
A Semi-Empirical Approach to Scalability Study *

Xiaodong Zhang Zhichen Xu

High Performance Computing and Software Laboratory
The University of Texas at San Antonio

San Antonio, Texas 78249
zhang, zxu@ringer. CS.utsa. edu

1 Three Limitations in Existing Studies

A major limitation in existing scalability studies is the lack

of effective ways to precisely predict the scalabilities. Exper-

imental and simulation methods are highly time consuming.

Pure analytical methods usually focus on asymptotic behav-

iors of a parallel system, and are only applicable to simple

problem/architecture structures.

Secondly, how to evaluate the scalability of applications

and systems as independently as possible is a complex is-

sue. In [1], algorithm scalability is defined as the maxi-

mum achievable speedup on an architecture with an ideal-

ized communication structure. This speedup measures the

inherent parallelism and overhead patterns of a program for

a givensize.TO isolate program effects, the architecture SCd-

ability for a program is defined as the ratio of the speedup of

the program on a real machine with the asymptotic speedup

of the program on an EREW PRAM. An analytical model

of a program structure may not precisely and completely

describe overhead patterns of the program. The architec-

tural scalability is still, to a great extent, dependent on the

applicationProgramexecuted. In [5], latency is divided into

memory reference latency, processor idle time, and parallel

primitive execution overhead time, which comprehensively

covers the major sources of system/architecture overheads.

However, the same type of latency in this classification may

also come from both the program and the machine. It is still

difficult to identify and distinguish the performance bottle-

necks from the hardware and the algorithm. In [2], parallel

computing overheads are classified into the algorithmic over-

head and the interaction overhead, which effectively isolates

the overhead from the application program. However, it

does not provide direct information about how performance

changes when the program and the machine are scaled. In

addition, the simulation-based approach is highly computa-

tion intensive.

● This work is supported in part by the National Science Founda-
tion under grants CCR-9102854 and CCFL9400719, and by the Air
Force Office of Scientific Research under grant AFOSR-94NM151
Part of the experiments were conducted on the CM-5 machines in Los
Alamos National Laboratory and in the National Center for Super-
computing Applications at the University of Illinois, and on the KSFL
1 machines at Cornell University rmd at the University of Washington.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing

Machinery.To copy otherwise, or to repubhsh, requires
a fee and/or specific permission.
SIGMETRICS ’95, Ottawa, Ontario, Canada
G 1995 ACM 0-89791 -695-6/95/0005 ..$3.50

Fh-mlly, although the concept problem size is essential

in the definitions of scalability, most scalability studies con-

sider either the input data size of a problem, or the number

of floating point operations in the computation as the prob-

lem size. For applications with more than one parameter,

the observed scalabilities can be significantly different when

the application parameters are scaled differently. The ex-

isting definitions of problem size simplify program scaling

behavior.

To address these limits, we make two extensions to the la-

tency metric in [4], and propose a semi-empirical approach

to scalability evaluation. The objectives of this study are

to significantly reduce simulation and measurement cost, to

isolate algorithm scalability from algorithm-machine corn-.

bination scalability, and to further investigate effects of ar-

chitectures, algorithms and programming models on parallel

computing scalability.

2 Extensions to the Latency Metric

Scalability measures the ability of a parallel system to im-

prove performance when the sizes of the program and the

machine are scaled. The latency metric defines algorithrn-

machine combination scalability y as an average increase of

the latency (L) needed to keep its computation efficiency

equal to a constant (E) when the size of a parallel program

increases from W to W‘, and the size of the parallel archi-

tecture increases from N processors to N’ processors. It is

expressed as

L(W, N)
scale(l?, (N, N’)) = ~(w,, N,,.

Using (1), we obtain an upper triangular table, where each

element represents the scalability y measurement of (1) be-

tween a meaningful pair of processors.

To isolate the scalability of the algorithm from an

algorithm-machine combination, we define the algorithmic

scalability of a program based on the definition of algorith-

mic efficiency, E~, and latency, La, of the program.

TPM(II, x, N)
-E.(Tx, N) = ~

Tp (~, x, N) ‘
(2:)

&(I’I, x, N) = T:(~, x, N) – TpM(~,x, N). (3:)

where II is the parallel program, x are the application

parameters, N is the number of processors employed,

TPM(l_I, X, N) is the parallel execution time of II on a MIRA-

CLE machine that always exhibits linear speedup regardless

307

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223587.223624&domain=pdf&date_stamp=1995-05-01

of the characteristic of the program executed, T~ (II, X, N)

is the parallel execution time of II on an idealized PRAM

machine that has an ideal communication structure, and

TP(II, X, N) is the parallel execution time of II on the real

machine. In (2), E. measures the percentage of execution

time that is dedicated to meanful computation on an ideal

machine — the efficiency of the algorithm.

The algorithmic scalability y of a parallel application is

defined as the amount of the increase in algorithmic latency

to keep a desired algorithmic efficiency, E. c [0, 1],that is

Scale.(E., (N, N’)) =
2.(II, x, N)

.ca(rI, x’, iv’) ‘
(4)

where N’ is a larger number of processors than N, x’ is the

scaled application parameter to keep E. = 13a(lI, #, N’) =

Ea (II, x, N). The larger the increase of the algorithmic la-

tency to keep a desired algorithmic efficiency, the smaller

the algorithmic scalability will be. This definition of algo-

rit hmic scalability y is, to a great extent, independent of the

parallel machine employed.

The second extension to the latency metric is the replace-

ment of problem size W for the application parameters, x.

This enables us to explicitly keep track the change of appli-

cation parameters in studying scalability.

3 Outline of the Semi-Empirical Approach

The semi-empirical approach is based on a two-level hier-

archical performance model. The kernels of the high-level

model are a graphical representation of a program, called the

thread graph, and a graphical algorithm. The task-level be-

havior of a program is modeled by a thread graph, in which

the computation demands of the program are captured and

expressed as functions of application and architectural pa-

ramet ers, and all explicit communications are isolated and

classified. The graphical algorithm estimates the execution

time of the entire program with information provided by the

lower level model. In the lower model, the elapsed time of

individual segments in the thread graph are captured based

on a small sample run of the program. Implicit and nonde-

terministic system effects are obtained through experimental

measurements.

There are some advantages to the semi-empirical ap-

proach in comparison with pure analytical, pure experimen-

tal, or simulation approaches. First, performance predic-

tions are based on the small-scale execution of the pro-

gram, and thus the time is significantly reduced from ex-

periments and simulations. Second, the representation of a

program as a thread graph enables the program’s overhead

pattern to be studied according to its synchronization and

communication structures. Third, since experimental mea-

surement is used to estimate the complex system effects,

this performance model is less dependent on real architec-

tures. Finally, because important and implicit system ef-

fects are obtained through experimental measurements, the

semi-empirical performance model should be more precise

than pure analytical models or pure simulations.

4 Preliminary Performance Results

To validate the semi-empirical scalability evaluation

method, and to further investigate effects of architectures,

algorithms and programming models on parallel computing

scalability, we implemented three applications on two differ-

ent machines. The three applications are A/l Pairs Shortest

Path (APSP), Gauss Elimination (GE) and a Iarge Elec-

tromagnetic (EM) Simulation application. The two parallel

architectures are the KSR-1 and CM-5.

Our preliminary performance results indicate that the

time to estimate the scalability is significantly reduced com-

pared with pure experimental and simulation methods. For

instance, it took 395.5 seconds to obtain the combination

scalability of a shared memory implementation of the GE

program on the KSR-1, and 53652.7 seconds for the combi-

nation scalability y of the APSP program on the KSR-1 using

the pure experimental method in the best case. In con-

trast, it only took 1.08 and 0.76 seconds respectively using

the semi-empirical method (the time to collect the sample

data is excluded) — approximately 366 times faster for the

GE program and 70595 times faster for the APSP program.

Besides the time reduction, if the program abstraction is

sufficiently detailed, the predicted results can be very pre-

cise. According to our experiments, the average error is less

than 10??o in most cases. The average is only about 7%.

Using different program implementations on the two dif-

ferent machines, we are able to compare the effects of the

shared-memory and data-parallel programming models on a

program’s algorithmic scalability, and the effects of the ar-

chitectures on a program’s combination scalability y. Different

programming models can significantly atlect the algorithmic

scalability of a program because the parallelisms inherent

in the program are exploited differently. Even though the

differences among algorithmic scalabilities can be moderate

for different implementations of a program, the combina-

tion scalabilities can be significantly different. This indicates

that different communication and synchronization patterns

and structures, and different architectural support, affect

performance differently.

Acknowledgement: We would like to thank Yong Yan for

many t ethnical discussions about this t epic. We appreciate

Neal Wagner for his careful reading of the original technical

report.

References

[1]

[2]

[3]

[4]

[5]

D. Nussbaum, A. Agarwal, “Scalability of parallel ma-

chines”, Communication of the ACM, March 1991, Vol.

34, No. 3, pp. 57-61.

A. Sivasubramaniam, A. Singla, U. Ramachandran, H.

Venkateswaran, “An approach to scalability study of

shared memory parallel systems”, Proceedings of the

ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, May 1994, pp. 171-179.

X. Zhang, Z. Xu, L. Sun, “Performance prediction on

implicit communication systems”, in Proceedings of the

Sixth IEEE Symposium of Parallel and Distributed Pro-

cessing, IEEE Computer Society Press, Ott. 1994, pp.

560-568

X. Zhang, Y. Yan, K. He, ‘LLatency metric: an exper-

imental method for measuring and evaluating parallel

program and architecture scalability”, Journal of Par-

allel and Dwtributed Computing, Vol. 22, No. 3, 1994,

pp. 392-410.

X. Zhang, Y. Yan and K. He, “Evaluation and measure-

ment of multiprocessor latency patterns”, in Proceed-

ings of the 8th International Parallel Processing Sym-

posium, IEEE Computer Society Press, April, 1994, pp.

845-852.

308

