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Abstract

Talisman is a simulator that models the execution semantics and
tlmlng of a multicomputer. Talisman is unique in combining high

semantic accuracy, high timing accuracy. portability, and good per-
formance. This good performance allows users to run significant

programs on large simulated multicomputers. The combination of
high accuracy and good performance yields an ideal tool for eval-

uating architectural trade-offs. Talisman models the semantics of
virtual memory, a circuit-switched internode interconnect, I/O de-
vices, and instnrction execution in both user and supervisor modes.
It also models the timing of processor pipelines, caches, local mem-

ory buses, and a circuit-switched interconnect. Talisman executes
the same program binary images as a hardware prototype at a cost

of about 100 host instructions per simulated instruction. On a suite
of accuracy benchmarks run on the hardware and the simulator,

Talisman and the prototype differ in reported running times by only
a few percent.

1 Introduction

This paper describes the structure, performance, accuracy, calibra-
tion, and use of Talisman, the Meerkatl [2] system simulator We
used Talisman to extend performance results from a four node hard-
ware prototype to systems with hundreds of nodes. We also used

Talisman to evaluate the performance implications of architectural

tradeoffs in the Meerkat design space,
Talisman has a desirable combination of features that, as far

as we know, is unmatched by any other simulator. Unlike other

simulators used for architectural evaluation, Talisman models the
fine detail of hundreds of nodes running significant programs. It is

unusually fast for a simulator that models fine detail: it simulates
about 700,000 processor cycles per second on a SPARC 10 host. In

addition, it models the semantics of virtual address translation and
processor supervisor and user modes, and thus executes a full range

of operating system and user code.

We achieved simulation efficiency by starting with a fast, thread-
ed-code simulator and adding only those timing models needed to

1Meerkat !i a moderately scalable multlcomputer mchltecture that uses a software
controlled, c]rcult-switched network
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achieve accuracy. This approach resembles that used to gain se-

mantic accuracy in Talisman’s predecessor [1 ], To measure timing
accuracy, we ran a suite of benchmarks on Talisman and the Meerkat

prototype. Test results guided our grafting of timing models onto

the threaded-code simulator base.
We introduce the roles of architecture simulation in Section 2,

Section 3 describes some of the varied approaches to simulation.
Section 4 relates the structure of Talisman, the performance of
which is analyzed in Section 5. The development of timing models
and Talisman timing accuracy are discussed in Section 6, SectIon 7

describes some of the specific advantages of using Talisman.

2 Roles and Benefits of Architecture Simulation

Computer architecture simulators vary widely in their application.

They are used by processor architects to evaluate uniprocessor de-

sign tradeoffs [8], operating system authors to debug their code [1]
and to evaluate operatings ystem performance [6, 25], parallel sys -
tem architects to assess the performance of large systems [4, 9, 23],

and end users to execute programs written for one system on a
different host system [19, 26, 27].

Simulators also vary in their performance and the level of detail
they can model A common metric is the slow-down, or the av~rage

number of simulator host instructions executed per simulated in-

struction (see work by Magnusson and others for a more extensive
discussion of slow-down [15, 12]). In general, the more detail that

the simulator captures, the greater its slow-down [8, 19]. Slow but

accurate simulators have the advantage of capturing subtleties of the
target system However, their slow speed limits the size of the sys-

tem they can model and the number of simulated instructions they
can execute. The simulator designer must choose a level of simu-
lation detail that is fine enough to capture important performance
artifacts, yet fast enough to model large systems and long-running

applications in an acceptable timeframe,

2.1 Benefits of Architecture Simulation

There are several benefits of using a simulator for evaluating mul-
ticomputer architectures:

●

●

●

Simulators can be augmented relatively easily with new mea-
surement and debugging features

Simulators of large systems are easier to make work and are
less expensive than hardware implementations.

New network interfaces can be added in a few days. It is
often impractical to retrofit hardware with new interfaces.
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Simulators can model “ideal” networks that are impossible to

build, e.g., an infinitely fast network.

The determinism of simulator execution makes program bugs

repeatable, which is not always the case for hardware imple-

mentations.

Simulators are not subject to prototype failures.

Simulators can be given to other researchers. While hardware
is difficult to transport, a simulator can be sent electronically

As many simulators can be running as there are hosts and
host memory. Thus, multiple experiments can be run concur-

rently on a simulator, Hardware prototypes are usually few
in number,

There are other benefits of simulators, such as the ability to:

(1) non-intrusively generate address traces of user and system code,
and (2) stress-test operating system software by causing the most

serious and complex interrupt and exception conditions.

3 Simulation Strategies

The best simulation method depends on the application of the sim-

ulation results. This section outlines several simulation strategies

and their applications.

3.1 Microarchitecture Simulation

Microarchttec~ure simulators are built by logic designers to express

and test new designs. They can also execute short sequences of code,
enabling designers to evaluate architectural features and debug mi-

crocode. Microarchitecture simulators typically have a slow-down
around 20,000 [22], making them too slow for debugging all but
the shortest code sequences.

3.2 Macroarchitecture Simulation

Macroarchitecture simulators (also called macro simulators or irr-

str-ucfion set architecture simulators) can execute longer-running
programs, They are used for studying cache performance and de-

bugging operating system code in advance of hardware availability.
Unlike micro simulators, macro simulators often model the chip’s

timing closely, but not perfectly.

Because they model less detail, they are much smaller and faster
than micro simulators. Conventional macro simulators have slow-

downs on the order of 10 to 1000. They dispatch instructions by
fetching from a simulated memory, isolating the operation code

fields, and branching based on the values of these fields. Once

dispatched, the instruction’s semantics are simulated by reading and

manipulating simulation variables that represent the target system’s
state.

Several techniques can improve the performance of macro sim-
ulators. Instead of decoding the operation fields each time an in-
struction is executed, the instruction is translated once into a form
that is faster to execute. This idea has been used in a variety of

simulators for a number of applications [8, 10, 17, 19, 26]. It is
also used in some processors to translate an instruction set that pro-

grammers see into a more RISC-like form that is more efficient to
execute [7, 11].

3.3 Direct Execution

The target program can also be executed directly on the simulator

host [5, 13, 23] by encasing the program in an environment that

makes it execute as though it were on the simulated system. This

technique requires that either the host system have the same instruc-

tion set as the target or that the program be recompiled, Instructions
that cannot execute directly on the host are replaced with procedure

calls to simulator code.

Most direct execution simulators inspect and translate all m-

instructions before simulation begins, i.e., statically. This is incom-

patible with the needs of a simulator that can model operating system

code (this is discussed in Section 4. 10). To evaluate tradeoffs in
mtdticomputer architecture, we needed to simulate both user and

kernel code.
Direct execution simulators are fast to execute instructions that

can be run directly, but are often slow both to handle instructions

that can not be run directly and to handle exceptions, Depending on

the ratio of directly executed instructions to non-direct instructions
and exceptional events, direct execution simulators can be faster or
slower than other kinds of simulators. For example, a simulator that
on average executes two instructions directly and then switches to

another simulated processor by executing lengthy context-switching
code may be slower than a threaded-code simulator (threaded-code

is discussed in Section 3.5) that takes more time to simulate instruc-

tions but much less time to switch from one simulated processor to
another.

A promising approach is the one taken by SimOS [24], This

simulator handles both user and kernel code by dynamically trans-
lating target instructions into short sequences of host-native code.

Unlike most direct execution simulators, SimOS keeps only a lit-

tle of the target machine’s state in host registers and so is able to
multiplex between target processors quickly.

3.4 Blurred Lines Between Simulation Techniques

Several tools can be considered fast macro simulators that dynam-
ically translate code, or direct execution simulators, or profiling

tools. The UNIX utility prof is a profiling tool that is not usually
called a simulator. But it could be considered a direct execution
simulator that wraps the target program in an environment enabling
execution measurement. Shade [8] is thought of as a fast macro

simulator that uses dynamic compilation. While it is more flexible
than prof and uses dynamic instead of static compilation, it is also

a tracing tool. The line between different tracing and simulation
techniques is often blurred despite efforts to neatly categorize them,

3.5 The Talisman Approach: Threaded-Code

Measuring Meerkat’s design required a simulator efficient enough

to run significant programs on hundreds of simulated processors. In
addition, it had to model timing accurately. We could not afford to

spend years constructing a complex simulator or waiting for results

from a slow one.
For these reasons, we wrote a simulator that translates instruc-

tions to threaded code [3, 14], which is then executed. The threaded

code is cached, so that the price of translation for most instructions
is paid just once, the first time they are encountered in the code

stream. The result is a simulator that has a slow-down of about 100
per simulated processor. Its timing is close enough to the proto-
type’s that we can use it to run large programs and make meaningful
measurements.

4 Structure of Talisman

Figure 1 shows the structure of Talisman. Users interact with Tal-

isman through as ymbolic debugger called gdb [28]. Talisman con-
sists of an instruction translator, a threaded-code interpreter [3],
cache models, a TLB model, a physical memory system model, and
I/O models. Meerkat uses Motorola MC88 100 processors [20] and
we refer to MC88100 in the text below as the “target”
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Figure 1: Talisman Structure

Meerkat programs are compiled, assembled, and linked with a

set of GNU cross-development tools on a SPARCstation host. The
resulting binary image can then be run on either the Meerkat proto-

type or on Talisman. On invocation, Talisman loads the code, data,
and symbol table. It then calls through the simulator interface to
(1) place the code and data in simulated memory, (2) setup profiling
structures, and (3) initialize registers.

When the user issues the run command, the front end calls
the threaded code interpreter. Execution returns to the front end
upon an exceptional condition, such as a breakpoint or a special
trap instruction indicating that the simulated program has finished.

The remainder of this section relates the key techniques that
Talisman uses.

4.1 Translation to Threaded Code

Talisman does not interpret target instructions directly, Instead,

instructions are first translated to decoded instructions, which are
cached in structures called decoded instruction pages. Only in-

structions encountered during execution are translated and cached,

so unlike Mimic [19], there is little startup overhead.

Decoded instructions contain up to six fields The first field
always points to the decoded instruction’s handler, the code that
interprets the instruction. This pointer makes it easy to dispatch

decoded instructions. On most simulator hosts, this dispatch con-

sists of two instructions: a load followed by an indirect jump. For
triadic target instructions, three of the decoded instruction fields are

pointers to host memory that models the target registers. The last
two fields hold the length and type of memory access mstntctions.

Figure 2 shows an unsigned add instruction followed by a load
instruction, The add instruction sums the contents of r5 and r6 and

stores the result m r4, The load calculates the effective address as
the sum of r4 and 1000. It loads a word from the effective address
and puts it in r2,

4.2 Instruction Pointers

Talisman maintains two instruction pointers that are updated to-

gether and are always kept consistent: the decoded instruction
pointer (DECIP) and the modelled instruction pointer (1P). The
1P is the value of the target virtual address of the next instruction to

execute, After non-branching instructions, the 1P and the DECIP
are incremented by four and twenty, respectively (target instructions
take four bytes, decoded instructions take twenty bytes). Branching
instructions are described in Section 4.11.

4.3 Decoded Instruction Pages

Decoded instruction pages contain slots that hold decoded instruc-

tions, Each decoded instruction page corresponds to a physical
page of a particular node’s memory. Decoded instruction pages
are allocated when a running program attempts to execute code on
a physical page that does not yet have a corresponding decoded

page, Both physical page structures and decoded instruction page
structures are allocated lazily.

When a decoded instruction page is first allocated, and when it
is flushed, it is filled with decode-me pseudo instructions. When a

decode-me pseudo instruction executes, a target instruction is trans-
lated to a decoded instruction. The target instruction is fetched from

the address on the physical page that corresponds to the position of
the decode-me pseudo instruction in the decoded instruction page.
For example, if the decode-me pseudo instruction in the tenth slot is
executed, the tenth word in the corresponding physical page is trans-

lated. The new decoded instruction replaces the pseudo instruction,
and this new instruction is executed.

There are 1025 decoded instruction slots in each decoded u-
struction page. The first 1024 of these hold decoded instructions
that can be in a physical page (a physical page is four kilobytes,
and each MC88100 instruction takes four bytes). The 1025th slot

holds a sentinel called the requahfj-decocied-ip pseudo instruction.
When a non-branching decoded instruction in the 1024th slot is
finished executing, the DECIP is incremented and points to the
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requalify -decoded-ip pseudo instruction. Because the flow of con-
trol has moved off of the page, the DECIP must be recomputed
to point to the first decoded instruction of the new page. The use

of requalify -decoded-ip pseudo-instructions as sentinels speeds in-

struction handlers, because they never need to explicitly check for
the end-of-page condition.

Dividing the physical and decoded instruction spaces into pages

allows incremental, demand-driven allocation of memory. This

lazy memory allocation conserves host virtual memory (a point
discussed in the next section).

Talisman does not perform garbage collection. Avoiding gar-

bage collection kept Talisman simpler at the expense of higher
vn-tual memory consumption, Since the units of allocation are large

(4k for a physical page structure, 20k for a decoded instruction
page), garbage collection would probably be redundant with the
host’s virtual memory system. That is, garbage collection would

reclaim memory contained on pages which would otherwise be
paged out. Thus, garbage collection would conserve host virtual
memory, not physical memory, at the expense of higher simulator
complexity.

4.4 Processor State and Memory Use

Figure 3 shows the relationship among processor state, simulated

physical memory, and the decoded instruction pages. Upon simu-
lation start-up, the user specifies the number of nodes, number of

processors per node, and size of node memory. Talismarl allocates
an array of processor state structures to match the user’s request,

The processor state holds pointers to the physical memory map and
the decoded instruction map for the node. All of a given node’s
processor state structures point to the same maps: a node’s memory
is shared by all of its processors. The state structure also contains
all of the processor’s registers and counters to maintain execution

statistics, such as the cache hit rate,
In Figure 3, note that the second page of physical and decoded

-l WI ~dge, ,

Corresponding physxxd
and decoded mstructlon

Proc.

1

[El

1~~* “
general registers

Proc. scoreboard model Decoded
mstroctlon

o specad registers age
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page map

nil
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1+
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Figure 3: Talisman Data Structures

instruction memory is allocated (i.e., the second pointer in both

the physical and decoded instruction page maps are tilled in). In
this example, either the front end or a running program accessed

the second page, causing a physical memory page to be allocated.

Also, an attempt has been made to execute an instruction on the
second page, causing a decoded instruction page to be allocated.

The memory maps will gradually fill in as the running program

executes memory access instructions and branches to new pages.
Typically, however, large pieces of both maps are vacant. The

decoded instruction map is especially likely to be sparse; vacancy
represents conserved host virtual address space. Because these

maps are replicated for each node, large simulations would require
far more virtual memory than is available on the largest hosts if

Talisman did not use a sparse representation. The startup time to
initialize simulation memory would also be enormous.

For example, an F~ of 32,768 points on 256 nodes, each
with 1 MB of simulated physical memory, requires about 50 MB

of decoded instruction memory out of a total process requirement
of 260 MB. (In this example the working set is approximately
100 MB.) If Talisman did not allocate memory on demand, the
F~ would consume 1342 MB for decoded instruction memory

alone, We estimate that the steady-state penalty for the sparse
representation is well less than one percent in both execution time

and memory consumption.
Though the lazy allocation conserves memory, the space taken

for decoded instructions can limit the simulator’s use. We were not
so limited in our work, but it is easy to imagine programs that, when

run on hundreds of processors, would take a gigabyte of decoded
instruction memory. There are several straightforward solutions

to this problem: (1) allocate smaller decoded instruction pages
to reduce internal fragmentation, (2) reclaim decoded instruction

pages that have not been recently used, (3) share decoded instruc-
tion pages between processors. The first solution is straightforward
and will only increase the page-crossing cost. The second solution

could be done in conjunction with full modelling of the i-cache

and will probably result in only a small decrease m performance

17



The third solution is possible, and is used by Magnusson [17], but

has a number of problems with instruction cache modelling, debug-

ger breakpoints, register access, and support for multiple program
workloads

4.5 Modelling Basic Instruction Execution Time

To model the number of cycles an instruction takes, each simulated
processor has an associated current cycle count. This variable is

incremented by every handler to reflect the number of cycles it takes
to issue the instruction.

The MC88 100 has a register scoreboard; it contains one bit

for each general purpose register. When multicycle instructions

issue, they set the scoreboard bit corresponding to the instruction’s
destination registers. When multicycle instructions finish, their

destination register scoreboard bits are reset. Issued instructions
stall the processor until the operand register’s scoreboard bits are

clear. The scoreboard mechanism ensures correct operation of
instructions that use values produced by multicycle instructions.

Talisman models the scoreboard with an array of time-available

values that correspond to general registers (see Figure 4). Every

multicycle instruction handler sets the time-available slot corre-

sponding to its destination register to the cycle count value when

the register in the hardware would be available. The handler then
produces the result and stores it in the destination register. Instruc-

~ions that read registers advance the processor cycle count to the

maximum of the time-available slots corresponding to each operand

register and the current cycle count.

~:

E=
register 31 value

register O time-avail

register 1 time-avail

register 2 time-avad <:

Fixed offset

register 31 time-avail

Figure 4: Relationship between General Registers and Time-Avail-

able Array

For example, if an addu instruction reads registers three and

four and takes one cycle to issue, and if registers three and four have
time-available counts of 105 and 107 respectively, and if the cycle
count before the addu issue is 100, then the processor cycle count
will be set to 107 by the addu handler. In this case, the one-cycle
issue time and the time to wait for register three are hidden by the
time to wait for register four, as in the real processor.

The scoreboard model depends on being able to calculate the
time-available for all multicycle instructions at the time the instrtrc-

tions issue. This was possible in Talisman, and we believe that it
will be so for most similar systems.

Instruction handlers access the time-available slots using the
same pointers they use to access the register values. Handlers

access the time-available value by adding a constant to the register

pointe?

The timing of the data cache is modelled by keeping track of
what the tag state of a real MC88200 cache [21] would be. Talis-

man models the MC88200’S Least Recently Used (LRU) behavior
by keeping the cycle count of the most recent access to each cache
line. While this takes more storage than the LRU bit scheme that
the hardware uses, it is simpler to understand and faster to exe-

cute. The data cache model calculates the time-available value for
load instructions and puts this value in the destination register’s

corresponding time-available slot.
The MC88 100 processor has a three-slot pipeline in the Data

Memory Unit (DMU) through which all memory access instruc-
tions must flow after they are issued (see Figure 5). Each load or

store of a word or less uses one DMU slot; double-word loads and

stores use two slots. When the pipeline is full, a memory instrtrc-
tion attempting to issue will stall until the slots it requires become
available. When the request in slot zero is satisfied, the pipeline

shifts the contents of slot one to slot zero and slot two to slot one.
After the shift, slot two is free to accept a new request.

Talisman keeps a three-element array of time-available values

to model when the reference in each slotofarealMC88100 DMU

pipeline would be available. Each DMU slot used advances the
current processor cycle to the maximum of the current cycle count

and the time-available value in the oldest slot (slot 0). The array
is shifted down to eliminate the oldest slot and to make available

the slot at the other end of the array (slot two). Slot two n then

filled with the time at which the reference in a real MC881OO would

vacate the DMU.

4.6 Processor Switching

Talisman simulates a multiple-processor system on a single-proces-
sor host by executing a few cycles of each simulated processor

before switching to the next processor. The default number of cycles

per switch is 10. The user can change this number. Each instruction

handler checks to see if the processor cycle quantum has expired.
If it has, the handler branches to code that finds another processor

to simulate and then dispatches the next instruction for the new
processor. Because each instruction handler runs to completion,

processor switching is done between instructions only A processor
can thus take more time than the quantum provides.

Talisman chooses processors so as to minimize skew between
any pair of processors. It examines a circular list of running proces-

sors in around-robin order and picks the first one whose cycle count
is below the current system cycle-count threshold. It increases the

threshold only when all processors have executed beyond it.

To keep the cost of switching low, only four key processor-
dependent interpreter variables are kept in host registers: DECIP, 1P,

a pointer to the current processor’s state structure. and the processor
current cycle3.

There is one instruction that can take a long time to execute:
a store of a cache-copyback command to the control register of a

data cache that is full of dirty data will take about 10,000 cycles.
The processor executing this instruction will jump far ahead in

simulated time and will not execute its next instruction until the other
processors have caught up. Instructions are not interruptible on
the simulator or the hardware, and the cache-copyback command
writes no data that is visible to the program. This means that

2A subtle implication of this method M that the hteml pools must have dummy

time-available slots that are in the same relatronshlp to the hteral values as the red
time-available slots ~e to the register values instruction handlers dereference operand

pointers the same way for both register and Immediate operands,
3Talisman’s predecessor kept just the DECIP m a host register and calculated 1P

when as value was needed [1] The predecessor was written for a host with few

registers, and It therefore made sense to calculate the 1P from the DECIP Doing so

in the current version would comphcate the threaded-code Interpreter, and Tahsmm’s

host has enough registers for botb DECIP and 1P vambles
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the simulator’s semantic and timing behavior n the same as the

hardware’s. Long-running instructions execute frequently in the
benchmarks discussed in Section 6.

4.7 Modelling Data Memory Access

While most instruction handlers are in a single large function, mem-

ory access instruction handlers are complex and so call a separate

function for most of their semantic effect. The memory access
function first translates the data’s virtual address by calling the TLB

model. The TLB model simulates the Motorola MC88200’S 56-

entry TLB. TLB misses delay the memory access, as they do in the
hardware.

The physical address computed by the TLB model is checked
to see if it is an 1/0 address or a memory address. If it is the

former, the L/O module is called. Otherwise, the physical memory
map is accessed to find the host memory that models the addressed

simulated memory. Host memory is allocated if it is not yet in the
map. The memory operation is performed, and the data cache state

is updated using the physical address returned by the TLB model.

Unlike the real cache, the data cache model does not contain

the data itself. It contains tags, LRU information, and state bits.
The lack of data storage in the cache means that memory coherence

errors can be latent on Talisman that are manifest on the hardware,

and vice versa. In other words, an artifact of the data cache model

is that memory is always coherent. If the operating system does not
flush the data cache when it should, the error will not be seen on
Talisman, though it may be seen on the hardware. Or, a bug may

occur running on Talisman that is the result of cached memory being
overwritten. Such a bug may be latent on the hardware, because the
hardware processor may read the correct value from cache and not

see the erroneous value in memory.
For our purposes, this difference in memory coherency was a

small price to pay for a simpler cache model and smailer cache

state. In addition, it causes no timmg inaccuracies. Magnusson
and Werner describe an alternative approach to modelling memory
systems in their paper on SimICS [16].

4.8 Modelling Instruction Memory Access

Talisman models instruction cache cold misses, but not capacity
misses. It models cold misses by distinguishing betwtien trans-

lated and untranslated instructions. When a decode-me pseudo-

instruction is encountered:

1. The processor’s cycle count is advanced to reflect the time to

fetch an instruction cache line,

2. All four MC88 100 instructions in the cache-line that cor-

responds to the executed decode-me pseudo-instruction are

translated to decoded instructions.

This method for modelling instruction cache cold misses re-

quires no extra work in the case of a decoded instruction cache hit

and little extra work in the case of a miss. However, it simulates
only cold misses: while the real instruction cache is finite (4096

instructions), the decoded instruction cache is unlimited. A straight-

forward extension would model capacity misses by invalidating a

cache-line of decoded instructions when a real instruction cache
would replace a valid cache line. We considered implementing this

extension, but felt it was unnecessary because the benchmarks fit in
the instruction cache and experience few capacity misses.

4.9 Modeliing 1/0

When the loadlstore function encounters an address outside the
range of physical memory, it calls the 1/0 module with this address
and a pointer to the decoded loactlstore instruction. The 1/0 module

searches a table that relates address ranges to particular 1/0 model
functions. The table lookup corresponds to the address decoders

found in hardware between the processor address bus and the 1/0

device select signals 4.

The I/O models include Meerkat’s 32-bit cycle counter, interrupt

controller status and control registers. internode status and control
registers, internode DMA controller,
MC88200[21] (cache and memory management unit) control pages,

and some pseudo-devices. Pseudo-devices models are accessed by
the simulated program just as are other device models, but pseudo-

devices do not correspond to any real devices. Pseudo-device mod-
els allow the simulated program control over execution statistics

collection. For example, one such model allows a program to turn
execution profiling on and off.

4.10 Modelling Supervisor Mode

Many simulators, especially fast simulators, model only user mode.
This limitation greatly reduces the value of such simulators in evaht-

ating architectural tradeoffs because operating system performance
and operating system interactions are significant factors in deter-
mining overall system performance.

Talisman supports both user and supervisor modes by allow-
ing instructions to be discovered at run-time, and by modelling

the semantics of virtttal-to-physical address translation, cache and
TLB manipulation operations, synchronous and asynchronous ex-

ceptions, the trap-time registers that support exception processing,
various I/O devices, and supervisor-only instructions. Operating

systems typically reveal code at run-time and so cannot run on

4Ta11sman’s predecessor used a hashing scheme to speed the lookup [ 1] However,

Talisman has a small table of dewces, turd tbe lookup time M not s)gndicant
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simulators that depend on processing instructions prior to simu-

lation [19]. For example, a simulator that has to preprocess all
instructions before the simulation is started cannot deal with an

operating system that loads program text from a simulated disk.
In addition, some operating systems generate code on the fly in

response to user requests [18]
The execution cost of supervisor modelling is mostly seen in

the memory access instructions, which must consult the TLB. TO

mitigate this cost, we carefully coded the TLB model to be efficient.

We estimate that overall execution performance is reduced by less
than ten percent due to supervisor-mode modelling.

Supervisor mode modelling adds significant complexity to the
simulator, especially in the area of exceptions and device models.
However, this complex code was both tractable and necessary. All

of the programs we ran made extensive use of supervisor mode.

4.11 Modelling Control Transfer Instructions

The handlers for control transfer instructions update both the 1P and

the DECIP. Updating the 1P is easy: the new value is computed by
adding a branch displacement to the 1P’s value or by taking a target

register value. Updating the DECIP is a little more complicated.
A branch instruction to a target that is on the same page as

the branch itself N called on-page and is translated to a decoded
form that contains a pointer to the decoded form of the target of the

branch. On-page branches are fast: they need only to dereference
a pointer. Off-page branches are not as efficient, as the decoded

target pointer must be resolved during execution.
The execution-time translation of an instruction address into

a decoded instruction pointer is necessary because the instruction
translator makes no assumptions about the contents or allocation of

other decoded instruction pages. That is, the only pointers to the

decoded instructions within a given page are contained in that same
page. Talisman does not allow cross-page pointers because decoded
instruction pages correspond to physical pages while branch seman-

tics are defined in terms of virtual addresses. The correspondence
between virtual target instruction addresses and decoded instruction
slots is dynamic, i e., it can change after threaded code is generated,
and there can be multiple virtual mappings of a single physical page.

By resolving cross-page branches dynamically, these semantics are
preserved.

Delayed branches increment both the DECIP and the 1P, just

as non-branching instructions do. In addition, they set a flag if the

delayed branch is taken (i.e., the branch condition is true). Non-

branching instruction handlers check this flag, which, when true,

indicates that the previous instruction was a taken delayed branch.
In this case control is passed to the target of the delayed branch after
the non-branching handler finishes its semantic actions, Branching
instructions need not verify that they are not in a branch delay

slot, because the MC88 100 specification prohibits control-transfer
instructions from being in delay slots.

Jump instructions transfer control to locations whose targets

come from a register and are thus not known until execution For
this reason, a jump N treated like an off-page branch. Its execution
requires translating a virtual target code address into a pointer to a

decoded instruction pointer.
A small cache of translations from target virtual instruction

addresses to decoded instruction pointers speeds the interpretation

of jump and off-page branch instructions. This cache is flushed

whenever the virtual-to-physical address mapping changes,

5 Talisman’s Performance

Talisman’s performance is a function of workload and the processor
switch time All tests reported here use a processor switch time of
10 cycles. We found the difference in simulator accuracy between

switching every cycle and switching every 10 cycles to be insignif-

icant (our notion of “accuracy” is discussed in the next section). At
this setting, the performance ranged from 500,000 to 750,000 sim-

ulated processor cycles per second on a SPARC- 10/30 hosts Thus,
on average, Talisman simulates one Meerkat processor cycle in 54

to 72 SPARC-10 cycles. While some workloads could cause much
lower or higher performance, all of the tests we used were in this

range, The programs we used to measure simulator performance

are the same as those used to test accuracy (see Section 6).

The SPARC-10 host can do more per cycle than the processor
we model. Therefore, the figure of 54 to 72 SPARC- 10 cycles per

Meerkat processor cycle must be adjusted to make a fair estimate
of Talisman’s slow-down. We estimate that the SPARC- 10 has half
the Clocks Per Instruction (CPI) of the Meerkat processors, This

means that there is roughly a slow-down of 100 to 150 per simulated

processor,

The system slow-down is the ratio of the number of host cycles

it takes to simulate one cycle of a whole Meerkat. Simulating one

cycle of a multi-node Meerkat requires simulating one cycle of

each processor and the interconnect. To calculate this figure, we

multiply the per-processor slow-down by the number of simulated

processors. Thus, a simulated 256-node Meerkat has a slow-down
of 27,000- 37,000 to one. Because our host is about four times

faster than the Meerkat processor, however, the ratio between wall-
clock time and simulated time is not this large For example, a 32k
FIW simulation runs for 850,000 cycles, or 42 milliseconds This
takes six minutes of SPARC-10 time, which means that the ratio of

SPARC- 10 time to Meerkat time is 8,600 to 1.

6 Timing Models and Simulator Accuracy

We used a suite of tests both to guide development of timing models
and to evaluate Talisman’s overall accuracy. This section addresses

these two issues.

6.1 Timing Model Development

Our method of timing model development was to iteratively:

1

2.

3.

4.

5.

6.

7.

8.

Measure the difference between execution times of a mod-
erate or complex benchmark program on Talisman and the
prototype.

Identify which aspect of the prototype’s timing was most

responsible for the difference,

Write a low-level test that is more sensitive than the bench-

mark to the aspect identified in Step 2,

Verify that the low-level test shows a significant performance
difference between Talisman and the prototype.

Add a timing model to Talisman that captures behavior iden-

tified in Step 2. The new timing model often has parameters
that the user can adjust. Pick default values for these param-

eters.

Rerun the low-level test to verify that the new timing model
makes Talisman accurate on the low-level test This may
require adjusting the model’s parameters, If not, examine the

test and Talisman on a cycle-by-cycle level. Fix the model.

Rerun the higher-level benchmark to see lf the aspect iden-
tified in Step 2 was correct. If not, repeat. If so, check the
accuracy of Talisman on another benchmark test.

Stop when Talisman is accurate for all the tests,

‘The host workstation uses a Super-SPARC processor clocked tt 36 MHz, and has
a SPEC1nt92 mtmg of 452.
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~ ‘ardware‘a’isman- Difference
(,u-seconds) (~-seconds) p-seconds Percent

loop with no mem activ 0.301 0.301 0.000 0.0

FP add 0.704 0.754 0.050 6.6

FP multiply 0.857 0.855 -0.002 -0.2

FP divide 3404 3.404 0.000 0.0

FP mem add/mukiuh 1.711 1.710 -0.001 -0.1

cache write hit 0.350 0.351 0.001 0.3

double cache write hit 0.401 0.401 0.000 0.0

uncached read 0.867 0.862 -0.005 -0.6

double uncached read 1.336 1.323 -0.013 -1.0
J4

uncached write 0.360 0.357 -0.003 -0.8

double uncached write 0.718 0.714 -0.004 -0.6

I/O read 0.851 0.851 0.000 0.0
J .

1/0 write 0.452 0.449 -0.003 -0.7

CMMU control page read 0.701 0.701 0.000 0.0

CMMU control r)aszewrite 0.301 0.301 0.000 0.0
u 1“ 1 , I JJ

Table 1: Low-Level Talisman Accuracy Test Results

Test name Hardware Talisman Difference

(p-seconds) (,u-seconds) p-seconds Percent “

cache read misses 1.074 1.079 0.005 0.5
.,. .,, -–. ,.–– . . . . . <<m” ,4-5 . . . . n,-
aoume cacne reaa misses 1.13.4 1.142 -U.uu I -U.cl

cache write misses 0.926 0.927 0.001 0.1

double cache write misses 0.975 0.977 0.002 0.2
1 J

full write pipeline 0.923 0.931 0.008 0.9

instruction cache line fill 0.782 0.781 -0.001

coPy uncached to cached

-0.1

0.938 0.936 -0.002 -0.2

exchange memory instruction 0.971 0.974 0.003 0.3

bas contention 3 reads 1.381 1.391 0.010 0.7

write back on write miss 1.286 1.291 0.005 0.4

write back on read miss 1.427 1.430 0.003 0.2

E’ ~
L

invalidate empty cache line 0.502 0.505 0.003

copyback full cache line

0.6

0.925 0.860 -0.065 -7.6

invalidate empty page 15.868 15.784 -0.084 -0.5

copyback half full page 75.060 75.008 -0.052 -0.1

copyback full page 134.224 134,252 0.028 0.0

copyback empty data cache 54.800 54.640 -0.160 -0.3

copyback full data cache 528.800 530.360 1.560 0.3
cor)vback+invalid whole cache 529.800 530.720 0.920 0.2

Table2: Medium-Level Talisman Accuracy Test Results (Uniprocessor)
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6.2 Timing Accuracy Tests

Table 1 shows theresults oflow-level tests ofindividual float-
ing point and memory access instrtrctions. The times reported are

in microseconds and are an average of the time to execute a sin-
gleiteration of theloop containing themeasured instmction. The

largest error isinthe floating point addinstmction test. Talisman
overstates the cost of this instruction by one cycle, or50nanosec-

ends. Talisman does notmodel contention forthesingle wtite-pofi
of the MC88100’s register file. The MC88100is capable of writing

oneword percycle toits register file. Talisman makes a pessimistic

guess as to whether contention will occur. In the case of the floating

point add below, this guess is incorrect. Reconsidered addinga

timing model to correct this, butdecided that theincreasedaccu-
racy would not compensate for the effort, simulator performance

degradation, and added simulator complexity.
Uncached read and write tests exercise the DRAM system. Tal-

mman models interference with DRAM refresh, which consumes
about two percent of the memory system’s bandwidth. DRAM

refresh is rarely modelled in system simulations, because it is con-
sidered such a small factor. Note, however, that if Talisman did not

model refresh, the errors wotddbe several times larger. Many of
theemors are below one percent. These emorsmayb eduetos light

timing differences between thehardware and Talisman. These dif-
ferences can cause Talisman to model one more, or one less, refresh

cycle than occurs on the hardware. In fact, the hardware measure-
ments show variation from run to run of about one percent.

Table 2showsthe resuksof more complex operations. These

include various cache operations, synchronization instructions, and

sequences that load the local memory bus. The largest error is
shown in the “copyback full line” test, where Talisman understates

the time foracopybackof acache line by a little over one clock
cycle,

We ran several parallel applications on four-node real and sim-

ulated Meerkat’s. Table 3 shows the correspondence of Talisman

and hardware results for a global combine, SOR, and FIT (see [2]
for adescription of these codes). The largest error is 7.8% on a

32-byte global combine.
Errors on the complex tests are larger than on the simple tests.

This is a product of our method for achieving timing accuracy. The

simple tests were created to test modeling features of the simulator,

so naturally the simulator performs well on them. The complex
tests, on the hand, were chosen to gauge the overall accuracy of

the simulator. If we kept going with our methodology, we would
identify the root of the difference on the 32-byte global combine,

write a simple test to exercise this difference, add a model to bring
the simulator closer to the hardware, etc.

6.3 Measurement Experience

In some cases we changed our run-time system to make the sim-

ulated and prototype execution times closer. For example, we ini-
tially used processor 1 on every node to process internode interrupts,

while processor Odid everything elsec. On a message-exchange test,
the simulator reported half the execution time of the hardware: after
processing interrupts, processor 1 had dirty cache state that had to
be flushed to memory and then reloaded by processor O. The simu-
lator did not model the MC88200’S snooping and associated cache
operations, because we were not interested in the performance of
programs that used multiple processors per node. We changed the
run-time system to use processor O for everything. This improved

the performance of the prototype on small messages and brought
the simulator and prototype execution times in line.

‘The Meerkat hardware has four processors per node All of the tests used in this

paper ran with one processor per node enabled

Some programs have different execution results on the simulator

and the prototype: there are aspects of the prototype’s timing that
we could not - or did not want to - model. We did not model the

timing of operations that we believed would not affect the outcome
of our measurements and were difficult to model. For example, the
prototype runs a debugging monitor that mediates between the cross

debugger rtmning on the Sparcstation host and the running Meerkat

program. This monitor: (1) lets the cross debugger control the
running Meerkat program, and (2) fields requests from the Meerkat

program for operating system services performed on the host. The

semantic effect of the monitor is modelled in the simulator, but

not its timing or its effect on instruction and data caches. The

time it takes the prototype to perform operating system services

is a function of the load on the Sparcstation host, the relationship
between the time of the request and the host’s process interval timer,

and other factors.
To enable accurate measurements, we were careful to measure

only the execution time of sections of code that do no I/O through the
monitor and whose initial cache state is not dependent on previous

calls to the monitor. In practice, we found this easy to do, and
it usually meant avoiding print~s until after a measurement was

taken.

6.4 Validity of Large-System Simulations

The hardware prototype has four nodes, but we use Talisman to
evaluate systems with up to 256 nodes. We cannot directly verify

the simulator’s accuracy with systems with more than four nodes,
as we do with systems with four or fewer nodes. However, we
have good reason to believe that the large-system simulations are

correct. First, we know that Talisman accurately models the nodes

of these large systems. Second, the interconnect model is fairly
detailed and keeps track of each node’s use of the interconnect

on a cycle basis. The combination of accurate node models and a
detailed interconnect model should yield an accurate system model.

Third, even the four-node system running several of the benchmarks
listed in Table 3 saturate the interconnect at times. If there were

errors in the model, one would expect to see a significant difference
between the benchmark running times reported by the hardware and

Talisman. The lack of significant differences, the low-level of detail
with which we model the interconnect, and the high accuracy on

small systems gives us good confidence that Tahsman is accurate
for large systems.

7 Debugging Features

There are a number of benefits of using simulators over hardware,
e.g., adaptability, deterministic execution, low cost. In addition to
the benefits that most simulators provide, Talisman has a number
of features that gave insight into Meerkat behavior and aided in

program development:

●

☛

●

Unlike the hardware, Talisman allows single-stepping and
breakpointing of exception handlers. Large portions of the

message-passing system execute as an exception handler,
making it much easier to debug this code in the simulation
environment.

Talisman has a precise memory breakpoint feature that stops

execution of all processors the instant the watched location
is accessed. This precise stopping of execution aids certain

debugging problems tremendously. Building as precise a
breakpoint into the prototype would require redesigning the

processor.

Talisman compiles conditional breakpoint expressions into
target machine code (see [2] for details) to speed conditional
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●

Test name Hardware Talisman DMference

(p-seconds) (~-seconds) ,u-seconds Percent

Global Sync Average 94.558 90.142 -4.416 -4.9

Global Combine 8 bytes 130.200 127.400 -2.800 -2.2

Global Combine 16 bytes 94.400 95.800 1.400 1.5

Global Combine 32 bvtes 97.400 105.600 8.200 7.8

u u
Global Combine 32768 bites 15671.200 15223.200 -448.000 -2.9

R/B SOR 32x32 30252.000 29379.000 -873.000 -3.0

R/B SOR 32x32 59248.800 58650.600 -598.200 -1.0

F~ 16 points 2266.200 2300.200 34.000 1.5

FFT512 points 5152.000 4883.800 -268.200 -5.5

FIT 1024 ~oints 10136.000 9658.400 -477,600 -4.9
I

FIW 2048 ~oints
,

21088.600 ] 19987.600 I -1101.000 I -5.5

FIW 4096 Doints 46496.400 I 43895.000 ] -2601.400 I -5.9

Table 3: High-Level Talisman Accuracy Test Results (4-Node)

breakpoint evaluation by several orders of magnitude. The

user can thus make liberal use of conditional breakpoints
without having to wait long periods for frequently-false con-

ditions to be evaluated.

Talisman o~tionallv animates internode bus activitv in one X
window and displays an internode bus contention ‘histogram

in another. Both of these displays gave valuable insight into

system behavior, were easy to add to Talisman, and would be
difficult to implement in a hardware prototype.

8 Summary

Simulators vary widely in their application, structure, accuracy, and

performance. We outlined several simulator applications and the
simulators typically used. Talisman is unique in its combination of
speed, efficient use of memory, fine modelling detail, portability,

user/supervisor modelling, and modelling of address translation.
With this combination of features we were able to model large

systems at a fine level of detail and make accurate predictions about
the performance of large systems.

We described Talisman after placing it in the context of a range
of simulation strategies. Talisman can execute instructions quickly,
yet models timing accurately, and can efficiently multiplex amongst

many simulated processors.

Talisman’s construction began with a fast threaded-code inter-
preter and a translator to generate threaded-code from machine
instructions. To make Talisman usable, we chose a powerful sym-

bolic debugger for the front end. We achieved timing accuracy by

carefully adding functional models to the behavioral simulator base.
These functional models slowed Talisman, but because we added

only those functional models that substantially affected accuracy,
the degradation was less than an order of magnitude.

Talisman executes about 100 host instructions per simulated in-
struction. This is much faster than other timing-accurate simulators.
The high performance allows users to model multicompu{ers with
hundreds of processors running substantial programs.

A number of performance monitors and animation features give

the user a comprehensive view of the simulated system. These
features were easy to add to Talisman, but would be difficult or

impossible to add to the prototype. They are nonintrusive, i.e., their
presence does not affect the execution behavior of the simulated

system.
We showed the results of running a suite of tests on both the

Meerkat prototype and Talisman. These tests show that Talisman
is a faithful model of the prototype, usually differing from the

prototype by only a few percent.
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