Reducing OLTP Instruction Misses With Thread Migration

Islam Atta® Pinar Tozin?

'Ecole Polytechnique Fédérale de Lausanne

ABSTRACT

During an instruction miss a processor is unable to fetch in-
structions. The more frequent instruction misses are the less
able a modern processor is to find useful work to do and thus
performance suffers. Online transaction processing (OLTP)
suffers from high instruction miss rates since the instruction
footprint of OLTP transactions does not fit in today’s L1-I
caches. However, modern many-core chips have ample ag-
gregate L1 cache capacity across multiple cores. Looking
at the code paths concurrently executing transactions fol-
low, we observe a high degree of repetition both within and
across transactions. This work presents TMi a technique
that uses thread migration to reduce instruction misses by
spreading the footprint of a transaction over multiple L1
caches. TMi is a software-transparent, hardware technique;
TMi requires no code instrumentation, and efficiently uti-
lizes available cache capacity. This work evaluates TMi’s
potential and shows that it may reduce instruction misses by
51% on average. This work discusses the underlying trade-
offs and challenges, such as an increase in data misses, and
points to potential solutions.

1. INTRODUCTION

Online transaction processing (OLTP) workloads are mem-
ory bound spending 80% of their time stalling for memory
accesses [10]. Most of these stalls are due to first-level in-
struction cache misses [3]. Previous works tackle this prob-
lem in software [6] or hardware [9, 15, 2, 4].

Traditional OLTP systems randomly assign transactions
to worker threads, each of which runs on one core of a mod-
ern multi-core system. As we also confirm, the instruction
footprint of a typical OLTP transaction does not fit into a
single L1-I cache, resulting in a high instruction miss rate.
Enlarging the L1-I cache is not a viable solution; to avoid im-
pacting the CPU clock frequency, the L1 caches of virtually
all high-performance processors today are limited to about
32KB, despite the growing size of L2 and L3 caches. How-
ever, this work demonstrates that the footprint of a typical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Proceedings of the Eight International Workshop on Data Management on
New Hardware (DaMoN 2012), May 21, 2012, Scottsdale, AZ, USA
Copyright 2012 ACM 978-1-4503-1445-9 ...$10.00.

Anastasia Ailamaki*

Andreas Moshovos'

fUniversity of Toronto

OLTP transaction would comfortably fit in the aggregate
L1-T cache capacity of modern many core-chips. There is
then an opportunity to reduce instruction misses by spread-
ing the footprint of transactions over multiple L1-I caches
provided that there is sufficient code reuse. Fortunately, in
OLTP, there is a high-degree of instruction footprint reuse
both within a transaction and across multiple, concurrently
running transactions [2, 6].

This paper investigates T'Mi, a dynamic hardware solution
that uses thread migration to minimize instruction misses
for OLTP applications. T'Mi, spreads each transaction over
multiple cores, so that each L1-I cache holds part the instruc-
tion footprint. TMi relies upon: (1) a hardware scheduler
knowing the thread types, and (2) having a fast and effi-
cient mechanism to determine whether a set of cache blocks
(tags) exist in a given cache. TMi exploits intra- and inter-
thread footprint reuse as follows: (1) If a thread loops over
multiple code parts that are spread over multiple caches, the
observed miss rate will be lower since in a conventional cache
each part would evict the others resulting in thrashing, (2)
The first thread of a particular type effectively prefetches
and distributes the common instruction footprint for the
rest. TMi differs from past OLTP instruction miss reduc-
tion techniques in that it a pure hardware, low-level solution
that avoids undesirable instrumentation, utilizes available
core and cache capacity resources, and requires no changes
to the existing code or software system. TMi is not free of
tradeoffs and challenges. Migrating threads takes times and
results in more data misses and hence TMi must balance
the cost of these overheads against the benefit gained from
reducing instruction misses.

This work makes the following contributions:

- It analyzes instruction and data footprints for OLTP
workloads (TPC-C and TPC-E [17]) and reaffirms that
they suffer from instruction misses; on average 91% of
L1 cache capacity misses are instruction misses.

- It demonstrates that the recently proposed replacement
policies [14], which can reduce miss rates significantly for
some workloads, are not effective for OLTP workloads
(less than 6% reduction).

- It identifies the requirements and challenges for an ideal
thread-migration-based solution.

- It presents and evaluates TMi, a practical thread migra-
tion algorithm. It shows that TMi can reduce instruction
misses by 51% on average.

- It identifies the challenges associated with thread migra-
tion, namely data misses and migration overhead.

The remaining of this document is organized as follows.

0 1 2 3 4 5 & 7
T1 T2 T3 (1l I I [T17al T |
AJ[TALlTA] [T T X1 []
B B || C|
¢ |[pJ[D] [T2]T1] \ \ [75 | T4 | |
A lAalB] [| [Ix[Y] |
T4 TS [T3 [T2 [T1 | [15 | [[T4 |
x| x| Ale[c] [wlx|y[z]
LY W
z Y [T1] | 13 [T2 | [T4 | T5 | |
X Z [A| Bl CcC[D|W/[XY [2Z]
Tead [[[[T3] [[[T5]
Codesegment‘ A ‘ B ‘ C ‘ D ‘W ‘ X ‘ Y ‘ Z‘
Figure 1: Example to illustrate thread migration

and reuse of common code segments. Left: T1-3
and T4-5 are threads running similar transactions.
Right: 8-core system. The shaded area is the cache
activity (thick border = warm-up phase).

Section 2 analyzes the nature of the problem and the re-
quirements for an ideal solution. Section 3 describes the
proposed automated thread migration algorithm, TMi. In
Section 4 we present the evaluation results. Section 5 sur-
veys the related work. Section 6 discusses challenges and
practical considerations. Finally, Section 7 concludes.

2. PROBLEM & OPPORTUNITY

In typical multi-threaded OLTP systems, a single thread
handles a single transaction and multiple threads executing
the same transaction type usually run concurrently. Indi-
vidual threads, with memory footprints that do not fit in
the L1-I cache, suffer from high miss rates. For the exam-
ined OLTP workloads, Ferdman et. al. [3] show that mem-
ory stalls account for 80% of the execution time. Section 4
shows that instruction capacity misses account for 83% of
total L1 cache misses.

Although similar transactions (threads) vary in their con-
trol flow, they have common code segments, leading to 80%
redundancy in L1-I caches across multiple cores [2]. We ex-
ploit the availability of many cores and multiple concurrent
threads with inherent code commonality. Using thread mi-
gration, we aim to increase the reuse of instruction blocks
brought in the cache. We propose a hardware scheduling
algorithm that divides and distributes the instruction code
footprint across multiple cores. The algorithm dynamically
pipelines and migrates threads to cores that are predicted
to hold the code blocks to be accessed next.

Figure 1 demonstrates thread migration using an example.
On the left, there are five threads T1-T5 running on 8-cores,
where T1-T3 and T4-T5 execute similar transactions, with
slightly different instruction streams. The instruction foot-
print of T1 is 3x larger than L1-I cache size. It executes the
following code segments in order: A-B-C-A, where each seg-
ment fits in the L1-I cache. T2 and T3 are of the same type
as T1, hence they share common code segments with T1,
but they are not identical. A typical system would assign
T1, T2, and T3 to separate cores, and since their footprints
do not fit in the L1-I cache, each individual thread would
suffer instruction misses.

The ideal scenario for thread migration would be as fol-
lows: initially (at time t0), T1 starts execution on core-0.

t0

t1

t2

t3

t4

When all cache blocks for A are brought in the cache, T1
migrates to core-1 (at t1), where it continues executing fill-
ing the cache with blocks from B. T2 is then scheduled to
start execution on core-0 (at t1), ideally observing hits for
all blocks in A. At a higher level, the process continues and
T1 warms-up caches 0, 1, and 2 with A, B, and C, respec-
tively. If T2 and T3 where to follow the same path as T1
then they would experience no misses.

The threads do not need to follow identical paths for mi-
gration to be beneficial. Code segment D illustrates this.
Since code segment D, accessed by T2, was not part of T1’s
instruction stream, T2 needs to warm-up core-3 and suf-
fer some extra misses. Provided that T3 executes after T2
finishes filling the cache with D, T3 does not suffer any in-
struction misses. At t3, when T1 goes back to A, it gets
rescheduled to core-0. T4-T5 exhibit similar behavior, but
they get assigned to a different set of cores, avoiding conflict
with T1-T3. The same process applies for all threads that
arrive later: if part (or all) of their code segments exist in
the L1-I cache, they migrate to the appropriate core and do
not miss on these segments.

We observe that transactions vary in their control flow,
hence we should not impose any specific pipelining; i.e., we
do not restrict similar threads to follow the exact same path.
Thread migration should dynamically detect: (a) When a
thread should migrate (i.e., when is the cache full)? (b) Where
to migrate (i.e., which cache holds the code segment we start
to touch, if any)? Thus we need to maintain information
about threads and caches to be able to make judicious mi-
gration decisions.

3. AUTOMATED THREAD MIGRATION

With the requirements we set in Section 2 in mind, here
we detail our thread migration algorithm, TMi, and its chal-
lenges. Our main focus in this paper is the potential of
thread migration in reducing instruction misses for OLTP.
Hence, the naive TMi as described here might seem ineffi-
cient. However, we discuss why we believe a practical im-
plementation is possible in Section 3.2 and Section 6.

3.1 Migration Algorithm

The presented TMi design assumes it knows the type of
each transaction so that it can group same type threads
into teams. We discuss possible methods to detect transac-
tion types in Section 6. TMi schedules each team without
preemption. Threads within a team are independently mi-
grated among cores without any central control. Migration
decisions are made based on a set of rules and inputs.

Initially, the system operates normally and no migration
takes place. First, TMi must detect when the L1-I cache of
a given core becomes FULL, that is filled with enough in-
structions so it is better for the thread to migrate to another
core to avoid thrashing. To detect a FFULL cache, TMi uses
a resettable miss counter (MC) and a full miss-threshold
(FMT). When MC exceeds FMT, TMi enables migration.

Migration does not happen immediately after a cache be-
comes FULL. The thread may immediately loop back to the
same code segment or may temporarily follow a somewhat
different path.

When migration is enabled, we need a mechanism to select
a good target cache to migrate to. Ideally, we would migrate
to a cache that has the instructions that this thread will
execute next. TMi records recently missed tags in a FIFO

Miss(1)/Hit(0)
& Missed Tag
-
Miss Counter v
(M) Enable
Searching Locate on all Remote
» remote caches Caches
FMT
v v

v

] Missed Tag
2% ffer
Enable buffering FE Bu
= @ (MTB)
»
Access Count “1”s
Buffer (AB) Enable
» Migration .
2 » Select Matching Core

AMT »

Figure 2: TMi organization.

missed-tags buffer (MTB). We refer to the size of MTB as
the tag list size (TLS). For a given thread on a given core,
if the MTB is full, TMi searches all remote L1-I caches for
the missed tags, and makes one of the following decisions:

- If there is a match in a remote cache for TLS tags, TMi

migrates the thread to the matched core.
- Else, the thread is migrated to an idle core (if any).
- Else, do not migrate.

An additional condition is required to restrict migration
to the cases when a thread starts to miss more frequently.
In a sub-optimal scenario, threads have to miss for a few
tags before migrating (TLS tags must be located on a re-
mote cache). This can lead to eviction of useful cache blocks
that were fetched in the warm-up phase, creating gaps in
the instruction stream. TMi mitigates this by not allowing
threads to migrate for occasional misses that fill-up these
gaps. Access buffer (AB) is a 100-bit FIFO queue record-
ing the history of the last 100 cache accesses (enabled when
cache is FULL). A logic-0 and logic-1 represent a cache hit
and miss, respectively. When the number of logic-1 bits
reach a threshold (AMT), TMi enables migration. If AMT
= 0, then TMi neglects this condition.

TMi resets MTB and AB with every migration. When a
team of threads completes execution, TMi resets all MC'’s,
MTBs and ABs.

Figure 2 describes the thread migration decision process.
TMi components are: (a) Miss counter MC. (b) Access
buffer AB is a 100-bit FIFO. (c) Missed Tag Buffer MTB
is a FIFO of n-bit entries, where n is the number of cores.
(d) Full miss threshold FMT determines when a cache is
FULL. (e) Access miss-threshold AMT is the minimum num-
ber of misses in a window of 100 accesses to enable migra-
tion. MC, AB and MTB are resettable.

3.2 Migration Cost & Challenges

Tag Search. We believe it is possible to avoid individual
tag searches (e.g., keeping track of signatures as opposed to
a complete tag list) and searching all cores (e.g., serial node
searching, history-based candidate node prediction).

Data Misses. Migrating across cores may increase the
data miss rate; data that might be reused is left behind
during a migration. Experiments show that the data miss
rates increase significantly.

Existing architectures simply use caches to reduce instruc-
tion and data misses. No additional effort is made to balance
the relative cost of instruction vs. data misses. A relevant
question is whether the relative costs are appropriately bal-
anced in modern systems. TMi facilitates balancing the rel-
ative costs of the two types of misses. There are reasons to
believe that instruction misses, up to a point, impact perfor-
mance more than data misses. For example, modern archi-
tectures use instruction level parallelism to hide the impact
of data misses. Without instructions these ILP techniques
remain ineffective. However, this has to be proven through
experimental evaluation, and is left for future work.

Simultaneous Multithreading (SMT) is another way for
reducing instruction stalls but it requires extra resources.
Additionally, if threads are not synchronized, it increases
pressure on instruction caches leading to more thrashing.

We analyze data misses and discuss potential solutions to
mitigate their impact in Section 4.5.

Migration Overhead. Fast context switching is attain-
able in software [6] and we argue that the same is possible
for the hardware. Estimating hardware migration overhead
is out of the scope of this paper, but in Section 4 we seek
to increase the number of instructions between migrations,
thus reducing the relative importance of the context switch-
ing cost.

Overhead of data-structures used. All data struc-
tures described here are per core. MC exists in the Perfor-
mance Monitoring Unit (PMU) of most modern processors.
MTB is a list of TLS entries and we consider two imple-
mentations: In the first, an entry is simply a tag. A more
compact and faster list consists of n-bits per entry, where
n is the number of cores. A logic-1 bit at index i, of tag
j, means that the cache of core-i holds a valid copy of tag
j. By ANDing all bits mapped to core-i, we know whether
it holds all tags, or not. This mechanism relies on the co-
herence protocol to identify shared cache blocks, and makes
faster migration decisions. Figure 2 shows the latter im-
plementation. AB is a 100-bit FIFO queue used to record
the history of cache accesses. A thread queue holds a 12-
bit identifier and context state. We assume virtualizing this
information on lower cache levels [1]. Note that all logic
operations for TMi are not on the critical path.

4. EVALUATION

Current real and full system simulation platforms do not
support thread migration at the hardware level. The OS
kernel assumes full control over thread assignment in multi-
core environments. To work around this limitation, we use
trace simulation. We use PIN [12], an instrumentation tool
that is able to inject itself in x86 binaries, to extract instruc-
tion and data access traces. Although PIN instruments only
application level code, our proposal is generic and applies to
system level code, too. Previous work shows that thread
migration is beneficial for system level code [2].

The baseline configuration NO-MGRT assumes no thread
migration and assigns threads to cores randomly. TMi-ST is
the proposed thread migration algorithm, which groups sim-
tlar threads into teams. We examine various thread migra-
tion parameters. Unless otherwise indicated, we simulate a
16-core system with 32KB 8-way set-associative instruction
and data caches with 64B blocks, and LRU replacements.

We run TPC-C and TPC-E on top of a scalable open-
source storage manager; Shore-MT [8]. Traces are extracted,

<
o
=
0
<
k]
=
o
=]
2
=
2
£
10
9 B
E3 Capacity
818
7 B O Conflict
N
E 6 _ W Compulsory
=5 |
© k]
5 H
a4 3
3 1H
H
2 {H
bk
1 4 L}
0 E
8-way | FA | 8-way | FA |
TPC-C | TPC-E |

Figure 4: Breakdown of MPKI for different L1-D
sizes and associativity (lower is better).

per transaction type, to form a mix of 1K threads, per bench-
mark. Teams of 20-30 similar threads are scheduled without
preemption (threads are more than cores to consider thrash-
ing). We use misses per kilo instructions (MPKI) as our met-
ric for instruction (I-MPKI) and data (D-MPKI) misses. We
use kilo instructions per migration (KIPM) as a migration
overhead metric. Ignoring secondary effects, the higher the
KIPM the less fraction of time is spent on migration. An
ideal solution should minimize MPKI and maximize KIPM.

In our evaluation we address the following questions: (1)
What are the L1 miss characteristics for OLTP workloads
(Sections 4.1 and 4.2)7 (2) What are good configuration
parameters for TMi (Sections 4.3 and 4.4)? (3) How does
TMi affect data misses (Section 4.5)7 (4) What is the impact
of a migration algorithm, which is unaware of thread types,
on L1 misses (Section 4.6)7

4.1 Instruction and Data Footprints

This section examines the instruction and data footprints
through an analysis of misses per kilo-instructions (MPKI)
on full-associative (FA) and set-associative (SA) L1 caches.
Hill and Smith [7] categorize cache misses into three C's:
Capacity misses result from limited cache capacity (rela-
tively smaller caches may increase capacity misses), Con-
flict misses are those resulting from reduced associativity
(smaller sets may increase conflict misses), and Compulsory
misses are for the first reference to each unique data block
(you can avoid if you prefetch). By identifying where most

B Capacity
OConflict
W Compulsory

L1-I sizes and associativity (lower is better).

misses come from, we highlight the reasons behind the mem-
ory stalls; is it cache size, associativity, or bad locality?

Figures 4 and 3 has the breakdown of MPKI into the three
Cs. Figure 3 shows that for FA caches (no conflict misses),
the instructions fit in 128KB — 256KB caches. A 512KB
cache incurs only compulsory misses (i.e., perfect cache).
Today, most modern microprocessors use 32KB L1s. Thus,
the full footprint can fit in 4 — 8 caches (or more).

For 32KB caches, instruction capacity misses are 9 — 12x
more than data capacity misses, while data compulsory misses
are two orders of magnitude larger than instruction compul-
sory misses. We conclude that OLTP transactions have large
instruction footprints with much lower locality than their
data footprint. The instruction streams exhibit a recurring
pattern (lots of reuse), which has a relatively long period,
leading to eviction of useful blocks that are re-accessed.

These observations support TMi; it could avoid lots of
instruction misses by virtually increasing the L1-I cache size
per thread. In the rest of our analysis we use 32KB 8-way SA
L1 caches. We do so as they typical in modern processors,
e.g., the Intel ®Core ™2 Quad.

4.2 Replacement Policies

Qureshi et al. identify that not all workloads are LRU-
friendly [14]. They propose static (LIP, BIP) and dynamic
(DIP) insertion policies that are effective in reducing miss
rates significantly for some workloads. We measure the
impact of these policies on OLTP workloads and compare
them against LRU. In Figure 5, we witness less than 6% im-
provement for DIP on the instruction MPKI for the baseline
setup. Nevertheless, these policies are orthogonal to TMi.

4.3 Tuning Migration Parameters

This section explores the effect of FMT and TLS on in-
struction misses (I-MPKI) and instruction count between
migrations (KIPM). As defined in Section 3.1, FMT sets the
initial warm-up for an L1-I cache. When the miss counter
(MC) is lower than FMT, a thread is not allowed to migrate.
TLS sets the minimal number of tags a remote cache should
hold before a thread migrates to it. Larger TLS limits mi-
gration, while smaller TLS triggers too frequent migration;
we are optimizing values for FMT and TLS to reduce I-
MPKI and increase KIPM.

Figure 6 shows the results for TMi-ST. We examine FMT
values of 128 — 1024 and TLS values of 2, 4, and 6. We
report relative I-MPKI with respect to the baseline. Larger

30 1 OWRU OUP OBIP GDIP
25 | [+]
20 -
g
g 15 -
10
5 -
I-MPKI | D-MPKI I-MPKI | D-MPKI
TPCC TPC-E

Figure 5: Effect of different replacement policies for
OLTP workloads.

1- 8
09 - —— I-MPKI KIPM 5l 5 'g
_ 08 - 6 2
§ 0.7 - §
T 06 - 58
o 20
'§ 0.5 - 4 %
£ 03
] 2 'g
2 02 1 S
2 H
g 011 .-
0 0 x
00wl 00| WO || <t 00| O N 00w NI 00| WO || <t 00| O
I I B I g b B o A B e B B S B PR S
-] e i [R e
LS-2 LS4 LS-6 TLS-2 LS4 LS-6
TPC-C TPC-E

Figure 6: Exploring the parameter space of FMT
and TLS values

TLS translates into fewer migrations, resulting in higher I-
MPKI for all values of FMT, while smaller TLS reduces
KIPM. TPC-E is more sensitive to larger TLS values than
TPC-C (TPC-E has more non-uniform instruction streams).
For TLS values larger than 6, TPC-E shows very few mi-
grations with negligible -lMPKI improvement. FMT favors
smaller values, assigning each cache a smaller working set
and reducing conflicts. For 64B block size (512 blocks per
cache) and FMT values larger than 512, cache blocks are
definitely evicted in the warm-up phase.

To summarize, lower FMT and TLS reduce I-MPKI by

70%/73% for TPC-C/TPC-E, with slightly less than 1 KIPM.

We conclude that a good combination would be 256/6 for
FMT/TLS, resulting in 53%/38% I-MPKI reduction, and
2.3/2.5 KIPM, for TPC-C/TPC-E. The remaining of the
evaluation section uses these values.

4.4 Access Miss Threshold

AMT restricts migration to the cases when a thread starts
to miss more frequently. In a sub-optimal scenario, threads
have to miss for a few tags before migrating (7LS tags must
be located on a remote cache). This can lead to eviction of
useful cache blocks that were fetched in the warm-up phase,
creating gaps in the instruction stream. AMT mitigates this
by not allowing threads to migrate for occasional misses that
fill-up these gaps.

Figure 7 shows I-MPKI and KIPM for TMi-ST, with a
range of AMT values (1 — 12). Using small AMT triggers
more frequent migrations. Using too large AMT increases
KIPM by reducing migrations, but with a possible -MPKI

0.65 - r 35

0.60 - 30 2

g 2
o c
S o055 - L2s §
< 8
2 &
g 050 | L20 §
3
£ 045 4 15 @
2 5
H g
S 040 Lo 3
= 2
—— TPC-C I-MPKI —&— TPC-E I-MPKI >

- 05

TPC-CKIPM ——— TPC-E KIPM

1 2 3 4 5 6 7 8 9 0 11 12
Access Miss Threashold (AMT)

Figure 7: Exploring the parameter space of AMT

increase since it results in more evictions. For TPC-C, AMT
values 6 to 9 are better. TPC-E shows a non-uniform behav-
ior for AMT values 9 (high I-MPKI) and 11 (low I-MPKI).
This behavior could be a result of an irregularity in the
instruction stream. We have noticed a direct correlation be-
tween AMT and TLS values: the point TLS = AMT is a
sweet-spot for -MPKI and for larger AMT, KIPM increases
linearly. Due to limited space, we do not show graphs for
different TLS values. For the remainder of the evaluation
section, we set AMT to eight (59%/43% I-MPKI reduction
and 2.4/2.6 KIPM for TPC-C/TPC-E).

4.5 Data Misses

While reducing instruction misses, TMi increases data
misses in three ways; (1) a thread may access data that
it fetched on one core, when it migrates to another core,
(2) when a thread returns to a core, it may find that data
that it originally fetched has since been evicted by another
thread, (3) data writes of T1 on core-B to blocks fetched on
core-A lead to invalidations that would not have occurred
without migration. Although we believe that instruction
misses are more expensive than data misses (performance-
wise), we have to account for D-MPKI.

Figure 8 shows that TMi-ST incurs an average increase
in D-MPKI of 4x over the baseline. We notice that the
increase in D-MPKI is the result of writes (WR D-MPKI),
while reads are nearly unaffected. The average total MPKI
is reduced by 4% over the baseline. For an inclusive cache
hierarchy, all data misses can be served on-chip via lower
levels of cache (L2/L3), allowing out-of-order execution to
partially hide it. In addition, we believe that data misses
could be mitigated by techniques like prefetching, especially
when we have a strong clue on what to prefetch.

4.6 Blind Migration

TMi-ST assumes knowledge of thread types. We exper-
iment with an algorithm (TMi-B) that migrates threads
without considering their types. TMi-B utilizes an aggres-
sive scheduler (1K concurrent non-similar threads), while
TMi-ST forms teams of similar threads, where each team is
scheduled without preemption. Figure 8 shows I-MPKI/D-
MPKI for TMi-B. We notice a 31% average reduction in
I-MPKI over the baseline, and an average increase of 40%
over TMi-ST. Read D-MPKI increases by 2x on average,
while write D-MPKI is slightly reduced. Closer inspection
shows that blind migration creates large access periods be-

50 4
45
40
35

30 A
25
20 -
15 A
10
5 4
0

NO- MGRT| TMi-ST | T™i-B |NO MGRT| TMi-ST | T™i-B

@WR D-MPKI ORD R-MPKI BI-MPKI

MPKI

TPC-C TPC-E |

Figure 8: I-MPKI decrease vs. D-MPKI increase

fore a thread migrates back to a previous core, finding that
most of its cache blocks are evicted. Conflicts occur when
non-similar threads are assigned to the same core. We de-
fine distance between similar threads (DBST), as a metric to
measure the conflict degree (lower is better). DBST is the
distance between two similar threads executing on the same
core. TMi-B and TMi-ST show an average DPST of 28.3
and 2.53, respectively. We conclude that identifying thread
types is necessary for TMi to effectively reduce in I-MPKI.

S. RELATED WORK

STEPS [6] is a software solution that increases instruc-
tion reuse by grouping threads into teams of similar trans-
actions. It breaks transaction instruction footprints into
smaller cache chunks. Then instead of running a full trans-
action, it runs all transactions for the first chunk, then for
the second and so on. STEPS identifies points in the code
where context-switches should occur either manually or by
using a profiling tool, which makes it hard to use in practice.
TMi is similar to STEPS in the sense that we promote lo-
cality, but instead of context-switching on a single core, we
migrate threads to other cores, utilizing available on-chip
resources and reducing thread queuing delay. In addition,
TMi does not require non-trivial manual intervention or in-
strumentation to detect synchronization points.

On the hardware side, instruction prefetching solutions
have evolved from simple low accuracy stream buffers [9,
15] to highly accurate sophisticated stream predictors [5, 4].
Accurate prefetchers are expensive requiring ~40KB of extra
storage per L1 cache, which increases with the instruction
footprint. In addition, they neglect the possible presence of
idle cores, and do not avoid code and prediction redundancy
underutilizing on-chip resources.

Chakraborty et al. [2] report high redundancy in instruc-
tion fragments across multiple threads executing on multi-
ple cores. They propose CSP, which employs thread migra-
tion as a method to distribute the dissimilar fragments of
the instructions executed by a thread and group the similar
ones together. CSP is limited to separating application level
(user) code from OS code, losing opportunities of separation
within user code. They point to profile-driven annotation or
high-level application directives to identify separation points
within user code. TMi generalizes thread migration to in-
clude interleaved user-OS code separation points.

Some other recent thread migration proposals target power
management, data cache, or memory coherence [13, 11, 16].

6. DISCUSSION

In this section we discuss some of practical implementa-
tion aspects and point out directions for future work.

Scalability. Due to limited space, we do not show a range
of evaluation setups. We have seen that TMi is scalable on
several dimensions: number of cores (4 — 64) and threads
(100 — 1K), L1-I cache size (16K — 64K, optimized FMT),
and instruction footprint sizes (different transaction types).

Workload Dependency. Section 4 shows that TPC-C
and TPC-E favor different configuration parameters calling
for a dynamic solution. Therefore, as a possible alternative
to our algorithm, we might rely on feedback from migration
and miss counters.

Impact of OS. Current OS kernels assume full control
over thread assignment to cores. To support fast hardware
thread migration, thread assignment should be transparent
to higher layers, to avoid any software overhead. Otherwise,
the OS scheduler, that needs to know where each thread is
running, must be informed about these migrations. A differ-
ent approach might rely on hardware mechanisms to provide
counters and migration acceleration, and leave policy choice
to software (enabling easier integration with existing sched-
ulers, more flexible policies, etc.).

Thread Identification. A thread migration algorithm
that can identify similar threads (TMi-ST) proved more ef-
fective than a blind algorithm (TMi-B). In practice, there
are two approaches to identify similar threads: (1) relying
on the application to transfer this knowledge to the hard-
ware; requires undesirable modifications to the application,
and (2) expecting hardware to detect the threads accessing
common code segments and tag them as similar threads. We
plan to explore these options.

7. CONCLUSIONS

OLTP workloads spend 80% of their time on memory
stalls; L1 instruction misses, and L2 data misses. We corrob-
orate these results and show that 91% of L1 capacity misses
are for instructions. Additionally, we show that recently
proposed replacement policies, which reduce miss rates for
some workloads, are ineffective on OLTP workloads. Pre-
vious hardware or software proposals are either impractical
(require code instrumentation) or relatively expensive (large
on-chip data structures).

This work presented a solution based on thread migration,
TMi. Similar to CSP [2] and STEPS [6], we exploit the code
commonality observed across multiple concurrent threads.
Unlike CSP, we do not limit code reuse to OS code segments,
and extend that to application code. Unlike STEPS, instead
of context switching, we distribute the instruction footprint
across multiple cores and migrate execution. We identify the
requirements for an ideal system, and implement TMi, an al-
gorithm to evaluate the solution’s potential. It is a low-level
hardware algorithm which requires no code instrumentation
and efficiently utilizes available cache capacity.

TMi was able to reduce the instruction misses by 51%
on average. As expected, it impacted the data misses, in-
creasing the total L1-D misses to 95% of the baseline. On
an out-of-order pipeline, instruction misses are believed to
be more expensive (performance-wise), lending potential to
TMi. We believe that data misses could be mitigated by
techniques like prefetching, especially when we have a strong
clue on what to prefetch.

We identify the requirements for a full practical solu-
tion as follows: (a) the ability to identify similar threads,
(b) prefetching data for migrating threads, and (c) using
accurate cache signatures to locate cache blocks in remote
cores. Our next steps will address these requirements and
study the timing behavior of TMi.

8. ACKNOWLEDGMENTS

We thank Ioana Burcea and Jason Zebchuk on their in-
valuable feedback, the members of the AENAO and DIAS
laboratories for their support and discussions, Stavros Hari-
zopoulos for his help in the early days of this work, and
the reviewers and Ippokratis Pandis for their constructive
comments on the paper. This work was partially supported
by an NSERC Discovery grant, NSERC CRD with IBM,
a Sloan research fellowship, NSF grants CCR-0205544, IIS-
0133686, and 11S-0713409, an ESF EurYI award, and Swiss
National Foundation funds.

9. REFERENCES

[1] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi.
Predictor virtualization. In ASPLOS, 2008.

[2] K. Chakraborty, P. M. Wells, and G. S. Sohi.
Computation spreading: employing hardware
migration to specialize cmp cores on-the-fly. In
ASPLOS, 2006.

[3] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,

M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In ASPLOS, 2012.

[4] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive
Instruction Fetch. In MICRO, 2011.

[5] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi,
and A. Moshovos. Temporal instruction fetch
streaming. In MICRO, 2008.

[6] S. Harizopoulos and A. Ailamaki. Improving
instruction cache performance in OLTP. In TODS,

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

2006.

M. D. Hill and A. J. Smith. Evaluating associativity in
cpu caches. IEEE Transactions on Computers, Dec.
1989.

R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In EDBT, 2009.

N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In ISCA,
1990.

K. Keeton, D. Patterson, Y. Q. He, R. Raphael, and
W. Baker. Performance characterization of a quad
pentium pro smp using oltp workloads. In ISCA, 1998.
M. Lis, K. S. Shim, M. H. Cho, O. Khan, and

S. Devadas. Directoryless shared memory coherence
using execution migration. In PDCS, 2012.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI,
2005.

P. Michaud. Exploiting the cache capacity of a
single-chip multi-core processor with execution
migration. In HPCA, 2004.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high
performance caching. In ISCA, 2007.

P. Ranganathan, K. Gharachorloo, S. V. Adve, and

L. A. Barroso. Performance of database workloads on
shared-memory systems with out-of-order processors.
In ASPLOS, 1998.

K. S. Shim, M. Lis, O. Khan, and S. Devadas.
Judicious thread migration when accessing distributed
shared caches. In CAOS, 2012.

TPC. TPC transcation processing performance
council. http://www.tpc.org.

