
Short papers May 7-11 1995 ■ CHI ’95 MOSAIC OF CREATIVITY

Evaluating Program Representation in a
Demonstrational Visual Shell

Francesmary Iklodugno Albert 2! Corbett Brad A. Myers

Carnegie Mellon University, Pittsburgh, Pa 15213
fmm@cs.cmu,edu ac21 @andrew.cmu.edu bam@cs.cmu.edu

ABSTRACT
For Programming by Demonstration (PBD) systems to reach
their full potential, a program representation is needed so
users can view, edit and share programs. We designed and
implemented two equivalent representation languages for a
PBD desktop similar to the Macintosh Finder. One language
graphically depicts the program’s e~ects. The other language
describes the program’s actions. A user study showed that
both languages enabled users with no prior programming ex-
perience to generate and comprehend programs, and that the
first language doubled users’ abilities to generate programs.

KEYWORDS: End-User Programming, Programming by
Demonstration, Visual Language, Visual Shell, Pursuit.

INTRODUCTION AND MOTIVATION

A visual shell, e.g., the Macintosh Finder, is a direct manipu-
lation interface to a file system. Although easy to use, these
interfaces lack of a way for users to automate repetitive tasks.
The Pursuit visual shell [3] is exploring ways to provide pro-
gramming to non-programmers in a way that is consistent with
the direct manipulation paradigm. Pursuit is a Programming
by Demonstration (PBD) system [1] that infers a program as
the user executes actions on real data. Many PBD systems
have shown promise in enabling non-programmers to auto-
mate tasks (e.g., SmallStar, Metarnouse,Eager, Mondrian), but
they admit a well-known shortcoming: how to represent the
resulting program to end users. Without a representation, users
cannot verify inferences, review or modify a program.

To address this, we are investigating ways to represent the
evolving program while the user is demonstrating it so that
users know what the system has inferred (by observing the
growing program representation) and can interactively learn
the syntax and semantics of the language. By allowing a
program to be edited and saved, users can have an artifact to
later examine, edit and share.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of ACM. To copy otherwise, or to
republish, requires a fee and/or specific permission.

CHI’ Companion 95, Denver, Colorado, USA
0 1995 ACM 0-89791 -755-3/95/0005...$3 .50

Avg. No. Errors (2) Avg. Time (Minutes)

state-based text-based state-based text-based

Simple 0.25 0.75 12.16 12,10

Complex 0.88 1.75 19.15 21.29

Table 1: Generation Results

THE TWO REPRESENTATION LANGUAGES
To construct a program in Pursuit, users demonstrate the pro-
gram’s actions on pieces of data. As the user executes each
operation, Pursuit presents the evolving program in a special
program window in one of two representation languages.

The state-based language (Fig. 1) uses a comic strip metaphor.
Data are represented with icons. Operations are implicitly
represented by changes to data icons. Control constructs are
represented by graphical objects. A program is a series of
operations and control constructs. Essentially, programs are
static representations of the dynamic changes to data.

The text-based language (Fig. 2) has a verb/argument structure.
Data are represented with familiar icons. Operations consist
of a name followed by data icons. Control constructs are
represented with keywords and indentation. A program is a list
of commands and control constructs. Essentially, programs
describe how data is manipulated.

Although conceptually different, the languages are function-
ally equivalent. There is a l-to- 1 mapping between their com-
mands and constructs. Moreover, actions to construct pro-
grams are identical across the languages so that the concepts
users need to learn do not vary between the languages.

EVALUATION STUDY

Sixteen non-programmers were randomly assigned to the state-
based or text-based group. In the generation study, users were
given 4 task descriptions – 2 simple tasks, containing no loops
or conditionals, and 2 complex tasks, containing both a loop
and a conditional – and asked to constructs programs. Ta-
ble 1 summarizes the results. A two-way ANOVA showed
that the state-based group was twice as accurate in generating
programs, F(l ,28)=13.00, p<.002. All subjects were more
accurate (F(l ,28)=9.31, p<.005) and faster (F(l ,28)=12.90,

p< .002) when constructing simple programs.

In the comprehension study, users were presented with 14 (task
description, program) pairs and had to decide if the program
was correct or contained a bug. Table 2 summarizes the results.

234

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223355.223546&domain=pdf&date_stamp=1995-05-07

CHI ’95 MOSAIC OF CREATIVITY ■ May 7-11 1995 I Short Papers

Avg. No. Errors (7) Avg. Time (iWnutes)

state-based text-based state-based text-based

Simple 1.88 2.00 1.48 1.14

Complex 2.00 4.13 1.62 1.30

Table 2: Comprehension Results

All subjects did well, with the state-based group performing
better for complex programs (t(14)= 1.84, p< .04), and the text-
based group performing significantly faster (F(l ,28)=6.44,

p<.02).

Avg. No. Errors (4) Avg. Time (Minutes)

state-based text-based state-based text-based

Simple 0.50 0.75 1.55 1.60

Complex 0.13 0.38 1.48 1.58

Table 3: Identification Results

In the identification study, for each of 8 task descriptions, users
indicated which of 4 programs implemented the task. Table 3
summarizes the results. All subjects did well, and ANOVAs
revealed no reliable main effects or interactions.

DISCUSSION AND CONCLUSION
Although preliminary, the results are promising. Both groups

generated and comprehended programs, demonstrating that
combining PBD with an editable program representation does
help non-programmers access the power of programming.

We were surprised to see the great effect that language had
on users’ ability to generate programs, since the user actions
in constructing programs are identical across languages. One
reason could be the representation of control constructs in the
state-based language. The fact that users in the text-based
group rarely constructed complex programs correctly and did

much worse for complex programs in the other studies suggests

D!-n2> tex in f ilas with name: <n2>. Cex

location: papers

‘or*a.h 5w2>tex ‘n L3h>tex

c- rJPawrsQn2>.wxto ~papers&opy-of-sn2>, tex

with wxor condition,,

no ●rrors

-ist~&Opy-Of-<n2,ex

..1... ~.apersc~fopy-of-.n2> .tex

.m Dw.rsQ.2>text. ~.apers,,~com-.~-.nz>,tex—.

Figure 1: The program in Fig. 1 represented in the text-

based language. The loop is represented by a combination of

keywords (foreach) and indentation of operations indicating

its scope. A simiIar combination represents the branch on

the outcome of the copy operation (with error condition:).

that possibly the state-based representation of loops and con-

ditionals enhanced users’ understanding of these concepts.

Responses in a post-study questionnaire support this. The

state-based group cited branches (4 users), loops (2) and op-

erations (2) as the most intuitive features in the language,

whereas the text-based group cited only files and folders.

We plan a future study that establishes users’ understanding

of programming concepts at various points, and that focuses

on the micro-structure of the languages to see if the graphical

representations of control constructs affect comprehension.

This study should also help us determine what features of the

two languages make them successful for particular user tasks.

REFERENCES
1. A. Cypher, Watch What I Do: Programming by Demonstration.

The MIT Press, Cambridge, MA, 1993.

2. F. Modugno. Pursuit: Programming in the User Interface. PhD

Thesis, Carnegie Mellon. Expected Feb. 95.

I ~ ,. m Figure 1: Aprograminstate-basedlanguagethatcopieseach

IA””Iuq --
* . t ex file in the papers folder, If copy fails because a

file with the output file name exists, the program deletes that

old file, and re-executes copy. The outer rectangle enclosing

~

the operations represents the loop, and the little black square

and diverging lines represents a conditional branch.

235

