
An Effective Hash-Based Algorithm for Mining Association Rules

Jong Soo Park; Ming-S yan Chen and Philip S. Yu

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

{clpark, rnschen, psyu}Chvatson.ilxm. corn

Abstract

In this paper, we examine the issue of mining association

rules among items in a large database of sales transactions.

The mining of association rules can be mapped into the

problem of discovering large itemsets where a large itemset

is a group of items which appear in a sufficient number

of transactions. The problem of discovering large itemsets

can be solved by constructing a candidate set of itemsets

first and then, identifying, within this candidate set, those

itemsets that meet the large itemset requirement. Generally

this is done iteratively for each large k-itemset in increasing

order of k where a large k-itemset is a large itemset

with k items. To determine large itemsets from a huge

number of candidate large itemsets in early iterations is

usually the dominating factor for the overall data mining

performance. To address this issue, we propose an effective

hash-based algorithm for the candidate set generation.

Explicitly, the number of candidate 2-itemsets generated

by the proposed algorithm is, in orders of magnitude,

smaller than that by previous methods, thus resolving the

performance bottleneck. Note that the generation of smaller

candidate sets enables us to effectively trim the transaction

database size at a much earlier stage of the iterations,

thereby reducing the computational cost for later iterations

significantly. Extensive simulation study is conducted to

evaluate performance of the proposed algorithm.

1 Introduction

Recently, database mining has attracted a growing

amount of attention in database communities due to its

wide applicability in retail industry to improving mar-

keting strategy. As pointed out in [5], the progress in

*Visiting from the department of computer science, Sungshin

Women’s University and partially supported by KOSEF, Korea.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD’95,San Jose, CA USA
@ 1995 ACM 0-89791-731 -6/95/0005.. $3.50

bar-code technology has made it possible for retail orga-

nizations to collect and store massive amounts of sales

data. Catalog companies can also collect sales data from

the orders they receive. A record in such data typically

consists of the transaction date, the items bought in

that transaction, and possibly also customer-id if such

a transaction is made via the use of a credit card or

any kind of customer card. It is noted that analysis of

past transaction data can provide very valuable infor-

mation on customer buying behavior, and thus improve

the quality of business decisions (such as what to put

on sale, which merchandises to be placed on shelves to-

gether, how to customize marketing programs, to name

a few). It is essential to collect a sufficient amount

of sales data (say, over last 30 days) before we can

draw any meaningful conclusion from them. As a re-

sult, the amount of these sales data tends to be huge.

It is therefore important to devise efficient algorithms

to conduct mining on these data. The requirement to

process large amount of data distinguishes data mining

in the database context from its study in the AI context.

One of the most important data mining problems is

mining association rules. For example, given a database

of sales transactions, it would be interesting to discover

all associations among items such that the presence of

some items in a transaction will imply the presence of

other items in the same transaction. The problem of

mining association rules in the context of database was

first explored in [3], In this pioneering work, it is shown

that mining association rules can be decomposed into

two subproblems. First, we need to identify all sets of

items (itemsets) that are contained in a sufficient num-

ber of transactions above the minimum (support) re-

quirement. These itemsets are referred to as large item-

sets. Once all large itemsets are obtained, the desired

association rules can be generated in a straightforward

manner. Subsequent work in the literature followed this

approach and focused on the large itemset generations.

175

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223784.223813&domain=pdf&date_stamp=1995-05-22

Various algorithms have been proposed [3, 5, 8] to dis-

cover the large itemsets. Generally speaking, these al-

gorithms first construct a candidate set of large itemsets

based on some heuristics, and then discover the subset

that indeed contains large itemsets. This process can

be clone iteratively in the sense that the large itemsets

discovered in one iteration will be used as the basis to

generate the candidate set for the next iteration. For
th iteration, all large itemsets

example, in [5], at the k

containing k items, referred to as large k-itemsets, are

generated. In the next iteration, to construct a candi-

date set of large (k + 1)-itemsets, a heuristic is used to

expand some large k-itemsets into a (h + 1)-itemset, if

certain constraints are satisfied.

The heuristic to construct the candidate set of large

itemsets is crucial to performance, Clearly, in order to

be efficient, the heuristic should only generate candi-

dates with high likelihood of being large itemsets be-

cause for each candidate, we need to count its appear-

ances in all transactions. The larger the candidate set,

the more processing cost required to discover the large

itemsets. As previously reported in [5] and also attested

by our experiments, the processing in the initial itera-

tions in fact dominates the total execution cost. A per-

formance study was provided in [5] to compare various

algorithms of generating large itemsets. It was shown

that for these algorithms the candidate set generated

during an early iteration is generally, in orders of mag-

nitude, larger than the set of large itemsets it really

contains. Therefore, the initial candidate set genera-

tion, especially for the large 2-itemsets, is the key issue

to improve the performance of data mining.

Another performance related issue is on the amount of

data that has to be scanned during large itemset discov-

ery. A straightforward implementation would require

one pass over the database of all transactions for each

iteration. Note that as k increases, not only is there a

smaller number of large k-itemsets, but also there are

fewer transactions containing any large k-itemsets. Re-

ducing the number of transactions to be scanned and

trimming the number of items in each transaction can

improve the data mining efficiency in later stages. In

[5], two alternative approaches are considered: Apriori

and ApriorTid. In the Apriori algorithm, each iteration

requires one pass over the database. In the Apriori-

Tid algorithm, the database is not scanned after the

first pass. Rather, the transaction id and candidate

large k-itemsets present in each transaction are gener-

ated in each iteration. This is used to determine the

1A detailed description of the algorithm used in [5] is given in

Section 2.

large (k + 1)-itemsets present in each transaction dur-

ing the next iteration. It was found that in the initial

stages, Apriori is more efficient than AprioriTID, since

there are too many candidate k-itemsets to be tracked

during the early stages of the process. However, the re-

verse is true for later stages. A hybrid algorithm of the

two algorithms was also proposed in [5], and shown to

lead to better performance in general. The challenge to

operate the hybrid algorithm is to determine the switch-

over point.

In this paper, we shall propose an algorithm DHP

(standing for direct hashing and pruning) for efficient

large itemset generation. Specifically, DHP proposed

has two major features: one is efficient generation for

large itemsets and the other is effective reduction on

transaction database size. As will be seen later, by

utilizing a hash technique, DHP is very efficient for

the generation of candidate large itemsets, in partic-

ular for the large 2-itemsets, where the number of can-

didate large itemsets generated by DHP is, in orders

of magnitude, smaller than that by previous methods,

thus greatly improving the performance bottleneck of

the whole process. In addition, DHP employs effective

pruning techniques to progressively reduce the transac-

tion database size. As observed in prior work [5], during

the early iterations, tracking the candidate k-itemsets

in each transaction is ineffective since the cardinality of

such k-itemsets is very large, Note that the generation

of smaller candidate sets by DHP enables us to effec-

tively trim the transaction database at a much earlier

stage of the iterations, i.e., right after the generation

of large 2-itemsets, thereby reducing the computational

cost for later iterations significantly. It will be seen

that by exploiting some features of association rules,

not only the number of transactions, but also the num-

ber of items in each transaction can be substantially

reduced.

Extensive experiments are conducted to evaluate the

performance of DHP. As shown by our experiments,

with a slightly higher cost in the first iteration due

to the generation of a hash table, DHP incurs signif-

icantly smaller execution times than Apriori in later it-

erations, not only in the second iteration when a hash

table is used by DHP to facilitate the generation of can-

didate 2-itemsets, but also in later iterations when the

same procedure for large itemset generation is employed

by both algorithms, showing the advantage of effective

database trimming by DHP. Sensitivity analysis for var-

ious parameters is conducted. It should be noted that

in [5], the hybrid algorithm has the option of switch-

ing from Apriori to another algorithm AprioriTID after

176

Database D

I200 BCE

300 ABCE

400 BE

Figure 1: An example transaction database for data

mining

early passes for better performance. For ease of presen-

tation of this paper, such an option is not adopted here.

Nevertheless, the benefit of AprioriTID in later passes

is complementary to the focus of DHP on initial passes.

We mention in passing that the discovery of associ-

ation rules is also studied in the AI context [11] and

there are various other aspects of data mining explored

in the literature. Classification is an approach of try-

ing to develop rules to group data tuples together based

on certain common characteristics. This has been ex-

plored both in the AI domain [12] and in the context of

databases [2, 6, 7, 10]. Another source of data mining is

on ordered data, such as stock market and point of sales

data. Interesting aspects to explore include searching

for similar sequences [1], e.g., stocks with similar move-

ment in stock prices, and sequential patterns [4], e.g.,

grocery items bought over a set of visits in sequence,

This paper is organized as follows. A detailed

problem description is given in Section 2. The algorithm

DHP proposed for generating large itemsets is described

in Section 3. Performance results are presented in

Section 4. Section 5 contains the summary.

2 Problem Description

Let Z={il, i2, im } be a set of literals, called items.

Let D be a set of transactions, where each transaction

T is a set of items such that T s Z. Note that the

quantities of items bought in a transaction are not con-

sidered, meaning that each item is a binary variable

representing if an item was bought. Each transaction

is associated with an identifier, called TID. Let X be

a set of items. A transaction T is said to contain X if

and only if X ~ T. An association rule is an implica-

tion of the form X ~ Y, where X c 1, Y c I and

X(1 Y = ~. The rule X ==+ Y holds in the transac-

tion set D with confidence c if CYO of transactions in D

that contain X also contain Y. The rule X =+ Y has

support s in the transaction set D if s70 of transactions

in D contain X U Y.

As mentioned before, the problem of mining associa-

tion rules is composed of the following two steps:

1. Discover the large itemsets, i.e., all sets of item-

sets that have transaction support above a pre-

determined minimum support s.

2. Use the large itemsets to generate the association

rules for the database.

The overall performance of mining association rules is in

fact determined by the first step, After the large item-

sets are identified, the corresponding association rules

can be derived in a straightforward manner. In this pa-

per, we shall develop an algorithm to deal with the first

step, i.e., discovering large itemsets from the transac-

tion database. Readers interested in more details for

the second step are referred to [5]. As a preliminary, we

shall describe the method used in the prior work Apri-

ori for discovering the large itemsets from a transaction

database given in Figure 12, Note that a comprehensive

study on various algorithms to determine large itemsets

is presented in [5], where the Apriori algorithm is shown

to provide the best performance during the initial iter-

ations. Hence, Apriori is used as the base algorithm to

compare with DHP. In Apriori [5], in each iteration (or

each pass) it constructs a candidate set of large item-

sets, counts the number of occurrences of each candidate

itemset, and then determine large itemsets based on a

pre-determined minimum support. In the first itera-

tion, Apriori simply scans all the transactions to count

the number of occurrences for each item. The set of

candidate l-iternsets, Cl, obtained is shown in Figure

2. Assuming that the minimum transaction support re-

quired is 2, the set of large l-iternsets, L1, composed

of candidate l-iternsets with the minimum support re-

quired, can then be determined.

To discover the set of large 2-itemsets, in view of the

fact that any subset of a large itemset must also have

minimum support, Apriori uses L1 * L1 to generate a

candidate set of itemsets C2 using the apriori candidate

generation, where * is an operation for concatenation.

C2 consists of (1~1) 2-itemsets. Note that when IL1 I is

large, (1~~{) becomes an extremely large number. Next,

the four transactions in D are scanned and the support

of each candidate itemset in C’2 is counted. The mid-

dle table of the second row in Figure 2 represents the

result from such counting in G’2. A hash tree is usu-

ally used for a fast counting process [9]3. The set of

2This example database is extracted from [5].
s ‘The ~~e of a hash tree to count the support of each candidate

itemset is a common feature for the two algorithms (i.e., Apriori

and DHP) discussed in this paper, and should not be confused

with the hash technique used by DHP to generate candidate

itemsets.

177

L]

Scan

D

C2

rItemset

{A B}

{AC}

{A E}

{B C}

{B E}

{C E}

G’s

ElItemset

{B C E}

Scan

D

--+

Scan

D

+

❑
Itemset Sup.

{A} 2

{B} 3

{c} 3

g; 1

3

C2

T

[t emset Sup.

{A B} 1

~;:; ;

{B C} 2

{BE} 3

{C E} 2

C.s
Itemset Sup.

{B CE}~ 2

Figure 2: Generation of candidate itemsets and large itemsets

large 2-itemsets, L2, is therefore determined based on

the support of each candidate 2-itemset in C2.

The set of candidate itemsets, C3, is generated from

La as follows, From L2, two large 2-itemsets with the

same first item, such as {BC’} and {BE), are identified

first. Then, Apriori tests whether the 2-itemset {Cll},

which consists of their second items, constitutes a large

2-itemset or not. Since {C’E} is a large itemset by itself,

we know that all the subsets of {BCE} are large and

then {BCE} becomes a candidate 3-itemset. There is

no other candidate 3-itemset from L2. Apriori then

scans all the transactions and discovers the large 3-

itemsets L3 in Figure 2. Since there is no candidate

4-itemset to be constituted from L3, Apriori ends the

process of discovering large itemsets. As it can be seen

above, it is important to generate as small a candidate

set of itemsets as possible because the support of each

itemset in C; has to be counted during the scan of the

entire database. As we shall see later, by exploiting this

feature, algorithm DHP proposed is able to generate

large itemsets efficiently.

3 Direct Hashing with Efficient

Pruning for Fast Data Mining

In this section, we shall propose an algorithm DHP

(standing for direct hashing and pruning) for efficient

large itemset generation. The proposed algorithm uti-

lizes a hash method for candidate itemset generation

during the initial iterations and employs pruning tech-

niques to progressively reduce the transaction database

❑
Itemset Sup.

{A} 2

{B} 3

:;; 3

3

Lz

❑
Itemset Sup.

{AC} 2

{B C} 2

{BE} 3
{C E} 2

&
size. The overall algorithm of DHP is described in Sec-

tion 3.1. Database pruning techniques are given in Sec-

tion 3.2.

3.1 Algorithm DHP

The algorithm DHP proposed has two major features:

one is efficient generation for large itemsets and the

other is effective reduction on transaction database size.

We shall describe in this subsection the main flow of al-

gorithm DHP, and explain its first feature, i.e., efficient

generation for large itemsets. The feature of reducing

database size will be described in Section 3.2. As il-

lustrated in Section 2, in each pass we use the set of

large itemsets, La, to form the set of candidate large

itemsets Ci+l by joining Li with Li on (i – 1) (denoted

by L, * L,) common items for the next pass. We then

scan the database and count the support of each item-

set in C$+l so as to determine Li+l. As a result, in

generaI, the more itemsets in Cl, the higher the pro-

cessing cost of determining Li will be. It is noted that

given a large database, the initial extraction of useful

information from the database is usually the most costly

part. Specifically, as previously reported in [5] and also

attested by our experiments given in Section 4, the pro-

cessing cost of the first two iterations (i. e., obtaining

L1 and L2) in fact dominates the total processing cost.

This can be explained by the reason that, for a given

minimum support, we usually have a very large L1,

which in turn results in a huge number of itemsets in

Cz to process. Note that IC21= (1~1) in Apriori, The

step of determining L2 from C2 by scanning the whole

178

database and testing each transaction against a hash

tree built by C2 is hence very expensive. By construct-

ing a significantly smaller C2, DHP can also generate a

much smaller D3 to derive C3. Without the smaller Ca,

the database can not be effectively trimmed. (This is

one of the reasons that Apriori-TID in [5] is not effective

in trimming the database until later stages.) After this

step, the size of Li decreases rapidly as i increases. A

smaller L~ leads to a smaller C;+l, and thus a smaller

corresponding processing cost. In view of the above,

algorithm DHP is so designed that it will reduce the

number of itemsets to be explored in Ci in initial iter-

ations significantly. The corresponding processing cost

to determine L% from C% is therefore reduced,

In essence, algorithm DHP presented in Figure 3 uses

the technique of hashing to filter out unnecessary item-

sets for next candidate itemset generation. When the

support of candidate k-itemsets is counted by scanning

the database, DHP accumulates information about can-

didate (k+ 1)-itemsets in advance in such a way that all

possible (k + 1)-iternsets of each transaction after some

pruning are hashed to a hash table. Each bucket in the

hash table consists of a number to represent how many

itemsets have been hashed to this bucket thus far. We

note that based on the resulting hash table, a bit vector

can be constructed, where the value of one bit is set to

be one if the number in the corresponding entry of the

hash table is greater than or equal to s. As can be seen

later, such a bit vector can be used to greatly reduce the

number of itemsets in C,. This implementation detail

is omitted in Figure 3.

Figure 3 gives the algorithmic form of DHP, which,

for ease of presentation, is divided into 3 parts. Part

1 gets a set of large l-itemsets and makes a hash ta-

ble (i.e., lf2) for 2-itemsets. Part 2 generates the set

of candidate itemsets ck based on the hash table (i.e.,

~h) generated in the previous pass, determines the set

of large k-itemsets Lk, reduces the size of database for

the next large itemsets (as will be explained in Section

3.2 later), and makes a hash table for candidate large

(k+ 1)-itemsets. (Note that in Part 1 and Part 2, the

step of building a hash table to be used by the next

pass is a unique feature of DHP.) Part 3 is basically

same as Part 2 except that it does not employ a hash

table. Note that DHP is particularly powerful to deter-

mine large itemsets in early stages, thus improving the

performance bottleneck. The size of ck decreases signif-

icantly in later stages, thus rendering little justification

its further filtering. This is the very reason that we

shall use Part 2 for early iterations, and use Part 3 for

later iterations when the number of hash buckets with a

count larger than or equal to s (i.e., l{~l~h[Z] ~ s} I in

/“ Part 1 “/

s = a minimum support;

set all the buckets of lfz to zero; /* hash table */

forall transaction t G D do begin

insert and count l-items occurrences in a hash tree;

forall 2-subsets a oft do

H2[~2(~)] + +;

end

L1 = {c]c.count ~ s, c is in a leaf node of the hash tree};

/“ Part 2 ‘/

k=2;

Dk = D; /“ database for large k-itemsets “/

while (l{z]~~[iz] z s}l Z LARGE) {

/* make a hash table “/

gen.candidate(Lk - 1, ~~, ck);

set all the buckets of lf~+l to zero;

Dk~~ = ~;

forall transactions t c Dk do begin

COUnt3UppOrt(t, Ck, k, ~); /*i~t*/

if (I;l > k) then do begin

make~asht (~, Lfk, k, ~~+1, ~);

if ([/[> k) then D~+l = Dk+l U {~};

end

end

Lh = {CC ck [C. COUT2t > S};

k++;
.
k

/“ Part 3 */

gen.candidate(Lk _ 1, Hk, Ck);

while (Ick[> O) {

Dk+l = +;

forall transactions t E Dk do begin

COunt_i3upp0rt(tt 6’h, k, j); pigt*/

if (1~1 > k) then Dk+l =

end

Lk = {C ~ (?k lC.COU72t > S};

if (lDk+Il = O) then break;

Ck+l=apriori.gen(L~);

k++;

}

Dfi+l U {t;;

/* refer to [5] */

Figure 3: Main program of algorithm DHP

179

Procedure gen.candidate(L~_ ~, Hk, C~)

ch = ~;

forallc = CP[l] 0 cp[k–2] .cp[k–l]. cq[lc-1]1

[c f7cql=k-2doCp!cq c .Lk-11 p

if (Hk[hk(c)] ~ s) then

ck = ck U {c]; /* insert c into a hash tree */

end Procedure

Procedure count-support (t, Ck, k, ~

/* explained in Section 3.2 */

forall c such that c E C~ and c (= tii..,ti,)c t do

begin

c.count + +;

for(j=l; j<k; j++) a[ij] ++;

end

for(i=O, j= O;i<ltl; i++)

if (a[i] > k) then do begin t; = ti; j + +; end

end Procedure

Procedure make~asht(;, Hk, k, 11~+1, ~)

forall (k+ I)-subsets z (= ~il . . .~i~) of; do

if (for all k-subsets y of z, ~k[hk(y)] ~ s) then do

begin

~k+l[~k+l(~)] + +;

for(j=l; j<~+l; j++)a[~j]+ +;
end

for(i=O, j= O;i<lil; i++)

if (a[i] > O) then do begin ~i = ;;; j + +; end

end Procedure

Figure 4: Subprocedures for algorithm DHP

Part 2 of Figure 3) is less than a pre-defined threshold

LARGE. We note that in Part 3 Procedure apriorigen

to generate Ck+l from Lb is essentially the same as the

method used by algorithm Apriori in [5] in determining

candidate itemsets, and we hence omit the details on it.

Part 3 is included into DHP only for the completeness

of our method.

After the setting by Part 1, Part 2 consists of two

phases. The first phase is to generate a set of candi-

date k-itemsets ck based on the hash table Hk, which

is described by Procedure gen-candidate in Figure 4.

Same as Apriori, DHP also generates a k-itemset by

Lk -1. However, DHP is unique in that it employs the

bit vector, which is built in the previous pass, to test

the validity of each k-itemset. Instead of including all

k-itemsets from Lk-~ * Lk-~ into Ck, DHP adds a k-

itemset into ck only if that k-itemset passes the hash

filtering, i.e., that k-itemset is hashed into a hash en-

try whose value is larger than or equal to s. As can be

seen later, such hash filtering can drastically reduce the

size of ck. Every k-itemset that passes the hash filter-

ing is included into ck and stored into a hash tree [5],

[9]. The hash tree built by 6’h is then probed by each

transaction later (i.e., in Part 2) when the database is

scanned and the minimum support of each candidate

itemset is counted. The second phase of Part 2 is to

count the support of candidate itemsets and to reduce

the size of each transaction, as described by Procedure

count.support in Figure 4. Same as in [5], a subset

function is used to determine all the candidate itemsets

contained in each transaction. As transactions in the

database (which is reduced after D2) are scanned one

by one, k-subset of each transaction are obtained and

used to count the support of itemsets in ck. The meth-

ods for trimming a transaction and reducing the num-

ber of transactions are described in detail in Section 3.2.

An example of generating candidate itemsets by DHP

is given in Figure 5, For the candidate set of large 1-

itemsets, i.e., Cl={ {A}, {B},{ C},{.D},{E}}, all trans-

actions of the database are scanned to count the sup-

port of these l-items. In this step, a hash tree for Cl

is built on the fly for the purpose of efficient counting.

DHP tests whether or not each item exists already in the

hash tree. If yes, it increases the count of this item by

one. Otherwise, it inserts the item with a count equal

to one into the hash tree. For each transaction, after

occurrences of all the l-subsets are counted, all the 2-

subsets of this transaction are generated and hashed

into a hash table H2 in such a way that when a 2-

subset is hashed to bucket i, the value of bucket i is

increased by one. Figure 5 shows a hash table Hz for

a given database. After the database is scanned, each

180

On tha fly C1 count LI ber of candidate itemsets close to that of large item-
(A) 2

II

A
$1 :

—B sets when counting k-subsets, we can efficiently trim

i:] :
{:) transactions and reduce the number of transactions by

Making 1 hash tablt mlnlmum suppcm,s. 2 eliminating items which are found useless for later large

g g~)B!iKii{Bc,,{BE,!{cE,
itemset generation.

h{{xY))= ((OtiW of x)VO + (ordw of y)) mod z

~H”hbbieH

We now take a closer look at how the transaction size

is trimmed by DHP. If a transaction contains some large

~..~.~ctr...’ (k+ 1)-itemsets, any item contained in these (k+ l)-
The numb., of,:.m,hashed to bwckd 2

Qmwatlng C ~
itemsets will appear in at least k of the candidate k-

* In a bucket with th. It.ms.t

~1

AB
C2 itemsets in C~. As a result, an item in transaction t

AC
L.x L, AE

:

–1}

::} can be trimmed if it does not appear in at least k of
BC :
BE 3
c E) 3

:E the candidate k-itemsets in t. This concept is used in

Procedure count_support to trim the transaction size.

Figure 5: Example of a hash table and generation of (72
Certainlyt the above is only a necessary condition, not

a suficient condition, for an item to appear in a can-

Countlng support In s hash tree

mTID Items

M !& ~?[’’llc~

Discard

{AC SC SE {CE} — ;g\::El
400 S E {SE) —

didate (lc + 1)-itemset. In Procedure make~asht, we

further check that each item in a transaction is indeed

covered by a (k + 1)-itemset (of the transaction) with

all (k + 1) Of itS k-itemSetS contained in ck,

C2 D3 = {<200, S C E>, <300, B C E>)
count

An example to trim and reduce transactions is given
La

11

AC 2

[1

AC in Figure 6,
Sc

Note that the support of a k-itemset
Sc

:—
:E 2 E E)

is increased as long as it is a subset of transaction t

,=2
and also a member of ck. As described by Procedure

count~upport, a[i] is used to keep the occurrence fre-

Figure 6: Example of L2 and D3 quency of the i-th item of transaction t, When a k-

subset containing the i-th item is a member of ck, we in-

crease a[i] by one according to the index of each item in

bucket of the hash table has the number of 2-itemsets the k-subset (e.g., in transaction 100, a[O] corresponds

hashed to the bucket. Given the hash table in Figure to A, a[l] corresponds to C, and a[2] corresponds to

5 and a minimum support equal to 2, we obtain a re- D). Then, in Procedure make~asht, before hashing of

suiting bit vector (1, O, 1, 0, 1, 0, 1). Using this bit vec- a (k+ I)-subset of transaction ~, we test all the k-subsets

tor to filter out 2-itemsets from .L1 * L1, we have C2 = of ~ by checking the values of the corresponding buckets

{ {AC}, {BC},{BE],{CE}}, instead of Cz= { {AB}, on the hash table Hk. To reduce the transaction size,

{AC}, {AE}, {BC},{BE},{CE}} resulted by Apriori
.

we then check each item ~i in t to see if item ii is in-

as shown in Figure 2, deed included in one of the (k + 1)-itemsets eligible for

hashing from ~. Item i; is discarded if it does not meet

such a requirement.
3.2 Reducing the Size of Transaction Database

DHP reduces the database size progressively by not only

trimming each individual transaction size but also prun-

ing the number of transactions in the database. Note

that as observed in [5] on mining association rules, any

subset of a large itemset must be a large itemset by it-

self. That is, {B,C,D} E L3 implies {B,C} c L2, {B,D}

= L2, and {C, D} E Lz. This fact suggests that a trans-

action be used to determine the set of large (k + l)-

itemsets only if it consists of (k + 1) large k-itemsets

in the previous pass, In view of this, when k-subsets

of each transaction are counted toward candidate k-

itemsets, we will be able to know if this transaction

meets the necessary condition of containing large (k+ l)-

itemsets. This in turn means that if we have the num-

For example, in Figure 6, transaction 100 has only a

single candidate itemset AC. Then, occurrence frequen-

cies of all the items are: a[O] = 1, a[l] = 1, and a[2] = O.

Since all the values of a[i] are less than 2, this transac-

tion is deemed not useful for generating large 3-itemsets

and thus discarded. On the other hand, transaction 300

in Figure 6 has four candidate 2-items and the occur-

rence frequencies of items are a[O] = 1 (corresponding to

A), a[l] =2 (corresponding to B), a[2]=2 (corresponding

to C), and a[3] =2 (corresponding to E). Thusl it keeps

three items B, C, E and discards item A.

For another example, if transaction t = ABCDEF

and five 2-subsets, (AC, AE, AF, CD, EF), exist in

181

a hash tree built by C2, we get values of array a[i] as

a[O] = 3, a[2] = 2, a[3] = 1, u[4] = 2, and a[5] = 2

according to the occurrences of each item. For large

3-itemsets, four items, A, C, E, and F, have a count

larger than 2. Thus, we keep the items A, C, E, and F
as transaction ~ in Procedure count-support and discard

items, B and D since they are useless in later passes.

Clearly, not all items in ; contribute to the later large

itemset generations. C’ in fact does not belong to any

large 3-itemset since only AC and CD, but not AD,

are large 2-itemsets. It can be seen from Procedure

make-hasht that spurious items like C are removed from

~ in the reduced database D3 for next large itemsets,

Consequently, during the transaction scan, many trans-

actions are either trimmed or removed, and only trans-

actions which consist of necessary items for later large

itemset generation are kept in D~+l, thus progressively

reducing the transaction database size. The fact that

Dk decreases significantly along the pass number k is

the very reason that DHP achieves a shorter execution

time than Apriori even in later iterations when the same

procedure for large itemset generation is used by both

algorithms. Figure 6 shows an example of L2 and D3.

4 Experimental Results

To assess the performance of DHP, we conducted several

experiments on large itemset generations by using an

RS/6000 workstation with model 560. As will be

shown later, the techniques of using a hash table and

progressively reducing the database size enable DHP

to generate large itemsets efficiently. The methods

used to generate synthetic data are described in Section

4.1. The effect of the hash table size used by DHP

is discussed in Section 4.2. Comparison of DHP and

Apriori algorithms is given in Section 4.3. Results on

some scale-up experiments are presented in Section 4,4.

4.1 Generation of Synthetic Data

The method used by this study to generate synthetic

transactions is similar to the one used in [5] with some

modifications noted below. Table 1 summarizes the

meaning of various parameters used in our experiments.

Each transaction consists of a series of potentially large

itemsets, where those itemsets are chosen from a set of

such itemsets L. IL I is set to 2000. The size of each po-

tentially large itemset in L is determined from a Poisson

distribution with mean equal to Ill. Itemsets in L are

generated as follows. Items in the first itemset are cho-

sen randomly from IV items. In order to have common

items in the subsequent S~ itemsets, in each of these

Sg itemsets, some fraction of items are chosen from the

first itemset generated, and the other items are picked

randomly. Such a fraction, called the correlation level,

is chosen from an exponentially distribution with mean

equal to 0.5. The number of subsequent itemsets that

are correlated to the first itemset, i.e., S’g, is chosen to be

a number between 4 and 6 in this study. After the first

(Sq + 1) itemsets are generated, the generation process

resumes a new cycle. That is, items in the next itemset

are chosen randomly, and the subsequent S~ itemsets

are so determined as to be correlated to that itemset

in the way described above. The generation process re-

peats until IL I itemsets are generated. It is noted that

in [5], the generation of one itemset is only dependent

on the previous itemset. Clearly, a larger Sq incurs a

larger degree of “similarity” among transactions gener-

ated. Here, a larger S4 is used so as to have more large

itemset generation scenarios to observe in later itera-

tions. As such, we are also able to have lL1/(Sq + 1)

groups of transactions to model grouping or clustering

in the retailing environment.

Each potentially large itemset in L has a weight,

which is the probability that this itemset will be

picked. Each weight is exponentially distributed and

then normalized in such a way that the sum of all the

weights is equal to one. To obtain each transaction

from a series of potentially large itemsets, we used a

data pool that contains between 30 and 80 potentially

large itemsets. When a potentially large itemset is

chosen from L and inserted into the pool, this itemset

is assigned with a number which is obtained from

multiplying the weight of this itemset by a factor &ff

between 1250 and 2500. When a potentially large

itemset is assigned to a transaction, such a number

of this itemset is decreased by one. If the number of

an itemset becomes O, another potentially large itemset

is randomly chosen from L and inserted into the pool.

We therefore control the numbers of large k-itemsets

by &ff and S’*. Same as [5], we also use a corruption

level during the transaction generation to model the

phenomenon that all the items in a large itemset are

not always bought together. Each transaction is stored

in a file system with the form of <transaction identifier,

the number of items, items>.

4.2 Effect of the Size of a Hash Table

Note that the hash table size used by DHP affects the

cardinality of C’z generated. In fact, from the process of

trimming the database size described in Section 3.2, it

can be seen that the size of (72 subsequently affects the

determination of D3. Table 2 shows the results from

varying the hash table size, where 1111I = 100,000, ITI

= 10, III = 4, N = 1000, ILI = 2000, and s = 0.75%.

We use Tz.Iy.Dz to mean that z = ITI, y = II], and the

number of transactions in D1 is z x 1000. For notational

182

Table 1: Meaning of various parameters

Dk Set of transactions for large k-itemsets

lDk[The number of transactions in Dk

Hk Hash table containing [Hk [buckets for ck

ck Set of candidate k-itemsets

Lk Set of large k-itemsets

ITI Ave. size of the transactions

III Ave. size of the maximal potentially large itemsets

ILI Number of maximal potentially large itemsets

N Number of items

,-
J?able 2: Results from varying hash table sizes

(TIO.14.D100)

/H,/ //524,288/262,144)131,072/ 95,536132,768
L1 5591 5591 5591 5591 559

I{H, > s} I 58 61 75 96 182
c, 81 120 199 394 1355

LZ 45 45 45 45 45

0.0314 0.0320 0.0345 0.0386 0.0545
size ~f D.z 498KB 500KB 507KB 539KB 603KB

IDs[19,732 19,741 19,755 20,501 21,607

total time 6.44 6.43 6.24 6.77 7.23

simplicity, we use {iYz ~ s} in Table 2 to represent

the set of buckets which are hashed into by 750 (i.e.,

100* 1000* O.75YO) or more 2-itemsets during the execu-

tion of Part 1 in DHP, and 1{172 z s} I to denote the

cardinalit y of {H2 ~ s}. Also, a represents the ratio of

the number of 2-itemsets hashed into {Hz ~ s} to the

total number of 2-itemsets generated from the original

database D1. a is a factor to represent what fraction

of 2-itemsets are involved in candidate 2-itemsets. The

total number of 2-itemsets of the experiment at Table

2 is 5,002,249, which is slightly larger than 11111. (1:]).

For N = 1000, the number of distinct 2-itemsets is

(!). Note that when n = (~) and IHzI is chosen to

be the exponent of 2 which is greater than n, we have

lC21/[L21=l.80 in Table 2. In addition, note that in the

second column of Table 2, the database to be used for

generating large 3-itemsets, i.e., D3, is very small com-

pared to the original database, indicating a very effec-

tive trimming in the database size by DHP. Specifically,

the ratio of D3 to D1 is 1O.55$7O in terms of their sizes,

and 19.73% in terms of their numbers of transactions.

Also, the average number of items in each transaction

of D3 is 4.33 (instead of 10 in the original database).

L I ((I
500K 250K 125K 62,5K 312K

The number of hash entries

T15.14,DiO0 T20,14,DIO0---- ,,,,,.,.....,

Figure 7: Reduction ratio of IC2 I by DHP for different

sizes of H2

Clearly, a small number of items in each transaction in-

curs fewer comparisons in a hash tree and leads to a

shorter execution time.

In Table 2, the values of IHzI in DHP varies from (~)

to (~)/ 16. When IH2 I is approximately (~) as in the

first column, IC2 I/ \L2 I = 1.80, meaning that a larger Hz

leads to a smaller C2 at the cost of using more mem-

ory. As]H2 I decreases, IC2 I and the execution time

for L2 increase. The size of D3 then increases as well,

We found that we can have fairly good overall perfor-

mance till IH2 I is a quarter of (~) (i.e., till the fourth

column). However, it is noted that even when the hash

table has only (~) /16 buckets, the number of candi-

date 2-itemsets is still significantly smaller than (1~1).

Clearly, when either the minimum support is small or

the number of total 2-itemsets is large, it is advanta-

geous to use a large [Hz I for DHP. The reduction ratios

of ICZ I by DHP for various sizes of Hz are shown in

Figure 7, where a logarithmic scale is used in y-axis for

ease of presentation.

4.3 Comparison of DHP and Apriori

Table 3 shows the relative performance between Apri-

ori used in [5] and DHP. Here, we use I!Z’I = 15, i.e.,

each transaction has 15 items in average, so as to have

more large itemsets in later passes for interest of pre-

sentation. The execution times of these two algorithms

are shown in Figure 8. In DHP, IH21 is chosen to be

the exponent of 2 which is greater than (~) (i.e., with

524,288 buckets). In this experiment, DHP uses a hash

table for the generation of C2 (i.e., Part 2 of Figure

3). Starting from the third pass, DHP is the same as

Apriori in that the same procedure for generating large

183

50

Table 3: Comparison of execution time (T15.I4.D1OO)

Apriori DHP

number number Dk , lDkl

mEE?5R5
L3 201 II 201

C4 184 ~\ 184 546KB, 17,417

I L4 98 II 98 I

C5 30 II 30 [332KB, 10,149

Ls 23 23

C’6 1 1 24KB, 756

L6 1 1

total time 39.39 13.91

itemsets (i.e., Part 3 of Figure 3) is used by both algo-

rithms, but different from the latter in that a smaller

transaction database is scanned by DHP. The last col-

umn represents the database size in the kth pass (i.e.,

Dk) used by DHP and its cardinalit y (i.e., \Dk 1). More

explicitly, Apriori scans the full database D1 for every

pass, whereas DHP only scans the full database for the

first 2 passes and then scans the reduced database Dk

thereafter. As mentioned before, in [5] the hybrid algo-

rithm has the option of switching from Apriori to an-

other algorithm AprioriTID after early passes for better

performance, and such an option is not adopted here,

It can, nevertheless, be seen from Figure 8 that the ex-

ecution time of the first two passes by Apriori is larger

than the total execution time by DHP4.

It can be seen from Table 3 that the execution time

of the first pass of DHP is slightly larger than that of

Apriori due to the extra overhead required for gener-

ating Hz. However, DHP incurs significantly smaller

execution times than Apriori in later passes, not only

in the second pass when a hash table is used by DHP to

facilitate the generation of 02, but also in later passes

when the same procedure is used, showing the advan-

tage of scanning smaller databases by DHP. Here, the

execution time of the first two passes by Apriori is about

65!J’o of the total execution time. This is the very mo-

tivation of employing DHP for ealry passes to achieve

performance improvement.

Figure 9 shows the execution time ratios of DHP to

4The benefit of AprioriTID in later passes is complementary

to the focus of DHP on initial passes. In fact, in Part 3 of DHP,

AprioriTID can be used instead of APriori if desired.

40

“c0.—
320

J

10

0

Comparison of two algorithms

❑ Pass 1 ❑ Pam 2 ❑ ,a.w 3 ~ passe, 4.6

T15.I4.D1OO

Figure 8: Execution time of Apriori and DHP

Apriori over various minimum supports, ranging from

0.75% to 1.25%. Figure 9 indicatea that DHP constantly

performs well for various minimum supports. Figures

10 and 11 show the effect of progressively reducing the

transaction database by DHP. As pointed out earlier,

this very feature of DHP is made feasible in practice

due to the early reduction on the size of Cz, and turns

out to be very powerful to facilitate the later itemset

generations. As shown in Figure 10 where a logarithmic

scale is used in y-axis, the number of transactions in the

database to be scanned by DHP progressively decreases

due to the elimination of transactions which are deemed

useless for later large itemset generations. Note that

DHP is not only reducing the number of transactions

but also trimming the items in each transaction. It can

be seen that the average number of items is, on one

hand, reduced by the latter process (i.e., trimming each

transaction size), but on the other hand, is increased

by the former process (i.e., reducing the number of

transactions) since transactions eliminated are usually

small ones. As a result of these two conflicting factors,

as shown in Case A of Figure 11 whose y-axis uses

a logarithmic scale, the average number of items in

each transaction in Di remains approximately the same

along the pass number i. For example, for T20.14.D 100,

starting from 20 items, the average number of items in

a transaction drops to 7.5, and then increases slightly

since several small transactions are eliminated in later

passes. To explicitly show the effect of trimming

each transaction size, we conducted another experiment

where transactions are only trimmed but not thrown

away along the process. The average number of items

in each transaction resulting from this experiment is

shown by Case B of Figure 11, which indicates that the

trimming method employed by DHP is very effective.

184

o
s=0,75 S=l ,0 S=1 .25

Minimum suppoti

❑ T15,14.0100 ❑ T20.14.DIOO

Figure 9: Execution time comparison between DHP and

Apriori for some minimal supports

Passes

T15,14.DIOO T20.14.0100
.— -- .,,

The number of original tx’s: 100,000
s-0.75%

Figure 10: The remaining number of transactions in

each pass

0,03 h ‘
1 , (1 I I 1

2 3 4 5 6 7 8

Passes

T15,14.OICO T20,14,DIcQ T15,14,01CQ T20,14,DIO0

Case P. Case A Case B Case S
---- ,,, ,,, —

Case A Fil!ermg out small M
C.,. !2 Not f,l,.a,ing out end! ,.,s

Figure 12:

increases

Database size

TI0,14 T15,14 T20,14

----

Performance of DHP when the database size

4.4 Scale-Up Experiment for DHP

Figure 12 shows that the execution time of DHP in-

creases linearly as the database size increases, meaning

that DHP possesses the same important feature as Apri-

ori. Also, we examine the performance of DHP as the

number of it ems, N, increases. Table 4 shows the execu-

tion times of DHP when the number of items increase

from 1,000 to 10,000 for three data sets T5.I2.D1OO,

TIO.I4.D1OO, and T2O.I6,D1OO, In the experiments for

Table 4, the minimum support is 0.75% and the hash

table size is the exponent of 2 which is greater than

(’o:). Note that the portion of time on determining LI

for the case of small transactions (e.g. T5 in Table 4)

is relatively larger than that for the case of large trans-

actions (e.g. T20 in Table 4), In other words, a large

transaction has a larger likelihood of having large item-

sets to process than a small transaction. Also, given

a fixed minimum support, when the number of items

N increases, the execution time to obtain L1 increases

since the size of L1 is usually close to N, but the execu-

tion time to obtain larger k-itemsets decreases since the

support for an itemset is averaged out by more items

and thus decreases. Consequently, as shown in Table

4, when N increases, execution times for small transac-

tions increase a little more prominently than those for

large transactions,

Figure 11: The average number of items in a transaction

in each pass

185

Table 4: Performance of DHP when the number of items

increases

T

N T5.12

1,000 2.26

2,500 2.46

5,000 2.59

7,500 2.68

10,000 2.64

TIO.I4

6.69

6.88

7.57

7.53

7.91

T20.16

20.44

21.42

23.47

23.95

23.75

5 Conclusions

We examined in this paper the issue of mining associa-

tion rules among items in a large database of sales trans-

actions. The problem of discovering large itemsets was

solved by constructing a candidate set of itemsets first

and then, identifying, within this candidate set, those

itemsets that meet the large itemset requirement. We

proposed an effective algorithm DHP for the initial can-

didate set generation. DHP is a hash-based algorithm

and is especially effective for the generation of candi-

date set for large 2-itemsets, where the number of can-

didate 2-itemsets generated is, in orders of magnitude,

smaller than that by previous methods, thus resolving

the performance bottleneck. In addition, the genera-

tion of smaller candidate sets enables us to effectively

trim the transaction database at a much earlier stage

of the iterations, thereby reducing the computational

cost for later stages significantly. Extensive simulation

study has been conducted to evaluate performance of

the proposed algorithm.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

References

[I] R. Agrawal, C. Faloutsos, and A. Swami. Efficient

Similarity Search in Sequence Databases, Proceed-

ings of the 4th Intl, conf, on Foundations of Data

Organization and Algorithms, October, 1993.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. IYer, and

A. Swami. An Interval Classifier for Database Min-

ing Applications. Proceedings of the 18th Interna-

tional Conference on Very Large Data Bases, pages

560-573, August 1992.

R. Agrawal and R. Srikant. Mining Sequential

Pat terns. Proceedings of the Ilth International

Conference on Data Engineering, March 1995.

R. Agrawal and S. Srikant. Fast Algorithms

for Mining Association Rules in Large Databases.

Proceedings of the 20th International Conference

on Very Large Data Bases, September 1994.

T.M. Anwar, H,W. Beck, and S.B. Navathe.

Knowledge Mining by Imprecise Querying: A

Classification-Based Approach. Proceedings of the

8th International Conference on Data Engineering,

February 1992.

J. Han, Y. Cai , , and N. Cercone. Knowledge

Discovery in Databases: An Attribute-Oriented

Approach. Proceedings of the 18th International

Conference on Very Large Data Bases, pages 547-

559, August 1992.

M. Houtsma and A. Swami, Set-Oriented Mining

of Association Rules. Technical Report RJ 9567,

IBM Almaden Research Laboratory, San Jose, CA,

October 1993.

E. G. Coffman Jr. and J. Eve. File structures using

hashing functions. Comm. of the ACM, 13(7):427-

432, 436, July 1970.

R.T. Ng and J. Han. Efficient and Effective Clus-

tering Methods for Spatial Data Mining. Proceed-

ings of the 18th International Conference on Very

Large Data Bases, pages 144-155, September 1994.

G. Piatetsky-Shapiro. Discovery, Analysis and

Presentation of Strong Rules. Knowledge Discoveq

in Databases, 1991.

J .R. Quinlan. Induction of Decision Trees. Machine

Learning, 1:81-106, 1986.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large

Databases. Proceedings of ACM SIGMOD, pages

207-216, May 1993.

186

