly worst-case) objects subject to slight random perturbations. On the
one hand, perturbations model that nature is not (at least, not always) adversar-
ial. On the other hand, perturbations reflect the fact that data is often subject to
measurement or rounding errors; even if the instance at hand was initially a worst-
case instance, due to such errors we would probably get a less difficult instance in
practice. Spielman and Teng [2006] give a survey of results and open problems in
smoothed analysis.

The number of left-to-right maxima of a sequence is the number of new maxima
that we see when scanning the sequence from left-to-right. The number of left-to-
right maxima is often considered in the context of permutations or in the analysis
of basic algorithms [Knuth 1998; Kemp 1984], such as finding a maximum in a
sequence of numbers, where the number of left-to-right maxima is equal to the
number of updates of the current maximum. In the worst case, every new element
is greater than its predecessors, and we have n left-to-right maxima. On average, we
expect to see Hn =

∑n
i=1 1/i ≈ lnn left-to-right maxima, and the variance of this

number is Hn −H(2)
n , where H

(2)
n =

∑n
i=1 1/i2 denotes the second-order harmonic

numbers.

In this paper, we present a smoothed analysis of the number of left-to-right
maxima in order to close the gap between the logarithmic average case and the
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linear worst case. Then we apply our findings to a smoothed analysis of the height of
binary search trees, the number of comparisons needed by quicksort, the smoothed
number of points on the convex hull, and properties of moving objects.

Binary search trees are one of the most fundamental data structures in computer
science and the building blocks for a large variety of data structures. One of the
most important parameters of binary search trees is their height. The worst-case
height of a binary tree for n numbers is n. The average-case behavior has been
the subject of a considerable amount of research, culminating in the result that the
average-case height is α lnn − β ln lnn + O(1), where α ≈ 4.311 is the larger root
of α ln(2e/α) = 1 and β = 3/(2 ln(α/2)) ≈ 1.953 [Reed 2003]. Furthermore, the
variance of the height is bounded by a constant [Drmota 2003; Reed 2003], and also
all higher moments are bounded by constants [Drmota 2003]. Drmota [2004] gives
a recent survey.

Beyond being an important data structure, binary search trees play a central
role in the analysis of divide-and-conquer algorithms like quicksort [Knuth 1998,
Section 5.2.2]. While quicksort needs Θ(n2) comparisons in the worst case, the
average number of comparisons is 2n log n − Θ(n) with a variance of 7n2 + 4(n +

1)2H
(2)
n − 2(n + 1)Hn + 13n ≈ (7 − 2

3π
2) · n2 − 2n lnn + O(n) as mentioned by

Fill and Janson [2002]. Quicksort and binary search trees are closely related: The
height of the tree T (s) obtained from a sequence s is equal to the number of levels
of recursion required by quicksort to sort s. The number of comparisons, which
corresponds to the total path length of T (s), is at most n times the height of T (s).

Binary search trees are also related to the number of left-to-right maxima: The
number of left-to-right maxima of s is equal to the number of nodes on the rightmost
path of the tree T (s), which means that left-to-right maxima provide an easy-to-
analyze lower bound for the height of binary search trees. Given the discrepancies
between average-case and worst-case behavior of binary search trees, quicksort, and
the number of left-to-right maxima, the question arises of what happens in between
when the randomness is limited.

The convex hull of a set of points is the smallest convex polygon that contains
all points in the set and computing this polygon is one of the basic problems in
computational geometry. The average-case number of points on the convex hull
of points has been studied extensively in the past [Rényi and Sulanke 1963]; we
contribute upper and lower bounds on the smoothed number of points on the convex
hull. Again, the analysis utilizes left-to-right maxima.

Besides analyzing binary search trees, quicksort, and the number of points on the
convex hull, we also introduce a new measure for the complexity of maintaining a
geometric structure under motion, which we call smoothed motion complexity. The
smoothed motion complexity of a basic geometric structure, namely the smallest
axis-aligned bounding box of a set of moving points is closely related to left-to-right
maxima.

Our results. We start our analyses with bounds for the number of left-to-right
maxima of a sequence s1, . . . , sn of numbers si ∈ [0, 1] under various noise distri-

butions in Section 3: First, we prove an upper bound of O(
√
n/ε + log n) for the

smoothed number of left-to-right maxima if the noise for each of the n elements is
drawn uniformly and independently from the interval [−ε, ε]. Thus, the average-
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case number of left-to-right maxima is obtained for ε ∈ Ω(n/ log2 n), and we have
an improvement over the worst case already for ε ∈ ω(1/n). For constant values
of ε, which corresponds to a perturbation by a constant percentage like 1%, we get
a bound of O(

√
n).

After that, we prove a general lemma that bounds the smoothed number of
left-to-right maxima for arbitrary noise distributions in Section 3.2. We apply
this lemma to the case of Gaussian noise of standard deviation σ, for which we
obtain a bound of O

(
log3/2 n

σ + log n
)
, which yields the average case already for

σ ∈ Ω
(√

log n
)

as shown in Section 3.3. Then we consider arbitrary unimodal noise
distributions in Section 3.4: Let ϕ be the density of the noise distribution that
attains its maximum at 0, then the smoothed number of left-to-right maxima is at
most O(

√
n log n · ϕ(0) + log n). We conclude this section with a lower bound that

depends on the noise distribution (Section 3.5). In particular, we obtain a lower

bound of Ω(
√
n/ε+ log n) for the smoothed number of left-to-right maxima under

uniform noise. This matches the upper bound of Section 3.1 up to constant factors.
In Section 4, we exploit our results for left-to-right maxima to prove the (asymp-

totically) same bounds for the smoothed height of binary search trees under uni-
form noise: If the noise is drawn uniformly from [−ε, ε], then the smoothed height

of the binary search tree obtained from the perturbed sequence is O(
√
n/ε+ log n).

As for left-to-right maxima under uniform noise, the average case is obtained for
ε ∈ Ω(n/ log2 n).

We analyze the number of comparisons quicksort needs to sort a perturbed se-
quence under uniform noise in Section 5: The smoothed number of comparisons is
Θ
(
n
ε+1

√
n/ε+ n log n

)
.

For the smoothed number of points on the convex hull in the plane, studied in
Section 6, we obtain upper and lower bounds that do not quite match. However,
we show at least that while the upper bound for the smoothed number of points on
the convex hull is poly-logarithmic for Gaussian noise, it is Ω( 5

√
n/ε) for uniform

noise.
Finally, we introduce the concept of smoothed motion complexity in Section 7 as

a realistic measure for maintaining a geometric data structure under motion. We
illustrate our results on the example of the axis-aligned bounding box for a set of
points moving in d-dimensional space.

Related work. The first smoothed analysis of quicksort, due to Banderier et al.
[2003], uses a perturbation model different from the one used in the present pa-
per, namely a discrete perturbation model. Such models take discrete objects like
permutations as input and again yield discrete objects like another permutation.
Banderier et al. used p-partial permutations, which work as follows: An adversary
chooses a permutation of the numbers {1, . . . , n} as sequence, every element of the
sequence is marked independently with a probability of p, and then the marked
elements are randomly permuted. Banderier et al. showed that the number of com-
parisons subject to p-partial permutations is O(np · log n). Furthermore, they proved
bounds on the smoothed number of left-to-right maxima in this model.

Uniform noise is somewhat related to the partial bit randomization of Banderier
et al. [2003]. Here, an adversary fixes binary numbers, and then a certain number
of lower order bits are chosen at random. Translated to our model, this means that
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the adversary partitions the numbers into a certain number of buckets, and within
each bucket the order is uniformly random.

Manthey and Reischuk [2007] analyzed the height of binary search trees under
p-partial permutations. They proved an upper bound of O

(
(1 − p) ·

√
n/p

)
and

an asymptotically matching lower bound for the smoothed tree height. For the
number of left-to-right maxima, they proved asymptotically matching bounds.

Special care must be taken when defining perturbation models for discrete in-
puts: The perturbation should favor instances in the neighborhood of the adver-
sarial instance, which requires a suitable definition of neighborhood in the first
place, and the perturbation should preserve the global structure of the adversarial
instance. Partial permutations have the first feature [Manthey and Reischuk 2007,
Lemma 3.2], but destroy much of the global order of the adversarial sequence.

The concept of smoothed motion complexity is closely related to the concept
of kinetic data structures, which was introduced by Basch et al. [1999]. In kinetic
data structures the (near) future motion of all objects is known and can be specified
by so-called pseudo-algebraic functions of time specified by linear functions or low-
degree polynomials. This specification is called a flight plan. The goal is to maintain
the description of a combinatorial structure as the objects move according to this
flight plan. Interesting kinetic data structures have been developed, for instance
for connectivity of discs [Guibas et al. 2001] and rectangles [Hershberger and Suri
2001], convex hulls [Basch et al. 1999], proximity problems [Basch et al. 1997], and
collision detection for simple polygons [Kirkpatrick et al. 2002]. Basch et al. [1999]
developed a kinetic data structure to maintain a bounding box of a moving point set
in Rd. The number of updates that these data structures need is O(n log n), which
is close to the Θ(n) updates that may be needed in any case in the worst-case.
Agarwal and Har-Peled [2001] showed that it is possible to maintain a (1 + ε)-
approximation of such a bounding box. The advantage of this approach is that
the motion complexity of this approximation is only O(1/

√
ε). The average case

motion complexity has also been considered in the past. It has been shown that if
n particles and also their velocities are drawn independently from the unit square,
then the expected number of combinatorial changes in the convex hull is Θ(log2(n)),
in the Voronoi diagram Θ(n3/2) and in the closest pair Θ(n) [Zhang et al. 1997].

2. PRELIMINARIES

The natural numbers N include 0. The nth harmonic number will be denoted by
Hn =

∑n
i=1

1
i . Intervals of the real axis are denoted by [a, b] = {x ∈ R | a ≤

x ≤ b}. To denote an interval that does not include an endpoint, we replace the
square bracket next to the endpoint by a parenthesis. We denote sequences of real
numbers by s = (s1, . . . , sn), where si ∈ R. For U = {i1, . . . , i`} ⊆ {1, . . . , n} with
i1 < i2 < · · · < i` let sU = (si1 , si2 , . . . , si`) denote the subsequence of s of the
elements at positions in U .

We denote probabilities by P and expected values by E. To bound large deviations
from the expected value, we will use the Chernoff bound [Motwani and Raghavan
1995, Sect. 4.1]: Let X1, . . . , Xn ∈ {0, 1} be independent random variables with
P(Xi = 1) = p = 1 − P(Xi = 0). Let X =

∑n
i=1Xi. Then E(X) = pn and, for
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every δ > 0, we have

P
(
X > (1 + δ) · pn

)
<

(
eδ

(1 + δ)1+δ

)pn
.

Throughout the paper, for simplicity we will assume that numbers like
√
n are

integers and we do not write down the tedious floor and ceiling functions that are
actually necessary. Since we are interested in asymptotic bounds, this does not
affect the validity of the proofs.

2.1 Left-To-Right Maxima, Binary Search Trees, and Quicksort

Let s be a sequence of length n consisting of pairwise distinct elements. For the
following definitions, let R = {i ∈ {1, . . . , n} | si > s1} be the set of positions
of elements greater than s1, and let L = {i ∈ {1, . . . , n} | si < s1} be the set of
positions of elements smaller than s1.

The number of left-to-right maxima of s is the number of maxima seen when
scanning s from left to right: let ltrm(s) = 1 + ltrm(sR), and let ltrm(s) = 0 when
s is the empty sequence.

From s, we obtain a binary search tree T (s) by iteratively inserting the elements
s1, . . . , sn into the initially empty tree as follows: The root of T (s) is s1. The
left subtree of the root s1 is T (sL), and the right subtree of s1 is T (sR). The
height of T (s) is the maximum number of nodes on any root-to-leaf path of T (s):
height(s) = 1 + max{height(sL),height(sR)}, and let height(s) = 0 when s is the
empty sequence. The number of left-to-right maxima of s is equal to the number
of nodes on the rightmost path of T (s), so ltrm(s) ≤ height(s).

Quicksort is the following sorting algorithm: Given s, we construct sL and sR.
To do this, all elements of (s2, . . . , sn) have to be compared to s1, which is called the
pivot element. Then we sort sL and sR recursively to obtain s′L and s′R, respectively.
Finally, we output s′ = (s′L, s1, s

′
R). The number qs(s) of comparisons needed to

sort s is thus qs(s) = (n − 1) + qs(sL) + qs(sR) if s has a length of n ≥ 1, and
qs(s) = 0 when s is the empty sequence.

2.2 Perturbation Models

Let ϕ : R → R+ be a density function. Given a sequence s of n numbers chosen
by an adversary from the interval [0, 1], we draw a noise νi for each i ∈ {1, . . . , n}
independently according to the density function ϕ. Then we obtain the perturbed
sequence s̄ = (s̄1, . . . , s̄n) by adding νi to si, that is, s̄i = si+νi. Note that s̄i needs
no longer be an element of [0, 1]. All elements of s̄ are distinct with probability 1.

For a given permutation model ϕ, we define the random variables heightϕ(s),
qsϕ(s), and ltrmϕ(s), which denote the smoothed search tree height, smoothed
number of quicksort comparisons, and smoothed number of left-to-right maxima,
respectively, when the sequence s is perturbed according to ϕ. Since the adver-
sary is choosing s, our goal are bounds for maxs∈[0,1]n E

(
heightϕ(s)

)
, maxs∈[0,1]n

E
(
qsϕ(s)

)
, and maxs∈[0,1]n E

(
ltrmϕ(s)

)
. In the following, we sometimes write

height(s̄) instead of heightϕ(s) if ϕ is clear from the context. Since s̄ is random,
height(s̄) is also a random variable. Similarly, we will use ltrm(s̄) and qs(s̄).

The choice of the interval sizes is arbitrary since the model is invariant under
scaling if we scale ϕ accordingly. This is summarized in the following lemma, which
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we will exploit a couple of times in the following.

Lemma 2.1. Let b > a, and let ϕ̃ be defined by ϕ̃(x) = (b − a)ϕ
(
(b − a) · x

)
.

Then

max
s∈[a,b]n

E
(
ltrmϕ(s)

)
= max
s∈[0,1]n

E
(
ltrmϕ̃(s)

)
.

For other smoothed quantities analogous equalities hold.

We can always shift ϕ to obtain a probability distribution with mean 0 without
changing any of the quantities we are interested in like the number of left-to-right
maxima or the height of the resulting binary tree. Thus, in the following we restrict
ourselves to consider distributions with mean 0.

We mainly consider the following two probability distributions: First, the uniform
distribution on the interval [−ε, ε], which is denoted by U[ε] and has density x 7→ 1

2ε
if x ∈ [−ε, ε] and x 7→ 0 otherwise. Second, the Gaussian distribution with standard
deviation σ and mean 0, which has density

x 7→ 1√
2πσ

· exp

(
− x2

2σ2

)
.

and is denoted by N[σ]. We also consider unimodal distributions, which are distri-
butions whose density functions assume their maximum at 0 and are monotonically
decreasing to both sides. (They are not necessarily symmetric.) In particular, U[ε]
and N[σ] are unimodal distributions.

3. SMOOTHED NUMBER OF LEFT-TO-RIGHT MAXIMA

3.1 Uniform Noise

We start our analyses with the smoothed number of left-to-right maxima under
uniform noise. Our aim for the present section is to prove the following upper bound
on the smoothed number of left-to-right maxima. This bound is asymptotically
equal to our lower bound for uniform noise (Corollary 3.8, Section 3.5).

Theorem 3.1.

max
s∈[0,1]n

E
(
ltrmU[ε](s)

)
∈ O

(√
n/ε+ log n

)
.

The following notation will be helpful: For j ≤ 0, let sj = νj = 0. This allows
us to define δi = si − si−√nε for all i ∈ {1, . . . , n}. We define Ii = {j ∈ {1, . . . , n} |
i−
√
nε ≤ j < i} to be the set of the |Ii| = min{i−1,

√
nε} positions that precede i.

To prove Theorem 3.1, we first use a “bubble-sorting argument” to show that
the adversary should choose a sorted sequence. Note that this is not as obvious
as it may seem: In Section 3.2 (Theorem 3.4) we show that this bubble-sorting
argument does not apply to all distributions. Also note that we can assume that
ε ≥ 1/n because ε < 1/n implies a bound of O(n), which is always true since we
can have at most O(n) left-to-right maxima in the worst case.

Lemma 3.2. For all ε > 0, and for every sequence s and its sorted version ŝ, we
have

E
(
ltrmU[ε](s)

)
≤ E

(
ltrmU[ε](ŝ)

)
.
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Proof. We prove the lemma by “bubble-sorting” s. If s is already sorted, then
there is nothing to show. Otherwise, there exist adjacent si and si+1 with si > si+1.
Our aim is to show that E

(
ltrmU[ε](s)

)
≤ E

(
ltrmU[ε](s

′)
)

where s′ is obtained from
s by swapping si and si+1. Then the claim follows by iteratively applying this
argument.

After perturbation with ν, we obtain s̄ and s̄′, where s̄′i = s′i+νi+1 = si+1 +νi+1

and s̄′i+1 = s′i+1 + νi = si + νi. Now we analyze the number of left-to-right maxima
of s̄ and s̄′. To do this, let δ = si − si+1 > 0. We distinguish between two cases.
First, we condition on νi ∈ [−ε, ε−δ] and νi+1 ∈ [δ−ε, ε]. In this case, both (s̄i, s̄i+1)
and (s̄′i, s̄

′
i+1) are pairs of random numbers, all of which lie uniformly in the interval

[si− ε, si+1 + ε]. Then the expected numbers of left-to-right maxima of s̄ and s̄′ are
equal. Second, we condition on the event that νi ∈ (ε− δ, ε] or νi+1 ∈ [−ε, δ− ε). In
either case, both s̄i > s̄i+1 and s̄′i < s̄′i+1 hold. Then s̄i+1 cannot be a left-to-right
maximum in s̄, and if s̄i is a left-to-right maximum in s̄, then so is s̄′i+1 in s̄′. Since
the case distinction is exhaustive, the lemma is proved.

We can now embark on the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2 we can restrict ourselves to proving
the lemma for sorted sequences s. We estimate the probability that a given s̄i for
i ∈ {1, . . . , n} is a left-to-right maximum. Then the bound follows by the linearity
of expectation. To bound the probability that s̄i is a left-to-right maximum (ltrm),
consider the following computation:

P
(
s̄i is an ltrm

)
≤ P

(
∀j ∈ Ii : νj < s̄i − si−√nε

)
(1)

≤ P
(
ε < s̄i − si−√nε

)
+∫ ε−δi

−ε
P
(
∀j ∈ Ii : νj < si + x− si−√nε

)
· 1

2ε
dx (2)

≤ δi
2ε

+

∫ ε

−ε
P
(
∀j ∈ Ii : νj < x

)
· 1

2ε
dx (3)

≤ δi
2ε

+ P
(
∀j ∈ Ii : νj < νi

)
=

δi
2ε

+
1

|Ii|+ 1
. (4)

To see that (1) holds, assume that s̄i is a left-to-right maximum. Then s̄i− si−√nε
must be larger than the noises of all the elements in the index range Ii, for if
the noise νj of some element sj were larger than s̄i − si−√nε, then s̄j = sj + νj
would be larger than sj + s̄i − si−√nε. Since the sequence is sorted, we would get
sj + s̄i − si−√nε ≥ s̄i, and s̄i would not be a left-to-right maximum.

For (2), first observe that νj < s̄i − si−√nε is surely the case for all j ∈ Ii if ε <
s̄i−si−√nε. So, consider the case ε ≥ s̄i−si−√nε = δi+νi. Then νi ∈ [−ε, ε−δi] and

we can rewrite P(∀j ∈ Ii : νj < δi+νi) as
∫ ε−δi
−ε P(∀j ∈ Ii : νj < δi+x) · 12ε dx, where

1
2ε is the density of the random variable νi. For (3) observe that ε < s̄i − si−√nε
is equivalent to ε − δi < νi and the probability of this is δi/(2ε). Furthermore,
we performed an index shift in the integral. In (4), we replaced the integral by a
probability once more and get the final result.

Let us bound
∑n
i=1 δi. We have

∑n
i=1 δi =

∑n
i=1(si−si−√nε) =

∑n
i=n−

√
nε+1 si ≤√

nε. The second equality holds since most si cancel themselves out and si = 0 for
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i ≤ 0. The inequality holds since there are
√
nε summands. We complete the proof

by bounding 1/(|Ii| + 1) = 1/min{i,
√
nε + 1} by 1/i + 1/

√
nε and summing over

all i:

E
(
ltrmε(s)

)
≤

n∑
i=1

δi
2ε

+

n∑
i=1

1

|Ii|+ 1
≤
√
nε

2ε
+

n∑
i=1

1

i
+

n√
nε
∈ O

(√
n/ε+ log n

)
.

3.2 General Noise

The goal of this section is to provide a tool to show upper bounds for the smoothed
number of left-to-right maxima under arbitrary distributions. Throughout this
section, we assume that ν1, . . . , νn are distributed according to a density function
ϕ with probability distribution Φ. Then for a given sequence s the numbers s̄i are
random variables with probability distribution P(s̄i ≤ x) = Φ(x − si) and density
ϕ(x− si).

We can write the probability that the ith element of s̄ is a left-to-right maximum
as

P
(
s̄i is an ltrm of s̄

)
=

∫ ∞
−∞

ϕ(x− si) ·
i−1∏
j=1

Φ(x− sj) dx. (5)

The main idea for computing the integral (5) is now to divide the interval [0, 1] into
m = 1/δ smaller intervals of length δ. Here δ is a small parameter that we will
specify later on. Then the sequence s of unperturbed input elements is partitioned
into m subsequences s(1), . . . , s(m), where s(`) contains all elements that lie in the
`th such interval of length δ, i. e., s(`) = sS` and

S` =
{
i ∈ {1, . . . , n} | si ∈

(
(`− 1) · δ, `δ

]
}

with S1 also containing all i with si = 0.
Now we use the inequality

E
(
ltrmϕ(s)

)
≤

m∑
`=1

E
(
ltrmϕ(s(`))

)
, (6)

which holds not only for our choice of s(1), . . . , s(m), but for any s(1), . . . , s(m) such
that each element of s appears in at least one of the subsequences.

For small enough δ, the elements of a subsequence s(`) behave almost as in the
usual average case. The reason for this is that the unperturbed input elements lie
very close together, so the order of the elements is dominated by the perturbation
and not by the original values of the elements.

Let n` = |S`| be the number of elements of s(`). Without loss of generality, we
analyze s(1) = (s′1, . . . , s

′
n1

) in the following. The probability that s′k is a left-to-
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right maximum of s̄(1) (where s̄(`) is obtained from s(`) by perturbation) is

P
(
s′k is an ltrm of s̄(1)

)
=

∫ ∞
−∞

ϕ(x− s′k) ·
k−1∏
j=1

Φ(x− s′j) dx

≤
∫ ∞
−∞

ϕ(x) · Φ(x+ δ)k−1 dx. (7)

The inequality follows from the observation that the minimum and maximum el-
ement of s(1) differ by at most δ, from substituting x by x + s′k, and from the
monotonicity of Φ.

We can easily bound this integral from above if ϕ(x) ≤ r · ϕ(x+ δ). In this way,
we lose at most a factor of r, which we will specify later on. Let

Zϕδ,r = {x ∈ R | ϕ(x) > r · ϕ(x+ δ)} ⊆ R

be the set of numbers for which the ratio ϕ(x)/ϕ(x + δ) exceeds r. Let Z be
the probability of the set Zϕδ,r, i. e., the probability that a random number drawn

according to ϕ assumes a value in Zϕδ,r:

Z =

∫
Zϕδ,r

ϕ(x) dx.

We can now formulate and prove the main lemma of this section. We will apply
this lemma in the following two sections to prove upper bounds on the smoothed
number of left-to-right maxima for Gaussian noise (Section 3.3) and for arbitrary
unimodal noise distributions (Section 3.4).

Lemma 3.3. Let ϕ be a continuous, integrable probability density function, and
let δ, r > 0. Let Zϕδ,r = {x ∈ R | ϕ(x) > r · ϕ(x+ δ)}. Then

max
s∈[0,1]n

E
(
ltrmϕ(x)

)
≤ r · d1/δe ·Hn + n · Z.

Proof. Let m = d1/δe. Without loss of generality, we consider the input sub-
sequence s(1). Now (7) yields an upper bound for the probability that the kth
element of s̄(1) is a left-to-right maximum. This yields

P
(
s′k is an ltrm of s̄(1)

)
≤
∫
R
ϕ(x) · Φ(x+ δ)k−1 dx

≤
∫
R\Zϕδ,r

ϕ(x+ δ) · ϕ(x)

ϕ(x+ δ)
· Φ(x+ δ)k−1 dx+

∫
Zϕδ,r

ϕ(x) dx

≤ r ·
∫ ∞
−∞

ϕ(x+ δ) · Φ(x+ δ)k−1 dx+ Z

=
r

k
+ Z.

Thus,

E
(
ltrmϕ(s(1))

)
≤

n1∑
k=1

( r
k

+ Z
)

= r ·Hn1
+ n1 · Z.
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1 − 2ε

ε2

1/ε 1 1/ε

x

φ(x)

Fig. 1. The distribution for Theorem 3.4.

The expected number of left-to-right maxima of s̄(2), . . . , s̄(m) can be bounded from
above in the same way. Thus, (6) yields

E
(
ltrmϕ(s)

)
≤

m∑
`=1

E
(
ltrmϕ(s(`))

)
≤

m∑
`=1

(
r ·Hn` + n` · Z

)
≤ rm ·Hn + n · Z.

This proves the lemma.

Lemma 3.2 states that sorting a sequence can never decrease the expected number
of left-to-right maxima – at least when the noise is drawn uniformly from a single
interval. It is tempting to assume that a result similar to Lemma 3.2 will hold in
the same way for every other noise distribution – at least if the noise distribution is
reasonably well-behaved. This was also claimed by Damerow et al. [2003] and, as
we will see below, this claim is incorrect (fortunately, this claim does not affect the
correctness of their other results). There exists a simple distribution and a sequence
for which the sorted version has a lower expected number of left-to-right maxima
than the original sequence (Theorem 3.4). The probability density is unimodal and
symmetric, and it can be made smooth easily without changing the results. (For
the sake of simplicity, we do not elaborate on this.)

Theorem 3.4. There exist a sequence s and a unimodal, symmetric density
function ϕ : R → R such that sorting s to obtain ŝ decreases the expected number
of left-to-right maxima after perturbation.

Proof. The sequences are

s =
(
0, . . . , 0︸ ︷︷ ︸
K times

, 1 + 1
ε︸ ︷︷ ︸

s1

, 1
ε︸︷︷︸
s0

)
and ŝ =

(
0, . . . , 0︸ ︷︷ ︸
K times

, 1ε , 1 + 1
ε

)
.

Here ε > 0 and K are numbers that will be fixed later. The distribution (see
Figure 1) is defined as follows: ϕ(x) = 1 − 2ε for |x| < 1/2 and ϕ(x) = ε2 for
1/2 ≤ |x| ≤ 1/2 + 1/ε and ϕ(x) = 0 for |x| > 1/2 + 1/ε. One can easily verify that∫∞
−∞ ϕ(x) dx = 1. By scaling the sequences and the distribution, one can achieve

s, ŝ ∈ [0, 1]K+2 in compliance with our model.
The expected number of left-to-right maxima is the sum of the expected number

of left-to-right maxima contributed by the first K elements plus the probability
that at least one of s̄0 and s̄1 is a left-to-right maximum plus the probability that
both s̄0 and s̄1 are left-to-right maxima. The contribution of the first elements is
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Cases P(s̄0 > s̄1 >
1
2

+ 1
ε
) P(s̄1 > s̄0 >

1
2

+ 1
ε
)

ν1 ∈ [− 1
2
, 1
2

], ν0 ∈ [ 1
2
, 3
2

] ε2 · (1− 2ε) · 1
2

= ε2 · (1− 2ε) · 1
2

ν1 ∈ [− 1
2
, 1
2

], ν0 >
3
2

(ε− ε2) · (1− 2ε) · 1 � 0

ν1 ∈ [ 1
2
, 1
ε
− 1

2
], ν0 ∈ [ 1

2
, 3
2

] 0 < ε2 · (ε− ε2) · 1
ν1 ∈ [ 1

2
, 1
ε
− 1

2
], ν0 >

3
2

(ε− ε2) · (ε− ε2) · 1
2

= (ε− ε2) · (ε− ε2) · 1
2

ν1 >
1
ε
− 1

2
, ν0 ∈ R 0 < 1 · ε2 · 1

Table I. The case analysis. The probabilities are always of the form p0 · p1 · p, where pi is the

probability that νi is in the given interval and p (shown in bold face) is the probability that we
have two left-to-right maxima, given that the noise values are in the respective intervals. In all

cases not shown there are no left-to-right maxima.

the same in ŝ and s. The probability that at least one of s̄0 and s̄1 contributes a
left-to-right maximum is equal to the probability that one of them is greater than
the maximum among the first elements, thus does not depend on the order of s̄0
and s̄1. Only the probability that we have two left-to-right maxima differs in s
and ŝ.

Let M be the maximum among the first K elements. Let us first assume that
M = 1/2 + 1/ε. After estimating the probabilities that both the last two elements
are left-to-right maxima in s or ŝ, we show that we can get rid of this assumption
by making K = K(ε) sufficiently large.

If the maximum of the first K elements is M = 1/2+1/ε, then s̄1 = s1 +ν1 > M
for ν1 > −1/2. Analogously, s̄0 = s0 + ν0 > M for ν0 > 1/2. We have to estimate
the probabilzaities P(s̄0 > s̄1 >

1
2 + 1

ε ) and P(s̄1 > s̄0 >
1
2 + 1

ε ), which is done in
Table I.

To compare the two probabilities, only the second, third, and fifth row play a
role since the other two yield an equal contribution. The second row yields roughly
ε for the left probability and 0 for the right probability, while the third and fifth
yield at most ε2 + o(ε2) for the right probability and 0 for the left. By making ε
sufficiently small, other terms can safely be ignored. Overall, the probability that
both s̄0 and s̄1 yield a left-to-right maximum is larger in s than in ŝ by roughly ε.
By making K large enough, we can make sure that the maximum M among the
first K elements is, with very high probability, at least 1/2+1/ε− εc for some large
constant c. The effect on the two probabilities is then negligible compared to ε.

3.3 Gaussian Noise

As a first application of Lemma 3.3 of the previous section, we prove an upper
bound for the smoothed number of left-to-right maxima under Gaussian noise.

Theorem 3.5. For all σ > 0, we have

max
s∈[0,1]n

E
(
ltrmN[σ](s)

)
∈ O

(
log3/2 n

σ
+ log n

)
.

Proof. In order to apply Lemma 3.3, we choose δ = σ/
√

ln(n). For a ≤
ACM Journal Name, Vol. V, No. N, Month 20YY.
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σ
√

2 ln(n), we have

ϕ(a)

ϕ(a+ δ)
= exp

(
2δa

2σ2
+

δ2

2σ2

)
= exp

(
a

σ
√

lnn
+

1

2 lnn

)
≤ exp

(√
2 +

1

2 lnn

)
≤ e3.

Thus, for r = e3, we have Zϕδ,r ⊆ [σ
√

2 ln(n),∞). Now we need an upper bound for

Z =
∫
Zϕδ,r

ϕ(x) dx: The probability that a Gaussian random variable with standard

deviation σ and mean 0 assumes a value of at least σk for k ≥ 0 is∫ ∞
σk

1√
2πσ

· exp

(
− x2

2σ2

)
dx =

∫ ∞
k

1√
2π
· exp

(
−x

2

2

)
dx

≤ 1

k
√

2π
· exp

(
−k

2

2

)
≤ exp

(
−k

2

2

)
,

where the equality follows from a substitution and the first inequality follows from
Durrett [1991, Theorem 1.3]. This bound yields

Z =

∫
Zϕδ,r

ϕ(x) dx ≤
∫ ∞
σ
√

2 ln(n)

ϕ(x) dx ≤ 1

n
.

Now we can apply Lemma 3.3 with parameters δ = σ√
lnn

, r = e3, and Z = 1/n.

Then, for every input sequence s, the smoothed number of left-to-right maxima is
at most

E
(
ltrmN[σ](s)

)
≤ e3 ·

⌈√
ln(n)/σ

⌉
·Hn + 1 ∈ O

(
log3/2 n

σ
+ log n

)
as claimed.

If σ ∈ Ω(
√

log n), then we obtain the average-case bound of O(log n). On the
other hand, for σ ∈ O

(
log3/2 n

n

)
we obtain the worst-case upper bound of O(n).

This means that for such small standard deviations, Gaussian perturbations of
adversarial instances have no significant effects in our analysis.

We remark that for Gaussian noise with σ = ε/
√

lnn we obtain a smaller number
of left-to-right maxima than for uniform noise. In this case, the perturbation caused
by Gaussian noise will fall into the interval [−ε, ε] with high probability. Thus, one
might expect the number of left-to-right maxima to be at least as large as for
uniform noise, while our results show that this is not the case at all. The reason
for this behavior is, essentially, that the sharp drop in the density function of the
uniform distribution gives each element of a sequence an equal chance to become a
left-to-right maximum. By comparison, for Gaussian noise one large perturbation
will make it very unlikely for many subsequent elements that they are perturbed
enough to become a left-to-right maximum.

3.4 Unimodal Noise

In this section we apply our findings for general noise distributions to obtain upper
bounds for arbitrary unimodal distributions. Of course, the following analysis holds
also for densities that have a single peak not at the origin but at any other point x ∈
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R and are monotonically decreasing to either side of x. For the sake of simplicity,
we assume that the unimodal density ϕ assumes its maximum at 0.

The following theorem gives an upper bound on the number of left-to-right max-
ima for arbitrary unimodal noise distributions.

Theorem 3.6. Let ϕ be a unimodal density function. Then

max
s∈[0,1]n

E
(
ltrmϕ(s)

)
∈ O

(√
n log n · ϕ(0) + log n

)
.

Proof. Since ϕ is unimodal, ϕ(0) is its global maximum. We want to apply
Lemma 3.3 with r = 2, and we postpone choosing δ.

We need a bound for Z =
∫
Zϕδ,r

ϕ(x) dx. To get such a bound, we aim at finding

a covering Z1,Z2, . . . for the set Zϕδ,r, i. e.,
⋃
iZi ⊇ Z

ϕ
δ,r. Then

∫⋃
iZi

ϕ(x) dx is an
upper bound for Z.

For x+ δ ≤ 0, we have ϕ(x) ≤ ϕ(x+ δ) because of the monotonicity of ϕ. Hence,
Zϕδ,r ⊆ [−δ,∞). Partition [−δ,∞) into intervals of the form [(`−1) · δ, `δ] for ` ∈ N.

Some of these intervals will have a non-empty intersection with Zϕδ,r. Let Z1 be the
first of them, let Z2 by the second, and so on; and let Zk be the empty set if there
are less than k intervals having a non-empty intersection with Zϕδ,r. This definition

ensures that (Zi)i∈N is a covering of Zϕδ,r.
We can now bound

∫⋃
i Zi

ϕ(x) dx as follows. For an interval Zi, let zi ∈ Zi denote

the point in Zi with maximum density. This means that for interval Zi ⊆ R≥0, zi
is the left-endpoint. For the case that Z1 = [−δ, 0], z1 = 0 is the right end-point of
the interval. Then we have ∫

Zi
ϕ(x) dx ≤ δ · ϕ(zi).

By our choice of r = 2 and the definition of Zϕδ,r as well as Z1,Z2, . . ., we have

ϕ(zi+2) ≤ 1
2ϕ(zi) for all i ∈ N. To see this consider a point ẑi ∈ Zi ∩ Zϕδ,r. Then

ϕ(zi) ≥ ϕ(ẑi) > 2 · ϕ(ẑi + δ) ≥ 2 · ϕ(zi+2).

Putting everything together yields∫
⋃
i Zi

ϕ(x) dx ≤
∞∑
i=1

∫
Z2i−1

ϕ(x) dx+

∞∑
i=1

∫
Z2i

ϕ(x) dx

≤
∞∑
i=1

δ · ϕ(z2i−1) +

∞∑
i=1

δ · ϕ(z2i)

≤
∞∑
i=1

1

2i−1
· δ · ϕ(z1) +

∞∑
i=1

1

2i−1
· δ · ϕ(z2)

≤ 2δ · ϕ(z1) + 2δ · ϕ(z2) ≤ 4δ · ϕ(0) .

This allows us to bound Z ≤ 4δ · ϕ(0). Lemma 3.3 yields that the smoothed
number of left-to-right maxima is at most 2 · d1/δe · Hn + n4δ · ϕ(0). Setting
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δ =
√
Hn

/(
n · ϕ(0)

)
gives the upper bound that we aimed for:

E
(
ltrmϕ(s)

)
∈ O

(√
n log n · ϕ(0) + log n

)
.

The Gaussian and the uniform distribution are unimodal distributions. Theo-
rem 3.6 yields an upper bound of O(

√
n log n/ε) for uniform noise in the interval

[−ε, ε], which is only a factor of
√

log n off the tight bound of Theorem 3.1.
If we consider Gaussian noise, we obtain a far less tight bound than the one

shown in Theorem 3.5 since the maximal density is 1/(
√

2πσ).

3.5 Lower Bound

In this section we derive lower bounds for the smoothed number of left-to-right
maxima. Our lower bound is tight for some noise distributions like, for example,
the uniform distribution.

Theorem 3.7. Let ϕ be a density function with support [−ε, ε] such that ϕ is
smooth in this interval. Then

max
s∈[0,1]n

E
(
ltrmϕ(s)

)
∈ Ω

(
min

{√
n/ε ·

(
1− Φ

(
ε−

√
ε/n
)√nε)

, n
})

,

where Φ denotes the distribution function of ϕ. If the probability distribution is
unimodal and ϕ(ε) 6= 0, then

max
s∈[0,1]n

E
(
ltrmϕ(s)

)
∈ Ω

(
min

{√
nϕ(ε), n

})
.

Proof. Consider the following input sequence s = (s1, . . . , sn): For some ` ∈ N
that we will specify later on, we divide s into m = bn/`c subsequences s(1), . . . , s(m)

of length `: Let Si = {(i − 1)` + 1, . . . , i`} ∩ {1, . . . , n} and s(i) = sSi . We set
s(i−1)·`+1 = . . . = si` = i`/n for all i ∈ {1, . . . ,m}. This means that all elements in

the same subsequence s(i) have the same value i`/n.
If element sk is from subsequence s(i), then s̄k is distributed in the interval

[i`/n−ε, i`/n+ε] after the perturbation. We say that s̄k is large if s̄k > (i−1)·`/n+ε.
Then s̄k is larger than all elements in the preceding subsequences s(1), . . . , s(i−1).
Thus, if there is at least one element in subsequence s(i) that assumes a value larger
than (i− 1) · `/n+ ε, then at least one element of s(i) is a left-to-right maximum.

For any k ∈ Si, we have

P
(
s̄k ≤ (i− 1) · `/n+ ε

)
= P

(
i`/n+ νk ≤ (i− 1) · `/n+ ε

)
= P

(
νk ≤ ε− `/n

)
= Φ(ε− `/n).

By independence of the noise values, we thus obtain

P
(
no element of s(i) exceeds (i− 1) · `/n+ ε

)
≤ Φ (ε− `/n)

`
, (8)

which yields

E
(
ltrmϕ(s)

)
≥ m ·

(
1− Φ(ε− `/n)`

)
.
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Choosing ` =
√
nε, we obtain m = n/` =

√
n/ε. The first part of the theorem

follows immediately by linearity of expectation and by observing that the number
of left-to-right maxima never exceeds n.

For unimodal noise distributions with density function ϕ(ε) 6= 0, we observe that
1 − Φ(ε − `/n) ≥ ϕ(ε) · `/n. Thus, Φ(ε − `/n) ≤ (1 − ϕ(ε) · `/n). If we choose
` =

√
n/ϕ(ε), we obtain an upper bound of 1/e for (8). This yields

E
(
ltrmϕ(s)

)
≥
(
1− 1

e

)
·
√
nϕ(ε).

Corollary 3.8. If the noise is uniformly distributed in [−ε, ε], then

E
(
ltrmε(s)

)
∈ Ω

(
min{

√
n
ε + log n, n

})
.

Proof. We apply the second part of Theorem 3.7, and we plug in ϕ(ε) = 1
2ε . If

ε ∈ Ω
(
n/ log2 n

)
, then we still have at least the average-case bound of Θ(log n).

4. SMOOTHED HEIGHT OF BINARY SEARCH TREES

In this section we exploit our smoothed analysis of left-to-right maxima for uniform
noise to prove an exact bound on the smoothed height of binary search trees under
uniform noise. The bound is the same as for left-to-right maxima, as stated in the
following theorem.

Theorem 4.1. For ε ≥ 1/n, we have

max
s∈[0,1]n

E
(
heightU[ε](s)

)
∈ Θ

(√
n/ε+ log n

)
.

In the rest of this section, we prove this theorem. We have to prove an upper
and a lower bound, but the lower bound follows directly from the lower bound of
Ω(
√
n/ε + log n) for the smoothed number of left-to-right maxima (Corollary 3.8,

the number of left-to-right maxima in a sequence is the number of nodes on the
rightmost path of the sequence’s search tree). Thus, we only need to focus on the
upper bound. To prove the upper bound of O(

√
n/ε + log n) on the smoothed

height of binary search trees, we need some preparations. In the next subsection
we introduce the concept of increasing and decreasing runs and show how they are
related to binary search tree height. As we will see, bounding the length of these
runs implicitly bounds the height of binary search trees. This allows us to prove
the upper bound on the smoothed height of binary search trees in the main part of
this section.

4.1 Increasing and Decreasing Runs

In order to analyze the smoothed height of binary search trees, we introduce
a related measure for which an upper bound is easier to obtain. Given a se-
quence s, consider a root-to-leaf path of the tree T (s). We extract two subsequences
α = (α1, . . . , αk) and β = (β1, . . . , β`) from this path according to the following
algorithm: We start at the root. When we are at an element si of the path, we
look at the direction in which the path continues from si. If it continues with the
right child of si, we append si to α; if it continues with the left child, we append si
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Fig. 2. The tree T (s) obtained from the sequence s = (7, 8, 13, 3, 2, 10, 9, 6, 4, 12, 14, 1, 5, 11). We

have height(s) = 6. The root-to-leaf path ending at 11 yields the increasing run α = (7, 8, 10, 11)
and the decreasing run β = (13, 12, 11).

to β; and if si is a leaf (has no children), then we append si to both α and β. This
construction ensures α1 < · · · < αk = β` < · · · < β1 and the length of s is k+ `−1.
Figure 2 shows an example of how α and β are constructed.

A crucial property of the sequence α is the following: Let αi = sji for all i ∈
{1, . . . , k} with j1 < j2 < · · · < jk. Then none of s1, . . . , sji−1 lies in the interval
(αi, αi+1), for otherwise αi and αi+1 cannot be on the same root-to-leaf path. A
similar property holds for the sequence β: No element of s prior to βi lies in the
interval (βi+1, βi). We introduce a special name for sequences with this property.

Definition 4.2. An increasing run of a sequence s is a subsequence (si1 , si2 , . . . ,
sik) with si1 < · · · < sik such that the following holds: For every j ∈ {1, . . . , k−1},
no element of s prior to sij lies in the interval (sij , sij+1

). Analogously, a decreasing
run of s is a subsequence (si1 , . . . , si`) with si1 > · · · > si` such that no element
prior to sij lies in the interval (sij+1 , sij ).

Let inc(s) and dec(s) denote the length of the longest increasing and decreasing
run of s, respectively. Furthermore, let decU[ε](s) and incU[ε](s) denote the length of
the longest runs under uniform noise U[ε]. In Figure 2, we have inc(s) = 4 because
of (7, 8, 10, 12) or (7, 8, 13, 14) and dec(s) = 4 because of (7, 3, 2, 1).

Since every root-to-leaf path can be divided into an increasing and a decreasing
run, we immediately obtain the following lemma.

Lemma 4.3. For every sequence s and all ε, we have

height(s) ≤ dec(s) + inc(s),

E
(
heightU[ε](s)

)
≤ E

(
decU[ε](s) + incU[ε](s)

)
.

In terms of upper bounds, dec(s) and inc(s) as well as decU[ε](s) and incU[ε](s)
behave equally. The reason is that given a sequence s, the sequence s′ with s′i =
1 − si has the properties dec(s) = inc(s′) and E

(
decU[ε](s)

)
= E

(
incU[ε](s

′)
)
. This

observation together with Lemma 4.3 proves the next lemma.

Lemma 4.4. For all ε, we have

max
s∈[0,1]n

E
(
heightU[ε](s)

)
≤ 2 · max

s∈[0,1]n
E
(
incU[ε](s)

)
.

The lemma states that in order to bound the smoothed height of search trees
from above we can instead bound the smoothed length of increasing or decreasing
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runs. To simplify the analysis even further, we show that we can once more restrict
our attention to sorted sequences.

Lemma 4.5. For every sequence s and its sorted version ŝ, we have

E
(
incU[ε](s)

)
≤ E

(
incU[ε](ŝ)

)
.

Proof. We sort s successively as we already did to prove Lemma 3.2. Assume
that si > si+1 for some i and let δ = si − si+1 > 0. We show E

(
incU[ε](s)

)
≤

E
(
incU[ε](s

′)
)

where s′ is obtained from s by swapping si and si+1. Let ν denote
the noise vector added to s and s′. Then s̄′i = s′i + νi+1 = si+1 + νi+1 and s̄′i+1 =
s′i+1 + νi = si + νi.

We distinguish two cases. First, we condition on νi ∈ [−ε, ε − δ] and νi+1 ∈
[δ − ε, ε]. Similar to the argument in Lemma 3.2, both (s̄i, s̄i+1) and (s̄′i, s̄

′
i+1) are

pairs of random numbers, all of which lie uniformly in the interval [si− ε, si+1 + ε],
and the expected values of incU[ε](s) and incU[ε](s

′) are equal.
Second, we condition on the events that νi ∈ (ε − δ, ε] or νi+1 ∈ [−ε, δ − ε). In

either case, s̄i > s̄i+1 and s̄′i < s̄′i+1. Thus, every increasing run of s̄ corresponds
to an increasing run of s̄′: If the run of s̄ uses neither s̄i nor s̄i+1, this is obvious.
If the run of s̄ uses s̄i, then we get the same run of s̄′, where now s̄′i+1 is used. The
run cannot be interrupted by s̄′i because s̄′i < s̄′i+1. If the run of s̄ uses s̄i+1, then
we obtain a run of the same length using s̄′i. This run is also an increasing run since
the only difference of s̄ and s̄′ is that now the larger element s̄′i+1 appears after s̄′i.
Finally, the run of s̄ cannot use both s̄i and s̄i+1 because s̄i+1 < s̄i. Thus, we have
inc(s̄) ≤ inc(s̄′), which proves the lemma.

4.2 Upper Bound on the Smoothed Height of Binary Search Trees

In this section we prove an upper bound on the height of binary search trees by
proving an upper bound on the smoothed length of increasing runs. Throughout this
section we will assume that the input sequence s is sorted. The following lemma
gives an upper bound for the case that all input elements initially (i. e., before
perturbation) lie within an interval of length δ and the perturbation parameter ε
is rather low.

Lemma 4.6. Given an input sequence s with start values from an interval of
length δ and a perturbation parameter ε ≤ δ we have

E
(
incU[ε](s)

)
∈ O

(√
δn/ε

)
.

Proof. Let us take a closer look at increasing runs. Assume that α1, . . . , α` is
a longest increasing run of s̄ and let αk denote the first element in this sequence
that is not a left-to-right maximum of s̄. We can bound the length of the initial
portion α1, . . . , αk−1 of the run by using our results about left-to-right maxima.
After scaling, Theorem 3.1 says that E

(
ltrmU[ε](s)

)
∈ O(

√
δn/ε) which means that

the length of the initial portion is bounded by the same quantity.
In the following we derive a bound on the length of the second part, the se-

quence αk, . . . , α`. We show that with high probability this length is also at most
O(
√
δn/ε), which gives the lemma.

For an element αi with k ≤ i ≤ ` in this run, let α̂i denote the smallest predecessor
of αi that is larger than αi (note that such a smallest predecessor exists since αi is
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not a left-to-right maximum). This means α̂i = min{s̄t | s̄t > αi, t ≤ ji}, where ji
denotes the position of αi in the sequence s̄.

Let i ≥ k. Note that all elements αr with r > i of the increasing run αk, . . . , α`
must lie in the interval [αi, α̂i]. We call this interval the restriction interval defined
by αi. Observe that this interval only depends on random choices for elements
st, t ≤ ji. In the following we show that with high probability the length of this
restriction interval shrinks a lot after seeing

√
δn/ε more elements.

Claim 4.7. Let [αi, α̂i] denote a restriction interval, let γi = α̂i − αi denote its
length and let z =

√
δn/ε. Then with high probability the length η of the restriction

interval [αi+z+1, α̂i+z+1] is at most η ≤ 4
√
ε/(δn) · γi.

Proof. Let ji denote the index of αi in s̄, and let ji+1 < ji+2 < · · · < ji+z
denote the next z positions in s̄ for which the corresponding element sr has a
perturbed value s̄r ∈ [αi, α̂i]. Let ji+z+1 denote the position of the element αi+z+1.
Note that ji+z+1 > ji+z since the elements αi+1, . . . , αi+z must all fall into the
interval [αi, α̂i].

Since the input sequence is sorted, αi+z+1 must lie in the interval [max{αi, si+z−
ε}, α̂i] (regardless of the exact choice of αi+z+1). We now show that with high
probability the elements s̄ji+1

, . . . s̄ji+z split this interval into sub-intervals of length
at most η. Then regardless of our choice of αi+z+1, we have α̂i+z+1 − αi+z+1 ≤ η
and the claim follows.

Let β = max{αi, si+z − ε}, and let γ′i = α̂i − β ≤ γi. We define b2γ′i/ηc sub-
intervals I1, . . . , Ib2γ′i/ηc of [β, α̂i] by defining Ir := [β + (r − 1)η2 , β + r η2 ]. Each of
the sub-intervals has length η/2. If every sub-interval contains at least one element
from s̄ji+1

, . . . , s̄ji+z , then [β, α̂i] gets split into sub-intervals of length at most η
and the claim follows.

Fix a sub-interval Ir. Note that each element sjt has a probability of at least
η/(2γi) of falling into Ir (recall that we conditioned on the fact that s̄jt ∈ [αi, α̂i]).
Hence, the probability that Ir does not contain an element from s̄ji+1

, . . . , s̄ji+z is
at most (

1− η

2γi

)z
≤ exp

(
− η

2γi
· z
)
≤ exp

(
−1

2
4
√
δn/ε

)
.

Applying a union bound we obtain that the probability that there exists an empty
set is at most b2γ′i/ηc exp(− 1

2
4
√
δn/ε) = exp(Θ(− 4

√
δn/ε)).

Now, we use Claim 4.7 to finish the proof of Lemma 4.6. We assume that all high
probability events actually occur. If this is not the case we can bound the number
of elements in an increasing run by n. Because this case is so unlikely its effect on
the expectation is negligible.

We want to estimate the length of the run αk, . . . , α`. Let z =
√
δn/ε as in the

above claim. The length of the restriction interval defined by αk is at most 2ε.
Assume that the run is longer than 2z + 2. Then by applying Claim 4.7 twice we
obtain that the restriction interval [αk+z+2, α̂k+z+2] has length at most

4
√
ε/(δn) · 4

√
ε/(δn) · 2ε ≤ 2

√
εδ/n.

The probability for an element to fall into this interval is at most 2δ ≤ 2
√
εδ/n· 12ε =
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δ/(εn). In expectation the total number of elements in this interval is only

√
δn/ε.

Applying a Chernoff bound gives that with high probability the interval contains
no more than 2

√
δn/ε elements.

Therefore, even if all elements that fall into the interval belong to the run
α2z+2, . . . , α`, the length of the run αk, . . . , α` is still at most O(

√
δnε) with high

probability. Together with the bound on the length of the initial sequence α1, . . . , αk
this concludes the proof of the lemma.

Before generalizing Lemma 4.6 to a wider range of ε, we require the following
simple observation.

Lemma 4.8. For every sequence s, every ε > 0, and every covering U1, . . . , Uk
of the set {1, . . . , n} (which means

⋃k
i=1 Ui = {1, . . . , n}), we have

height(s) ≤
∑k
i=1 height(sUi),

E
(
heightU[ε](s)

)
≤
∑k
i=1 E

(
heightU[ε](sUi)

)
.

Proof. Let U1, . . . , Uk cover {1, . . . , n}. For a fixed i, let a and b with a < b be
two elements of sUi that do not lie on the same root-to-leaf path in T (sUi). Then
there exists a c prior to a and b in sUi with a < c < b, which implies that a and b do
not lie on the same root-to-leaf path in the tree T (s) either. Now consider a root-to-
leaf path p of T (s) that has a length of height(s). Let pUi be p restricted to elements

of sUi and let `Ui be its length. Then
∑k
i=1 height(sUi) ≥

∑k
i=1 `Ui ≥ height(s),

because the Ui cover {1, . . . , n}.
The second inequality follows directly from the first since taking expectations is

a monotone operation.

Now, we turn our attention to the case where ε is relatively large, namely ε =
(n/log2 n) · δ. This case is critical since our overall goal is to show a bound of
O(
√
δn/ε + log n). For ε = (n/log2 n) · δ this becomes O(log n). Therefore, high

probability arguments of the form used to prove Lemma 4.6 are not sufficient.

Lemma 4.9. Let s denote an input sequence of n elements with values from an
interval of length δ and let ε ≥ (n/ log2 n) · δ. Then

E
(
heightU[ε](s)

)
∈ O(log n).

Proof. For simplicity we assume that all unperturbed values lie in the interval
[0, δ]. Note that the perturbed values s̄i can range over every value from the interval
I := [−ε + δ, ε] ⊆ [−ε, ε + δ]. Furthermore, conditioned on the fact that s̄i ∈ I, it
will be uniformly distributed within I.

We partition the elements of s into three not necessarily disjoint sets R, F , and
B. The set R of regular positions contains the positions of elements si that after
perturbation lie in interval I. The set F contains positions of elements si for which
the perturbation νi is at most δ − ε and B contains positions of elements si with
νi ≥ ε − δ. Note that every element of si contributes to at least one set because
for an element not to end up in interval I (and hence its position not added to
set R) its perturbation must be either very large (at least ε− δ) or very small (at
most δ − ε). Therefore we can obtain our result by bounding E

(
heightU[ε](s̄R)

)
,

E
(
heightU[ε](s̄F )

)
and E

(
heightU[ε](s̄B)

)
by O(log n) and applying Lemma 4.8.
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Let us start with E
(
heightU[ε](s̄R)

)
. Conditioned on the fact that s̄i ∈ I the

element s̄i is uniformly distributed in this interval. Hence, every permutation of
the elements of s̄R is equally likely which reduces E

(
heightU[ε](s̄R)

)
to the average

case. Hence, E
(
heightU[ε](s̄R)

)
∈ O(log n).

It remains to deal with the sets F and B. We only consider F as the proof for
B is analogous. Only conditioning on the fact that an element s̄i is in set F means
that νi ≤ δ− ε. Within the interval [−ε, δ− ε], νi is distributed uniformly. One can
view the perturbation of elements in F as being generated in a two step process.
First the elements are moved down by δ

2 − ε and then a uniform perturbation in
the interval [−δ/2, δ/2] is added. Since after the first step all elements of F still lie
in an interval of length δ the second step fulfills the requirement for Lemma 4.6.
Therefore, E

(
height(s̄F )

)
∈ O(

√
2|F |).

The probability for an element of s to end up in F is only δ/(2ε) ≤ log2 n
n . Using a

Chernoff bound gives that with high probability (at least 1−n−(logn)/3) F contains
at most 2 log2 n elements, and hence E

(
height(s̄F )

)
∈ O(log n). In the case that

F contains more elements, we can bound |F | by n. This case only contributes
n · n−(logn)/3 to the expectation, which is negligible.

Lemma 4.10. For an input sequence s with values from the unit interval, we
have

E
(
heightU[ε](s)

)
∈ O

(√
n/ε+ log n

)
.

Proof. If ε ≥ n/ log2 n then E
(
ltrmU[ε](s)

)
∈ O(log n) by Lemma 4.9. In or-

der to prove the lemma for smaller values of ε, we partition the sequence into
subsequences of size at most N , where N will be chosen later. For each of the
subsequences we apply Lemma 4.9 and sum the resulting expectations which, by
Lemma 4.8, gives an upper bound on E

(
heightU[ε](s)

)
.

Suppose a subsequence contains only elements with values from an interval of

length δ. In order to be able to apply Lemma 4.9 we require δ ≤ ( log2N
N ) · ε. In

the following we choose δ := ( log2N
N ) · ε and partition the unit interval into d1/δe

sub-intervals of length at most δ. Let Sj for j ∈ {1, . . . , d1/δe} denote the positions
in the input sequence s that lie in the jth interval. We partition Sj into d|Sj |/Ne
subsets of size at most N in an arbitrary manner and obtain d|Sj |/Ne subsequences
for which we can apply Lemma 4.9.

In total we constructed at most

d1/δe∑
j=1

d|Sj |/Ne ≤ d1/δe+

d1/δe∑
j=1

|Sj |/N =

⌈
N

ε · log2N

⌉
+ n/N

subsequences. Now, we choose N so as to approximately balance the two terms in
the above equation. This means we choose N such that N2/ log2N = εn. Then
the total number of subsequences is O(n/N).

Finally, we can apply Lemma 4.9 to each subsequence and sum the expectation
of O(logN) from each sequence to get a bound on E

(
heightU[ε](s)

)
. This gives

E
(
heightU[ε](s)

)
∈ O

(
n logN

N

)
= O

(√
n/ε
)
.
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5. SMOOTHED NUMBER OF QUICKSORT COMPARISONS

In this section we apply our results on binary search trees and left-to-right maxima
under uniform noise to the performance of the quicksort algorithm under uniform
noise. The following theorem summarizes the findings.

Theorem 5.1. For ε ≥ 1/n we have

max
s∈[0,1]n

E
(
qsU[ε](s)

)
∈ Θ

(
n
ε+1

√
n/ε+ n log n

)
.

In other words, for ε ∈ O(1), the number of comparisons is at most O(n
√
n/ε),

while for ε ∈ Ω(1), it is at most O(nε
√
n/ε).

5.1 Upper Bound on the Smoothed Number of Quicksort Comparisons

To prove the upper bound, we first need a lemma similar to Lemma 4.8 that allows
us to estimate the number of comparisons of subsequences.

Lemma 5.2. For every sequence s, every ε > 0, and every covering U1, . . . , Uk
of the set {1, . . . , n}, we have

qs(s) ≤
∑k
i=1 qs(sUi) +Q,

E
(
qsU[ε](s)

)
= E

(
qs(s̄)

)
≤
∑k
i=1 E

(
qs(s̄Ui)

)
+ E(Q),

where Q is the sum, taken over all i, of the number of comparisons of elements
of sUi with elements of s{1,...,n}\Ui and where the random variable Q is defined
analogously for s̄.

The proof goes along the same lines as the proof of Lemma 4.8 and is omitted.

Lemma 5.3. For every sequence s and all ε ≥ 1/n, we have

E
(
qsU[ε](s)

)
∈ O

(
n
ε+1

√
n/ε+ n log n

)
.

Proof. Given a sequence s, first observe that quicksort will make at most
O(n

√
n/ε + n log n) comparisons, which follows directly from Lemma 4.10 and

E
(
qs(s̄)

)
≤ n · E

(
height(s̄)

)
: Every level of recursion of quicksort contributes at

most n− 1 comparisons, and we have height(s̄) levels of recursion. Thus, the claim
of the theorem is correct for ε ∈ O(1).

Let us now consider the case ε ∈ ω(1). Furthermore, assume that we have
ε ∈ O

(
3
√
n/ log2 n

)
. This is no restriction since we obtain the average-case bound

of O(n log n) already for ε ∈ Θ
(

3
√
n/ log2 n

)
and thus also for larger ε.

Similar to the proof of Lemma 4.9, we divide the sequence s̄ into three parts.
The set R = {i ∈ {1, . . . , n} | s̄i ∈ [1 − ε, ε]} of regular elements for the interval
[1 − ε, ε] is defined as before. The set F is defined slightly differently, namely as
F = {i ∈ {1, . . . , n} | νi ≤ 4− ε}. This means that F contains all i for which νi is
too small, plus some extra elements. Similarly B = {i ∈ {1, . . . , n} | νi ≥ ε− 4}.

As in Lemma 4.9, the regular elements are easy to handle since they are uniformly
distributed in [1− ε, ε] and, thus, E

(
qsU[ε](sR)

)
∈ O(n log n).
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We have E
(
heightU[ε](sF )

)
= E

(
heightU[ε](sB)

)
∈ O(

√
n/ε), which follows from

the same scaling argument (see Lemma 2.1) that we used in Lemma 4.9: F contains
2n/ε elements in expectation. The probability that F contains more than 4n/ε
elements is at most (e/4)2n/ε ∈ O

(
(e/4)

√
n
)

due to the Chernoff bound and ε ∈
O
(

3
√
n/ log2 n

)
. The same holds for B. If either contains more elements, we bound

the height by n, which contributes at most o(1) to the expectation. Otherwise, we
have sequences with O(n/ε) elements that are perturbed with U[2]. We obtain

E
(
qs(s̄F )

)
= E

(
qs(s̄B)

)
∈ O

(
n
ε

√
n/ε
)
,

which is just the number of elements multiplied with the upper bound for the tree
height.

By Lemma 5.2, what remains to be estimated is the number of comparisons of
elements s̄i and s̄j where i and j are in two different sets of R, F , and B.

Due to the symmetry between s̄F and s̄B , it suffices to restrict ourselves to
estimating the number of comparisons of elements in s̄F with elements in s̄R and
s̄B . For this, we count the number of comparisons of elements s̄i with νi ≤ ε− 4 to
elements s̄j with s̄j ≥ 1.

The number of comparisons between elements s̄i and s̄j with i ∈ F and j ∈ F ∩R
can be bounded by the total number of comparisons between elements in F , but
this number is E

(
qs(s̄F )

)
∈ O

(
n
ε

√
n/ε
)
. Similarly, since E

(
qs(s̄R)

)
∈ O(n log n),

the expected number of comparisons between positions i ∈ F ∩ R and j ∈ R is at
most O(n log n).

Thus, we can concentrate on i ∈ F with νi ≤ 1 − ε and j ∈ R with s̄j ≥ ε − 4,
which includes all i ∈ F \R and j ∈ R \ F .

We distinguish two cases: First, we estimate the expected number of such com-
parisons with s̄i being the pivot element. Second, we consider the case that s̄j is
the pivot element.

The two elements s̄i ≤ si − ε + 1 ≤ 2 − ε and s̄j ≥ 4 − ε will be compared with
s̄i being the pivot only if i < j and s̄ contains no element s̄k ∈ [s̄i, s̄j ] for k < i. In
particular, s̄ must not contain an element s̄k ∈ [2− ε, 4− ε] with k < i.

Since ε ∈ ω(1), every element is eligible for the interval [2−ε, 4−ε]. Furthermore,
for every i ∈ {1, . . . , n}, we have P(νi ≤ 1 − ε) = P(s̄k ∈ [2 − ε, 4 − ε]) = 1/ε and
these two events are disjoint. (If si = 1, then this is not true since νi = 1 is possible,
but the probability of this is 0.) Thus, the probability that s̄ contains more than
O(log n) elements with νi ≤ 1 prior to the first element s̄k ∈ [2− ε, 4− ε] is O(1/n).
If this happens nevertheless, we bound the number of comparisons by the trivial
upper bound of n2, which contributes only O(n2 · 1/n) = O(n) to the expected
value.

Otherwise, at most O(log n) elements s̄i with νi ≤ 1−ε are compared to elements
s̄j with s̄j ≥ 4−ε with s̄i being the pivot, which contributes O(n log n) comparisons.

Now we consider the second case: How many comparisons of elements s̄j ≥ 4− ε
with elements s̄i ≤ si+ 1− ε with s̄j being the pivot element do we have to expect?
The element s̄j is compared to s̄i only if j < i and there is no k < j with s̄k ∈ [s̄i, s̄j ].
Thus, it is necessary that s̄j is minimal among all elements s̄k ≥ 4− ε with k ≤ j.

If we restrict ourselves to s̄k ∈ [4− ε, ε], then this corresponds just to the average
number of left-to-right minima, which is O(log n). (The average number of left-to-
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right minima is equal to the average number of left-to-right maxima.) Thus, the
expected number of elements s̄j ∈ [4− ε, ε] that, when being the pivot element, are
compared to any element s̄i ≤ si + 1 − ε, is O(log n). This contributes at most
O(n log n) to the expected number of comparisons.

Elements s̄k ≥ ε remain to be considered. Since ε ∈ ω(1), there are at most
O(log n) such elements prior to the first element of the interval [4− ε, ε] with high
probability. Furthermore, there are at most O(log n) elements of s̄F prior to the
first element of [1−ε, ε] with high probability. Thus, the contribution to the number
of comparisons is only O(log2 n).

5.2 Lower Bound on the Smoothed Number of Quicksort Comparisons

The upper bound proved in the previous section is tight. The standard sorted
sequence provides a worst case, but in the following lemma we use a sequence that
is slightly easier to handle technically.

Lemma 5.4. For the sequence s = (1/n, 2/n, 3/n, . . . , n2 /n, 1, 1, . . . , 1) and all
ε ≥ 1/n, we have

E
(
qsU[ε](s)

)
∈ Ω

(
n
ε+1

√
n/ε+ n log n

)
.

Proof. In the perturbed sequence s̄ the first n/2 elements contain an expected
number of Ω

(√
n/ε
)

left-to-right maxima according to Corollary 3.8. Every left-
to-right maximum s̄i of s̄ has to be compared to all the elements that come later
and are greater than s̄i.

If ε ∈ o(1), all n/2 elements of the second half of s̄ are greater than any left-to-
right maximum of the first half of s̄. Thus, the expected number of comparisons is
at least Ω

(
n
√
n/ε
)

= Ω
(
n
ε+1

√
n/ε+ n log n

)
.

If ε ∈ Ω(1), then the probability that an element s̄i of the second half of s̄ is
greater than all left-to-right maxima of the first half of s̄ is

P
(
∀j ≤ n/2: 1 + νi ≥ s̄j

)
≥ P

(
1 + νi ≥ 1/2 + ε

)
=

1

4ε
.

Thus, the expected number of elements that are greater than all left-to-right max-
ima of the first half is at least the expected number of elements at positions i > n/2
with νi ≥ ε+1/2, which is Ω(n/ε). The latter number is independent of the number
of left-to-right maxima in the first half, so we can multiply the two expected values
to get a lower bound of Ω

(
n
ε

√
n/ε
)
⊆ Ω

(
n
ε+1

√
n/ε
)

comparisons. Since quicksort
always needs at least Ω(n log n) comparisons, we get the claim.

6. SMOOTHED NUMBER OF POINTS ON A CONVEX HULL

In this section we study the smoothed number of points on a convex hull in two-
dimensional space and apply our findings on left-to-right maxima. We model this
problem as follows: The adversary chooses a set P = {(x1, y1), . . . , (xn, yn)} ⊆
[0, 1]2 in the plane. The coordinates of these points are then perturbed according
to a certain probability distribution with density function φ, resulting in a set
P̄ = {(x1 + ν1, y1 + ν′1), . . . , (xn + νn, yn + ν′n)}. We are then interested in the
expected number of points that lie on the convex hull of P̄ (the smallest convex
polygon that includes all points of P̄ ). Letting ch(P ) ⊆ P denote the set of points
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from P that lie on the convex hull of P , the smoothed number of points on the
convex hull of n points is

max
P⊆[0,1]2,|P |=n

E
(∣∣chφ(P )

∣∣).
6.1 Upper Bounds on the Smoothed Number of Points on a Convex Hull

We begin with upper bounds, which we derive from our bounds on the smoothed
number of left-to-right maxima.

Theorem 6.1. We have

max
P⊆[0,1]2,|P |=n

E
(∣∣chU[ε](P )

∣∣) ∈ O(√n/ε+ log n
)
,

max
P⊆[0,1]2,|P |=n

E
(∣∣chN[σ](P )

∣∣) ∈ O ( log3/2 n
σ + log n

)
.

Proof. Given a set of points, its convex hull can be split into two parts: the
upper part and the lower part, both of which start and end with the points having
minimum and maximum x-coordinate, respectively. Both the upper and the lower
part can be split into a left and a right part, where the split occurs at the points with
the maximum or minimum y-coordinate, respectively. We focus on bounding the
number of points in the upper left part of the convex hull, the total number of points
on the convex hull is then at most four times this number. Consider the set of points
in P̄ . If necessary, renumber the points so that x1 + ν1 ≤ x2 + ν2 ≤ · · · ≤ xn + νn.
Now, a necessary (though not sufficient) condition for a point (xi, yi) to be part
of the upper left convex hull is that it is a left-to-right maximum of the sequence
(y1 + ν′1, . . . , yn + ν′n). But, then, the upper bounds on the number of left-to-right
maxima on such a sequence from Theorems 3.1 and 3.5 yield the claim.

6.2 Lower Bounds on the Smoothed Number of Points on a Convex Hull

Our lower bounds for the smoothed number of points on a two-dimensional convex
hull turn out to be less sharp than the results we obtained in earlier sections for
binary tree height and the quicksort algorithm.

Theorem 6.2. We have

max
P⊆[0,1]2,|P |=n

E
(∣∣chU[ε](P )

∣∣) ∈ Ω
(
min{ 5

√
n/ε, n}

)
,

max
P⊆[0,1]2,|P |=n

E
(∣∣chN[σ](P )

∣∣) ∈ Ω
(√

log n
)
.

Proof. The second claim, for normally distributed noise, follows directly from
the work of Rényi and Sulanke [1963]. We now prove the lower bound for uniform
noise.

Our aim is to construct an input of n points that has a large expected number of
vertices on the convex hull after perturbation. Our model requires that the input
points lie in [0, 1]2 and be perturbed in each direction by a value from the interval
[−ε, ε]. However, for the purposes of the present proof it will be more natural to
describe the construction for points from [−1, 1]2 perturbed in each direction by
values from [−2ε, 2ε], which is just a scaling by a factor of 2.
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4ε V0

V1

V2

V3

V4

E1

α
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Fig. 3. The left picture shows the partitioning of the plane into different regions. If the extreme
point Ei of a boundary region i falls into the shaded area the corresponding boundary region

is not valid. The right picture depicts the situation where the intersection (in gray) between a

boundary region and the corresponding range square R is minimal.

We inscribe an `-sided regular polygon into a unit circle centered at the origin.
The number ` will be fixed later. The interior of the polygon belongs to the inner
region while everything outside the unit circle belongs to the outer region. Let
V0, . . . , V`−1 denote the vertices of the polygon. The ith boundary region is the
segment of the unit circle defined by the chord ViVi+1 where the indices are modulo
`, see Figure 3. An important property of these regions is expressed in the following
observation.

Lemma 6.3. If no point lies in the outer region, then every non-empty boundary
region contains at least one point that is a vertex of the convex hull.

Proof. If the outer region is empty, then the points in the ith boundary region
can be separated from the remaining points by the straight line through Vi and
Vi+1.

In the following, we select the initial positions of the input points such that it is
guaranteed that after the perturbation the outer region is empty and the expected
number of non-empty boundary regions is large.

We need the following notations and definitions. For the jth input point we define
the range square R to be the axis-parallel square with side length 4ε centered at
position (xj , yj). Note that for the uniform distribution by values from the interval
[−2ε, 2ε] the perturbed position of (xj , yj) will lie in R. The intersection between
the circle boundary and the perpendicular bisector of the chord ViVi+1 is called the
extremal point of boundary region i and is denoted with Ei. The line segment from
the midpoint of the chord to Ei is denoted with δi, see Figure 3.

The general outline for the proof is as follows. We try for a boundary region i to
place a bunch of n/` input points in the plane such that a vertex of their common
range square R lies in the extremal point Ei of the boundary region. Furthermore
we require that no point of R lies in the outer region. If this is possible, it can
be shown that the range square and the boundary region have a large intersection.
Therefore it will be likely that one of the n/` input points corresponding to the
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square lies in the boundary region after perturbation. Then, we can derive a bound
on the number of vertices in the convex hull by exploiting Lemma 6.3, because we
can guarantee that no perturbed point lies in the outer region.

Now, we formalize this idea. We call a boundary region i valid if we can place
input points such that their range square Ri is contained in the unit circle and a
vertex of it lies on Ei. Then Ri is called the range square corresponding to boundary
region i.

Lemma 6.4. If ε ≤ 1/8 and ` ≥ 23, then there are at least `/2 valid boundary
regions.

Proof. Let γi denote the angle of vector Ei with respect to the positive x-axis.
A boundary region is valid if, and only if, | sin γi| ≥ 2ε and | cos γi| ≥ 2ε. The
invalid regions are depicted in Figure 3. If ε ≤ 1/8, these regions are small. To
see this let β denote the central angle of each region. Then 2 sin(β/2) = 4ε ≤ 1/2
and β ≤ 2 · arcsin(1/4) ≤ 0.51. At most β

2π/` + 1 boundary regions can have their

extreme point in a single invalid region. Hence the total number of invalid boundary
regions is at most 4

(
β

2π/` + 1
)
≤ `/2.

The next lemma shows that a valid boundary region has a large intersection with
the corresponding range square.

Lemma 6.5. Let Ri denote the range square corresponding to boundary region i.
Then the area of the intersection between Ri and the ith boundary region is at least
min{(4/`)4, 8ε2} if ` ≥ 4.

Proof. Let α denote the central angle of the polygon, that is, the angle between
Vi and Vi+1. Then α = 2π/` and δi ≥ 1 − cos(α2 ). By utilizing the inequality
cos(ψ) ≤ 1− 1

2ψ
2 + 1

24ψ
4 we get δi ≥ 11

96α
2 for α ≤ 2. Plugging in the value for α,

this gives δi ≥ (4/`)2 for ` ≥ 4. The intersection between the range square and
the boundary region is minimal when one diagonal of the square is parallel to δi,
see Figure 3. Therefore, the area of the intersection is at least δ2i , which is at least
(4/`)4 for δi ≤ 2

√
2ε and at least 8ε2 for δi ≥ 2

√
2ε.

Lemma 6.6. If ` ≤ min{ 5
√
n/(16ε2), n/2}, then every valid boundary region is

non-empty with probability at least 1− 1/e, after perturbation.

Proof. We place n/` input points on the center of a valid range square. The
probability that none of these points lies in the boundary region after perturbation
is

Pr[boundary region is empty] ≤
(

1− min{δ2i , 8ε2}
16ε2

)n/`
,

because the area of the intersection is at least min{δ2i , 8ε2} and the whole area of
the range square is 16ε2. If δ2i = min{δ2i , 8ε2}, the result follows since

16ε2

min{δ2i , 8ε2}
≤ 16ε2

δ2i
≤ 16ε2 · `4 = 16ε2 · `5/` ≤ n/`.

Here we utilized that δ2i ≥ 1/`4, which follows from the proof of Lemma 6.5, and
l5 ≤ n/(16ε2) by assumption. In the case that 8ε2 = min{δ2i , 8ε2} the result follows
since n/` ≥ 2.
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Now Theorem 6.2 follows when we choose ` = Θ(min{ 5
√
n/ε, n}).

7. SMOOTHED MOTION COMPLEXITY

In this section we introduce the concept of smoothed motion complexity and give
bounds on the smoothed motion complexity of a smallest axis-aligned box enclosing
a moving set of points. The task to process a set of continuously moving objects
arises in a broad variety of applications such as mobile ad-hoc networks, traffic
control systems, and computer graphics (rendering moving objects). Therefore,
researchers investigate data structures that can be efficiently maintained under
continuous motion, e.g., to answer proximity queries [Basch et al. 1997], maintain a
clustering [Har-Peled 2004], a convex hull [Basch et al. 1999], or some connectivity
information of the moving point set [Hershberger and Suri 2001]. In particular, in
the framework of kinetic data structures [Basch et al. 1999], many interesting results
on data structures for moving objects have been obtained. Within this framework,
the efficiency of a data structure is analyzed with respect to the worst case number
of combinatorial changes in the description of the maintained structure that occur
during linear (or low degree algebraic) motion. These changes are called (external)
events.

Let us consider the problem of maintaining the smallest axis-aligned bounding
box of a moving point set in Rd as an example. At any point of time this bounding
box can be described by a set of at most 2d points that attain the minimum and
maximum value in each of the d coordinates. If any such minimum/maximum point
changes, then an event occurs. We call the worst case number of events with respect
to the maintenance of a certain structure under linear motion the worst case motion
complexity. This is also used in kinetic data structures to measure the quality of
the structure.

We introduce smoothed motion complexity as an alternative measure for the dy-
namics of moving data. Smoothed motion complexity asks for the worst case ex-
pected performance over all inputs where the expectation is taken with respect to
small random noise added to the input. In the context of mobile data this means
that both the speed value and the starting position of an input configuration are
slightly perturbed by random noise. Thus the smoothed motion complexity is the
worst case expected motion complexity over all inputs perturbed in such a way.
We believe that smoothed motion complexity is a very natural measure for the dy-
namics of mobile data since in many applications the exact position of mobile data
cannot be determined due to errors caused by physical measurements or fixed pre-
cision arithmetic. This is the case when, for instance, the positions of the moving
objects are determined via gps, sensors, and basically in any application involving
“real life” data.

We illustrate our approach on the problem to maintain the smallest orthogonal
bounding box of a point set moving in Rd and show that an upper bound for this
problem can be obtained via analyzing left-to-right maxima and the convex hull.
The bounding box is a fundamental measure for the extend of a point set and it is
useful in many applications, for example, in the construction of R-trees, for collision
detection, and visibility culling.

We are given a set P of n points moving in Rd. Let P (t) = {p1(t), . . . , pn(t)}
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denote the set at time t, where pi(t) denotes the position of point i at time t.
We assume that the movement of each point is a linear function in t, that is,
pi(t) = si ·t+pi(0), where pi(0) is the initial position (at time 0) and si is the speed
at which the point moves. We normalize the speed vectors and initial positions such

that pi(0), si ∈ [0, 1]d. Let p
(j)
i (t) and s

(j)
i denote the jth coordinate of pi(t) and

si, respectively.
The motion complexity of the problem is the number of combinatorial changes to

the set of 2d extreme points defining the bounding box. Clearly, the motion com-
plexity is O(d ·n) in the worst case, 0 in the best case, and O(d · log n) in the average
case. When we consider smoothed motion complexity, we add to each coordinate of
the speed vector and each coordinate of the initial position an i. i. d. random vari-
able from a certain probability distribution with density function ϕ : R→ R+. Let

P̄ (t) be the perturbed point set at time t, i. e., p̄
(j)
i (t) = (s

(j)
i +νi,j)·t+p(j)i (0)+κi,j ,

where νi,j and κi,j are drawn according to ϕ.
The smoothed motion complexity (with respect to ϕ) is then defined as the

maximum over all P of the expected number of combinatorial changes for P̄ .
We formalize this statement for the case of an axis-aligned bounding box. For any

point of time t define bb(P (t)) to be the set of points from P (t) that have minimum
or maximum value in at least one coordinate. If for a coordinate the minimum or
maximum is attained by more than one point, we take the lexicographically smallest
point. We say that a combinatorial change of the bounding box takes place at a
point of time t, if for every ε > 0 we have bb(P (t − ε)) 6= bb(P (t + ε)). By the
linearity of motion we have that if for t′ > t we have bb(P (t)) 6= bb(P (t′)), then for
every t′′ ≥ t′ we also have bb(P (t)) 6= bb(P (t′′)), i. e., every set of points can define
the bounding box only for a fixed interval of time. Hence, the motion complexity
can be simply written as the number of distinct sets that define the bounding
box over time: mc(P ) :=

∣∣{bb(P (t)) | t ≥ 0
}∣∣. For this notation, mcϕ(P ) is a

random variable for the number of events that happen after perturbing the points
according to ϕ. The smoothed motion complexity of an axis-aligned bounding box
is now given by

max
P

E
(
mcϕ(P )

)
.

In order to obtain bounds on this value, we utilize two observations: First, an up-
per bound for the one-dimensional problem can be multiplied by d to yield a bound
for the problem in d dimensions, which is why we can focus on the one-dimensional
problem. Second, for the one-dimensional problem the number of external events is
strongly related to number of points on the convex hull: If we map each point with
initial position pi and speed si to the point Pi = (pi, si) in the two-dimensional
plane, then the points on the upper right quarter and the lower left quarter of the
convex hull correspond exactly to the external events. To see this, let (pi, si) and
(pj , sj) be two consecutive points of the upper right quarter of the convex hull.
Then pi(t) will “overtake” the point pj(t) at some point and it will be first point
to do so. Thus, it will cause exactly one external event.

Together with our results on the smoothed number of points on the convex hull
we get the following theorem:

Theorem 7.1. The smoothed motion complexity of maintaining an axis-aligned
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rectangle of a set of points moving in Rd is

max
P

E
(
mcU [ε](P )

)
∈ O

(
d ·
(√

n/ε+ log n
))
∩ Ω

(
min{ 5

√
n/ε, n}

)
and

max
P

E
(
mcN [σ](P )

)
∈ O

(
d ·
(

log3/2 n
σ + log n

))
∩ Ω

(√
log n

)
.

8. CONCLUSION

We have analyzed the smoothed number of left-to-right maxima for different noise
distributions. It turns out that for uniform noise from the interval [−ε, ε], the
smoothed number of left-to-right maxima is O

(√
n/ε+log n

)
and a matching lower

bound (for ε > 1/n) shows that it is also Ω
(√

n/ε + log n
)
. In contrast to this,

the smoothed number of left-to-right maxima under Gaussian noise with standard

deviation σ is O
(
log3/2 n

σ + log n
)
.

We applied the result for uniform noise to the analysis of the smoothed height of
binary search trees and the smoothed number of comparisons made by the quicksort
algorithm under additive noise. The smoothed height of binary search trees and also
the smoothed number of left-to-right maxima are Θ(

√
n/ε + log n); the smoothed

number of quicksort comparisons is Θ( n
ε+1

√
n/ε+ n log n).

While we obtain the average-case height of Θ(log n) for binary search trees only
for ε ∈ Ω(n/ log2 n) – which is large compared to the interval size [0, 1] from which
the numbers are drawn –, for the quicksort algorithm ε ∈ Ω

(
3
√
n/ log2 n

)
suffices

so that the expected number of comparisons equals the average-case number of
Θ(n log n). On the other hand, the recursion depth of quicksort, which is equal to
the tree height, can be as large as Ω

(√
n/ε
)
. Thus, although the average number of

comparisons is already reached at ε ∈ Ω
(

3
√
n/ log2 n

)
, the recursion depth remains

asymptotically larger than its average value for ε ∈ o
(
n/ log2 n

)
.

For the smoothed number of points on the convex hull of a set of points, our
upper and lower bounds did not quite match – but they still clearly demonstrate
the much stronger smoothing effect caused by the Gaussian noise model when
compared to the uniform noise model. We also introduced the concept of smoothed
motion complexity and showed that a smallest axis-aligned bounding box has small
smoothed motion complexity.

A natural next step is the extension of the analysis for the height of binary search
trees and the quicksort algorithm to other noise distributions. Also, studying the
smoothed motion complexity of other basic structures is an interesting direction of
future research.
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We thank Heiko Röglin for helpful discussions that led to Theorem 3.4. We also
thank the anonymous reviewers for their detailed comments and proof-reading.

REFERENCES

Agarwal, P. K. and Har-Peled, S. 2001. Maintaining approximate extent measures of moving
points. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA).

SIAM, 148–157.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Smoothed Analysis of Left-To-Right Maxima with Applications · 31

Banderier, C., Beier, R., and Mehlhorn, K. 2003. Smoothed analysis of three combinatorial

problems. In Proceedings of the 28th International Symposium on Mathematical Foundations of
Computer Science (MFCS). Lecture Notes in Computer Science, vol. 2747. Springer, 198–207.

Basch, J., Guibas, L. J., and Hershberger, J. 1999. Data structures for mobile data. Journal

of Algorithms 31, 1, 1–28.

Basch, J., Guibas, L. J., and Zhang, L. 1997. Proximity problems on moving points. In
Proceedings of the 13th ACM Symposium on Computational Geometry (SocG). ACM, 344–

351.
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