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Abstract

Compression of digital video is the only viable means to

transport real-time full-motion video over BISDN/ ATM net-

works. Traffic streams generated by video compressors ex -

hlbit complicated patterns which vary from one compression

scheme to another. In thk paper we investigate the traffic

characteristics of video streams which are compressed based

on the MPEG standard. Our study is based on 23 minutes

of video obtained from an entertainment movie. A partic-

ular significance of our data is that it contains all types of

coded frames, namely: Intra-coded (1), Prediction (P), and

Bidirectional (B) MPEG frames. We describe the statistical

behavior of the VBR stream using histograms and autocor-

relation functions. A procedure is developed to cletermine

the instants of a scene change based on the changes in the

size of successive I frames. It is found that the length of a

scene can be modeled by a geometric distribution.

A model for an MPEG traffic source is developed in

which frames are generated according to the compression

pattern of the captured video stream. For each frame type,

the number of cells per frame is fitted by a lognorrrml distri-

bution whose parameters are determined by the frame type.

The appropriateness and limitations of the model are exam-

ined by studying the multiplexing performance of MPEG

streams. Simulations of an ATM multiplexer are conducted,

in which traffic sources are derived from the measured VBR

trace aa well as the proposed model. The queuein,g perfor-

mance in both cases is found to be relatively close.

1 Introduction

Future BISDN/ATM networks promise to provide the means

to transport diverse traffic streams. These streams vary in

their traffic characteristics and performance requirements.

The largest proportion of the bandwidth in BISDN/ATM

networks is expected to carry video traffic. This is due to

the introduction of many new video/multimedia services and

also to the large amount of bandwidth needed to transport
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real-time digital video. The huge link capacity provided by

optical fibers can be quickly saturated by few video streams

transmitted in their uncompressed digitalformat. To in-

crease the number of video streams that can be simulta-

neously carried over the link, compression schemes are em-

ployed in order to reduce the amount of bits contained in

video frames. The size of a compressed video frame varies

depending on the scene activity and the type of compres-

sion involved. Hence, the output of a video codec is a VBR

stream. Unlike conventional data networks, ATM networks

provide efficient support for VBR traffic.

The focus of this paper is on a particular compression

algorithm which has recently gained considerable attention,

namely the Motion Picture Experts Group (MPEG) stan-

dard (see [1] for an overview of MPEG). Among other com-

pression standards, MPEG is being the focus of our study for

two reasons: (1) it has been standardized by CCITT and (2)

it involves several types of compression that are also used

by other compression algorithms. This last reason makes

MPEG a generalization of many existing compression algo-

rithms. The main objective of this paper is to develop a

traffic model for an MPEG-coded video stream.

Several traffic models have been proposed to characterize

compressed video streams [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

(also see [14] for a survey). The parameters of these models

were obtained by matching certain statistical characteristics

of an actual video sequence and the model under consider-

ation. Particular emphasis was on matching the correlation

structure of the bits-per-frame sequence, since correlations

are known to have a great impact on the queueing perfor-

mance of a statistical multiplexer [15]. Correlations arise

naturally in compressed video traffic and their patterns are

largely determined by the type of video (e.g., videophone,

motion-picture, teleconferencing) as well as by the com-

pression algorithm used. In [2] the authors proposed two

traffic models for the frame-size sequence of a video-phone

stream compressed using a conditional replenishment algo-

rithm. The first model is a first-order autoregressive pro-

cess, while the second is a fluid model. A more elaborate

model based on an autoregressiue- moving average (ARMA)

process was proposed in [4]. Skelly et al. [8] introduced a

a histogram-based traffic model using a quasi-static approx-

imation. In [9] the authors used the Transform-Expand-

Sample (TES) approach developed in [5] to model a video

stream that was generated using a DCT, but with no differ-

entiaf or motion compensation. Heyman et af. [6] analyzed

the VBR trace for a 30-minute long video-teleconferencing

sequence and suggested that the number of cells per frame

approximately follows a gamma distribution. A sophisti-
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. . . . .

Compression Pattern (length = 15 frames)

Figure 1: The compression pattern used to generate the video stream.

cated autoregressive model was proposed in [7], which con-

sists of the sum of two AR(1) processes and a Markov chain.

Pancha and El Zarki [16] described the statistical character-

istics of a few minutes of full-motion video generated by an

MPEG encoder with no Bidirectional (B) frames. None of

these models can be used to characterize video streams gen-

erated by MPEG encoders. The main reason is that MPEG

allows several modes of compression which, altogether, re-

sult in a quite different traffic pattern than the patterns

observed in previous studies.

In this paper, we use a 23-minute long video sequence to

study the statistical characteristics of MPEG traffic and to

develop a traffic model for an MPEG-coded video stream.

The sequence was taken from the movie The Wizard of Oz,

and was digitized and encoded using a public domain soft-

ware MPEG encoder developed by the Berkeley Plateau Re-

search Group. The procedure which was used to obtain the

compressed video sequence is described in the next section.

2 The Compression Setup

The experimental data (i.e., the sequence of bits per frame in

the compressed video stream) was obtained via a two-stage

approach. In the fist stage, video frames are digitized and

stored on magnetic tape. A computer program was written

to capture and digitize video frames. The program runs in

a workstation connected to the laser disk player. Using a

Sun Video board installed in the workstation, the program

receives analog frames and digitizes them one at a t i me. It

then sends control signals to the laser player to position the

head at the next frame and repeat the process. Frames are

converted to 4:1:1 YUV format (the input format for MPEG

encoders) and are written to hard disk. After accumulating

some number of frames, these frames are moved from the

hard disk to magnetic tape. The process continues until

the entire stream is stored on tape. In the second stage,

the frames are read from tape and compressed using the

Berkeley MPEG encoder. The frame-size data are extracted

during the encoding process.

Compression in MPEG is based on exploiting spatial as

well as temporal data redundancies. Frames can be coded as

1, P, or B frames (intra-frame, predictive, or bidirectional,

respectively). Frames of type 1 are compressed used DCT

only, while B and P frames involve motion compensation

(prediction and interpolation) a. well. Details of the MPEG

standard can be found elsewhere (see [1]). The compression

pattern used to encode the examined video stream is shown

in Figure 1.

3 Statistical Characteristics of M PEG Streams

3.1 Frame Size Measurements

Based on the previous setup, 41760 video frames were com-

pressed and their sizes were recorded. At 30 frames/see, this

represents about 23 minutes of real-time full-motion video.
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Frame Index

Figure 2: The frame size sequence (frames 1 to 2000).

Figure 3: The frame size sequence (frames 2001 to 4000).

Portions of the frame-size sequence are plotted in Fig-

ures 2 and 3. In both figures, the larger frame sizes (which

are depicted by the lightly shaded areas) correspond to I

frames. The darker parts of the figures correspond to P and

B frames which are smaller in size than 1 frames. It is dif-

ficult, however, to distinguish P frames from B frames in

these figures. Sample statistics computed from these data

are shown in Table 1.

As we demonstrate later in this paper, an MPEG traffic

stream exhibits a complicated correlation structure. The

complexity of this structure is the result of having three

types of frames in one stream. A model for MPEG traffic

can be facilitated by decomposing the VBR sequence into

three separate subsequences , each consisting of frames of

the same type. Traffic modeling can then be applied to

each subsequence. Sample paths from these subsequences

are shown in Figures 4-6.
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Number
~ All Frames I f Yrames I F’ Frames I B Frames

Sample Mean (in Kbits)

m

Sample Standard Deviation (in Kbits)
Maximum (in Kbits)
Minimum (in Kbits)

Table 1: Summary statistic for the frame-size sequence.
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Figure 4: Sample path from the I frames subsequence.
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Figure 5: Sample path from the P frames subsequence.
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Figure 6: Sample path from the B frames subsequence.

3.2 Scene- Length Distribution

From Figures 2 and 3 it is observed that the video stream
consists of several segments such that the sizes of 1 frames
in each segment are close in value. Intuitively, one expects
that each segment corresponds to a part of the movie with
no abrupt view shifts. We verified this intuition by observing
the movie. Each of these segments is referred to as a scene.
Note that only an abrupt change of the view accounts for
the beginning of a new scene. Camera panning and zooming
are not considered as scene boundaries.

To model the length of a scene, we watched the movie
and measured the length of all the scenes (in seconds). This
approach has the disadvantage of requiring the actual movie
to be displayed on screen. Another heuristic approach was
also used which (compared to the visually-measured values)
proved to be quite accurate. In this heuristic we use the
fact that a ‘sufficient’ change in the size of consecutive 1
frames is a strong indication of the start of a new scene.
Thus, one can use the frame-size subsequence of 1 frames to
obtain the scene-length data. We shall assume that the min-
imum length of a scene is one second (i.e., two consecutive
1 frames). Let {Z1(n) : n = 1,2, ...} be the 1 frames subse-
quence. Suppose we are in the ith scene that started with
the kth 1 frame. The (n + k + l)th 1 frame of the sequence
indicates the start of the (i + l)th scene if

lZl(n +k + 1) - Z~(n +k)l > ~1

(E~JJZ~(J) In

‘d ‘z’(n&i%iiTj7n+k)’>‘2
where T1 and T2 are two thresholds, A similar approach
based on a different heuristic was used in [9] to obtain scene
lengths.

The histogram for the scene length (in I frames) is shown
in Figure 7 using T1 = 0.05 and T2 = 0.1. The figure also
depicts a geometric pmf (with mean = 10.5 I frames) fitted
to the histogram. A Q-Q plot of the experimental distribu-
tion versus a geometric distribution is shown in Figure 8. It
is clear that the length of a scene can be adequately modeled
using a geometric distribution. We also tested the hypoth-
esis of independence between scene lengths, based on the
runs-up test [17]. At a 95~o level of confidence, the hypoth-
esis of independence cannot be rejected.

3.3 The Autocorrelation Structure

Correlations in video data arise as a consequence of visual
similarities bet ween consecutive images (or parts of images)
in a video stream. While compression of video results in
a reduction in these correlations, the VBR sequence of a
compressed stream still contains considerable amounts of
correlations. This is due to the periodic fashion of apply-
ing a given type of compression. For example, consider two

[+9
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Figure 8: The Q-Q plot for the scene-length distribution.

consecutive frames that correspond to two similar images.
Applying DCT to these frames (one at a time) will result in
two compressed frames with similar sizes (i.e. highly corre-
lated frame sizes).

Two types of correlations can be found in compressed
video streams: intra-frame and inter-frame correlations. Intra-
frame correlations appear when intra-frame compression (e.g.,
DCT coding) is involved and the VBR sequence is studied
at a smaller level than a frame (e.g., a slice level) [9]. Inter-
frame correlations are observed when the VBR stream is
studied at the frame level, as in the case of our study.

In several previous studies of video traffic, researchers ob-
served that the autocorrelation function for the frame-size
sequence of the examined compressed video stream has a
negative-exponential shape [2, 18, 6, 9]. A different shape of
this function should be expected in MPEG-coded streams.
The reason is that MPEG defines three different types of
frames which are generated according to a compression pat-
tern. The compression pattern is repeated until all the
frames in the stream are compressed, This results in persis-
tent periodicities in the inter-frame autocorrelation function.
The autocorrelation function for the frame-size seauence of
our video stream is shown in Figure 9.

Although the V13R sequence is being studied at a frame
level, the correlation structure for the sequence is quite com-
plicated and it depicts strong and pseudo-periodic correla-
tions. Two apparent periodic components can be seen in
F@e 9: one at lags of multiples of 15, which is due to
inter-frame correlations between 1 frames only , while the
other is at lags of multiples of 3, which is due to correlations

‘:~
0 10203040s0 eo7aaae0

Lag (in fmmes)

Figure 9: The autocorrelation function for the frame size of
the VBR sequence.

between P frames. Both components are bounded by expo-
nentially decaying envelops with large time constants (i.e.,
slowly decaying). This behavior can be better illustrated
by computing the autocorrelation function for the individ-
ual 1 frames subsequence (similarly, P frames and B frames
subsequences) as shown in Figures 10-12.

4 Modeling the VB R Stream

4.1 Frame Size Distribution

The frame-size histogram based on the complete VBR stream
is shown in Figure 13. It has the general shape of a Pearson
type V density function. We will not attempt, however, to
develop a model based on a distribution for all frames since
the impact of the frame type would nat be captured in a
such model. It is more appropriate to study the frame size
dktribution for each frame type. The frame-size histograms
for the 1, P, and B subsequences are shown in F&ures 14-16.

Three probability density functions (pdf) are examined to
determine the best fit to the experimental histograms. These
are Gamma, WeibuU, and lognormal pd.fs. The maximum-
Mcelihood estimators (MLEs) for the parameters of these
functions are used to obtain the fitted distributions shown in
Figures 14-16. Note that the amplitudes in each histogram
are normalized so that the total area under the hktogram is
one.

1, ,

Lag (in 1– Frames)

Figure 10: Correlations in the Jframes subsequence.
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Figure 14: Histogram and fitting density functions for the
1-frames subsequence.

Figure 12: Correlations in the B-frames subsequence.
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4.2 Video Traffic Model

From Figures 14-16 it is concluded that for each of the three
frame-size subsequences, a lognormal pdf provides the best
fit for the corresponding histogram. Hence, we choose the
lognormzd distribution as the basis for our model. The pdf
for this distribution is given by:

This function is parametrized by a shape parameter u >0,
and scale parameter p ~ (–co, m).

In our model, we assume that a video stream consists of
three types of frames: 1, P, and B. Frame types are gen-
erated according to the compression pattern in Figure 1.
The pattern is continuously repeated until the end of the
stream. The number of cells in a frame is assumed to follow
a lognormal distribution with MLE parameters which are
determined by the frame type. These parameters are given
Table 2.

Frame Type lognormzd
U I u

Table 2: The MLE parameters of fitting distributions.

The effect of scene changes is incorporated in the model
as follows: each stream is assumed to consist of several
scenes. Scene lengths constitute a sequence of iid random
variables with a geometric distribution (in units of 1frames).
The size of the first 1 frame in each scene is sampled from
a lognormal pdf. Consecutive 1 frames in the same scene
have exactly the same size of the first f frame, The same
procedure is applied to each scene. The fitting lognormal
distribution for 1 frames must be adjusted so that only one
1 frame from each scene is used in the fitting. We use the
average size of 1 frames in each scene to obtain the adjusted
histo~ram for the size of 1 frames (generated once at the

\“

start of each scene). This histogram and the corresponding
candidate fits (based on MLEs) are shown in Figure 17. The
MLE for the lognormai function in Figure 17 are p = 6.0188
and u = 0.4556.

Figure 17: The adjusted histogram and fitting density func-
tions for the 1 frames subsequence.

This model is used in some of the simulation experiments
presented in the next section.

5 Multiplexing of MPEG Video Sources

In this section, simulation experiments are conducted to
study the performance of an ATM multiplexer for MPEG
streams. The multicdexer is modeled as a finite ca~acitv. . .
queueing system with btier size B (in cells) and one server
with service rate C. A FIFO service discipline is assumed.
The input to the multiplexer consists of MPEG-coded video
streams, Two types of simulation experiments are con-
ducted. The first type is trace-driven (i.e., using the actual
experimental VBR stream). The second type of experiments
is based on the proposed traffic model. In either case, a
video source consists of a large number of frames arranged
according to the compression pattern in Figure 1, Bits in
each frame are packetized into ATM cells (with a 5-byte
header added to each cell). Cells are evenly distributed over
the period of a frame (see Figure 18).

Sourcel ““”” Ilrlnrl n rlrlrl

Buffer
. . . . nnd n 1111111

‘k!IEK)
..... n rlnnnrl

:: L-4v
Sourcs N . . . rlnnnrln rl I

Figure 18: A multiplexer for MPEG streams.

In order to obtain multiple streams for the trace-driven
simulations, we assume that the frame-size sequence of the
measured VB R stream constitute a homogeneous stochastic
process. Following the approach of Heyman et al. [6], the
measured trace is arranged as a circular list by connecting its
ends. To obtain each of the multiplexed streams in the trace-
driven simulations, a starting frame is randomly selected
from the circular list. Thereafter, the remaining frames are
selected sequentially following the starting frame. This pro-
cess is similar to a random shift with rotation in sequential
lists. The procedure is repeated until all the streams are
obtained. To eliminate synchronization effects, the starting
times for the video streams are selected randomly from a
uniform probability distribution (over a frame period).

5.1 Trace- Driven Simulations

In the foilowing experiments, the performance of an ATM
multiplexer for MPEG streams is studied via trace-driven
simulations. The service rate for the multiplexer is adjusted
to obtain a desired level of utilization, U. We define U as

the ratio of the aggregate arrival rate from all multiplexed
sources to the service rate. In Figure 19 the average cell loss
rat e, Pa.g, is shown versus the buffer size, B, using different
numbers of multiplexed sources: N = 1 (no multiplexing)
and N = 10. The results are shown using two levels of
utilization (U = 60% and U = 80Yo).

Observe that PaV~ for N = 1 is surprisingly large un-
der relatively light load (U = 60’%) and large buffer size
(B = 600). This is true despite the fact that each stream is
smoothed by spacing cells over the frame. Another i mpor-
tant observation is the improvement in the cell loss perfor-
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Btier u=~ U = 80%
Size avg max m:n avg max min
100 6.99E–4 1.05J3-3 3.98E–4 2.29E–2 5.64E–2 7.04E-3
200 1.62E–4 3.14E–4 8.81E–5 7.83E–3 1.66E–2 4.04E–3
300 3.04E–5 6.30E-5 1.63E–5 3.85E–3 6.86E-3 1.24E–3
400 5.80E–6 1.30E-5 2.20E–6 2.05E–3 4.18E–3 8.59E–4
500 1.80E–6 5.05E–6 2.20E–7* 8.32E–4 2.60E-3 6.05E–4
600 * ● ● 5.47E-4 9.llE-3 2.62E–4

(* 10ss:tes a, e Iessoaccurat, duf to small or Zel13number of lost cells)

Table 3: The upper and lower limits of cell loss performance for multiplexed streams (N= 10).
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Figure 19: The average cell loss rate versus buffer size.

mance when video streams are multiplexed. When N = 10,
P.”g is the average cell loss rate for the ten sources. Not
all sources experience this rate. The maximum (P,ma. ) and
minimum (Pm,n ) loss rates among the ten sources are shown
in Table 3, for U = 60yo and U = 80y0 and several values of
B. These simulations were conducted using the whole VBR
trace (i e., 41760 frames). Each stream generated about
4.5E+6 cells. The average number of cells per frame for the
various frame types is given in Table 4.

mType Ce 1s Frame
All 109.02

513.88
; 151.63
B 51.49

Table 4: Average frame size in cells.

Figure 20 depicts the average cell loss rate versus the
link utilization using different N and B = 150. It is evident
that the loss rate drops significantly when N increases at a
fixed U. Note that at certain values of U and N no cell losses
occurred in the simulations. The figure clearly indici~tes that
a considerable gain can be obtained by multiplexing VBR
video streams. We define the following quantity w hlch will
be referred to as the multiplexing gait

A n x Utilization at N = 1 and P..g = p
(1)PP(n) – Utilization at N = n and Paug = P

For a given P..g aud N, the utilization can be obtained
graphically from F@-u-e 20. Accordingly, pP(n) is found for
various n and for Pug = 10-2 and Pavg = 10–3 as shown
in Table 5.

Ie-01

le-02

le-03

le-04

le-05

le-06

n/ ,.‘“ F’
n’” /“

.,’ ,,~

//
N.l-

N=1O _
,;’

N =50 -Q.- ?“’

N = 100 -A-- E+’

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Utilization (U)

Figure 20: The average cell loss rate versus utilization for
various number of multiplexed sources.

Table 5: The multiplexing gain for different numbers of mul-
tiplexed sources.

5.2 Model-Based Simulations

In this section, simulation experiments are conducted using
computer-generated traffic streams based on the proposed
model. As before, the starting times for the traffic streams
are selected randomly over a frame period. Also, in multi-
plexing video streams, the compression pattern is treated as
a circular list of length 15 and the starting frame for each
stream is chosen randomly from that list. This is necessary
to avoid a situation in which alf the sources are nearly syn-
chronized (with respect to the type of the frame entering the
multiplexer). Otherwise, lframes from all sources would ar-
rive together within a short time interval, thus causing many
cell losses due to bufTer overflow. The number of generated
frames per source is 15000 for every simulation run.

In Figure 21, the average cell loss rate is shown for dif-
ferent buffer sizes using both trace-driven and model-based
video streams. The results for N = 1 and N = 10 at fixed
utilization (U = 60~o) are given. In general, the loss rates for
both traffic inputs are sufficiently close. This is particularly
true for N = 1. For N = 10, a slight difference is observed
between the model and the trace traffic inputs. The dlffer-
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Figure 21: The average cell loss rate versus buffer size using
captured VBR trace and model-based input traffic streams
(U= 60%, and N = 1, 10).

ence increases slowly with larger bufler sizes. This says that
we get less accurate performance results from the model as
the size of the buffer increases or the number of multiplexed
sources gets large. For moderate buffer size (say, around 400
cells) and up to 50 mukiplexed sources, the model is consid-
ered adequate and its results provide a tight upper bound on
the actual performance. Comparisons between trace-driven
and model-based simulations at N = 50 and U = 80% are
given in Table 6.

B I Pati9 (Trace) I Paa9 (Model)
100 I 4.69E–3 6.69E–3
200 3,23E–3 5.23E–3
300 2.23E–3 4.20E–3
400 1.51E-3 3.51E–3
500 9.89E–4 2.89E–3
600 I 6.24E–4 9.24)+4

Table 6: Average loss rates at N = 50 and U = 80%.

The cell loss rates for each type of frames are shown in
Figures 22 and 23, using N = 1 and N = 10, and U = 60%.
Again, these results are based on the proposed traffic model.
In both figures, it is observed that 1 frames suffered the
largest cell loss rates. Thk should be expected since lframes
are relatively more bursty in nature than P and B frames.
The gap between the loss rate for 1 frames and that of P or
B frames tends to narrow down as more sources are being
multiplexed.

6 Summary

In this paper the statistical characteristics of an MPEG-
coded video stream were studied based on a long trace of
actual video data taken from an entertainment movie. A
statistical study of the VB R trace indicated that the inter-
frame autocorrelation function for the whole frame sequence
is pseudo-periodic with particularly strong correlations be-
tween I frames. This correlation structure is more compli-
cated than what has been previously reported with regard
to frame-level autocorrelations. To simplify the modeling
task of MPEG sources, correlations were examined between
frames of the same type. The number of bits per frame for
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Figure 22: The average cell loss rates for different frame
types (N = 1 and U = 60%).
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Figure 23: The average cell loss rates for different frame
types (N = 10 and U = 60%).

each type was fitted to a lognormal distribution. Accord-
ingly, a model for an MPEG source was developed which is
based on knowledge of the compression pattern of the actual
data. as well as the first two moments.

Simulation experiments were conducted to study the per-
formance of an ATM multiplexer for video sources. The
cell loss performance was reported using two types of input
traffic: one from the actual MPEG VBR trace and the other
was based on the proposed source model. Results from these
simulations indicate that a significant gain in cell loss perfor-
mance is obtained when VBR video streams are statistically
multiplexed. Moreover, the performance obtained using the
proposed model was sufficiently close to the one obtained in
trace-driven simulations.
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