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Abstract

This paper presents a simulation study of a video-on-demand
system. We present video server algorithms for real-time
disk scheduling, prefetching, and buffer pool management.
The performance of these algorithms is compared against the
performance of simpler algorithms such aselevator and round-robin
disk scheduling and global LRU buffer pool management. Finally,
we show that the SPIFFI video-on-demand system scales nearly
linearly as the number of disks, videos, and terminals is increased.

1 Introduction

In recent years, real-time digital multimedia systems have

moved from concept to reality due to major advances in disk,

network, and data compression technologies. In particular.

video-on-demand systems capable of delivering any of a

large selection of movies to a subscriber’s television at the

press of a button have attracted a great deal of attention.

The operating constraints on a video-on-demand system are

enormous. Multiple unintemupted streams of video data must

be delivered to a large number of clients. If the system

fails to meet its real-time deadlines, one or more clients will

experience a service interruption or “glitch.”

The large size, rigid real-time constraints, and general

complexity of a video-on-demand system leads to many

difficult design decisions that may substantially affect a

system’s ultimate cost and performance. If poor decisions are

made during a system’s design, subscribers may experience

frequent glitches or long waits to view movie selections.

Alternatively, a poorly designed system may wind up

costing substantially more than a well designed system
while servicing the same number of customers. Given the

alternatives already available to consumers (e.g., a trip to

the local video store or movie theater), a video-on-demand

system must be well designed and economically competitive

to succeed in the marketplace.

This paper presents a simulation study of a video-

on-demand system to determine the effect of varying a
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wide variety of parameters and design alternatives. We

demonstrate the benefits of declustering or striping videos

across many disks; we compare the performance of real-

time disk scheduling against simpler algorithms such as

elevator or round-robin; and we present buffer pool page
replacement and prefetching algorithms that minimize

memory requirements.

The remainder of this paper is organized as follows.

Section 2 provides an overview of the minimum features and

performance that we believe any video-on-demand system

must provide. Section 3 reviews some related work while

Section 4 describes our approach to the video-on-demand

problem. Section 5 outlines the design of our video-

on-demand system and describes the algorithms that are

compared. Section 6 describes our simulator. Section 7

discusses our results. Section 8 briefly outlines how some

additional features such as pause, rewind, and fast-forward

might be added to the system. Finally, Section 9 presents

some conclusions and future work.

2 Background

Any system using uncompressed digitized video data requires

a tremendous amount of 1/0 bandwidth and storage capacity.

For example, an uncompressed NTSC (the U.S. broadcast

standard) video stream proceeds at about 30 Mbytes/second

and a 90 minute uncompressed movie requires 150 Gbytes

of storage. HDTV videos will require even more bandwidth

and storage. Thus, most multimedia and video-on-demand

systems will have to use some form of data compression to

be both feasible and cost-effective.

This study assumes that all movies are compressed using

the MPEG video compression standard [Gal191 ]. MPEG

uses a lossy compression algorithm. In other words, a

decompressed MPEG video stream will not be identical

to the original video before compression. Although lossy

compression is not acceptable for some applications (e. g.,

the storage of medical or scientific data where errors

introduced during compression could have potentially serious
consequences), the deterioration in picture quality is minimal

and is not easily detected by an untrained viewer. Moreover,
the MPEG compression ratio of 1:25 or higher is much

better than the compression achieved by traditional lossless

algorithms. Hence, MPEG compression is a good choice for

a movie-on-demand system.

The MPEG-I standard recommends a “constrained pa-
rameter set” that results in a compressed bit stream of

1.5 Mbits/second. This particular bit rate was chosen be-

cause it corresponds to the CD-ROM bit rate, However, the
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resulting uncompressed video is at best VHS quality and is

certainly lower quality than broadcast television. Consumers

will demand high-quality pictures from a video-on-demand

service, As a result, this study assumes a 4 Mbits/second

video stream with a resulting picture that is as good as or

better than broadcast television.

Finally, a successful video-on-demand system cannot

simply offer a small set of very popular movies; an enhanced

pay-per-view system could provide such a service, Rather,

a video-on-demand system must offer customers a large

selection of videos, Just as a small set of movies account

for a substantial percentage of all rentals at a video store,

in a video-on-demand system some of the movies will be

extremely popular and accessed frequently while others

will be requested less frequently. Furthermore, the most

frequently requested videos may change not only on a weekly

or monthly basis, but even on an hourly or daily basis. For

example, children’s movies are likely to be popular early in

the evening or on Saturday mornings, but less popular late at

night. Thus. a video-on-demand system must be able to adapt

rapidly to a widely varying and highly dynamic workload,

3 Related Work

[Ozde94] proposes a movie-on-demand system in which each

movie is stored on a separate disk and an unlimited number of

subscribers can view each movie. Rowe [Fede94, Rowe92]

is building a comprehensive system including a video file

server, a continuous media player, and a large library of
digitized videos. [Hsie94] studies the performance of an

actual video server running on a Silicon Graphics Onyx

computer system. [SUZU94] describes a system in which

frequently referenced movies are stored on disk while

infrequently referenced movies are stored in an optical

jukebox. [Vin93] performs an analytical study of the design

and operation of a video server including disk layout and

admission control constraints. [Ande91] describes the design

of a multimedia server, ACME, and presents a mechanism

for synchronizing several media streams (e.g., audio and

video). Other multimedia and continuous media systems

include the Continuous Media File System [Ande92], the

Continuous Media Storage Server [Loug92], and the IBM

Shark Continuous Media File Server [Hask93].

[Yu92] presents a disk scheduling algorithm referred to

as the group sweeping scheme (GSS). The intent of this

algorithm is to minimize both the disk access time and the

amount of buffer space. Section 7 of this paper includes

results using GSS.

[Redd94] simulates a real-time 1/0 subsystem including a

SCSI bus and disks and compares the performance of three

disk scheduling algorithms, elevator, earliest-deadline-first

(EDF), and a hybrid of the first two, with varying amounts

of memory. [Hari94] presents an analytical and simulation
study comparing the memory requirements of the elevator and
first-come-first-served (FCFS) disk scheduling algorithms.

[Bers94] introduces a file layout technique called staggered

striping that is suitable for the storage of high-bandwidth

video objects that may not be compressed such as medical

or scientific data. [Chan94] compares various strategies for

allocating video data on disk arrays such that the video can

be efficiently retrieved at differing quality levels. [Chen93]

uses an analytical study to develop a disk layout strategy

for multiple related multimedia streams such as video,

audio, and text (e.g., closed captioning). [Tetz94] uses an

analytical study to discuss the effects of various parameters

and technology trends on a video-on-demand system,

4 Our Work

This paper simulates a variety of video server hardware

configurations and algorithms to determine how such a

server should be designed and configured to minimize cost

and maximize performance, Many other video-on-demand

systems have been designed by starting with an analytical

performance study. Although a system based on an analytical

study can, at least in theory, guarantee a certain level of

performance (e.g., no glitches), often analytical studies make

worst case assumptions (e.g., maximum disk seeks and

latencies). Furthermore, many systems designed around

analytical studies necessarily must assume overly simplistic

algorithms (e.g., round-robin disk scheduling). Thus, such

a system may be over-designed or pessimistic and may not

achieve the maximum possible utilization of the hardware.

By instead using a detailed simulation model, the

performance of a system can be accurately predicted using

realistic disk, network, and CPU models. The maximum

number of simultaneous users that each configuration of

the video server is able to support can be determined and

the effects of varying each of the design parameters can be

accurately measured.

Our primary metric for the performance of a particular

system configuration is the maximum number of users that

the configuration can support while providing continuous

glitch-free video. This method of evaluating a video-on-

demand system is compatible with the method taken in most

analytical studies. The only difference is that most analytical

studies begin with the assumption that users should never

experience glitches and proceed to design a system around

that assumption while we first design a system and then

analyze whether that design resulted in glitches.

Finally, this study does not attempt to prove that the

simulated systems will never produce a glitch. As

we indicated above, a system that is designed around

an analytical study and is proven never to cause a

glitch, is unlikely to achieve high utilization of the

hardware. Furthermore, in any real system, unexpected and

uncontrollable events can always cause glitches. However,

the risk of glitches can be made arbitrarily low by limiting

the maximum number of terminals as much as is desired.

5 The SPIFFI Video-on-Demand System

Figure 1 provides an overview of the SPIFFI video-on-

demand system hardware. The video server itself consists of

a set of nodes connected by a very high-speed interconnection

network such as ATM. This study does not address the details
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of the network and assumes that it is not a bottleneck. Each

node consists of a CPU, some memory for prefetching and

buffering video data, a network interface, and a set of disks.

The video server’s clients are a set of video terminals with

real-time decompression hardware and memory for local

buffering of video data and are attached to the same high-

speed interconnection network.

Video
Terminals

Video
Server

Figure 1: Overview of the SPIFFI video-on-demand system.

The SPIFFI video-on-demand system is designed to be

built out of inexpensive commodity components (e.g., PCs or
workstations with SCSI disks and plug-in network devices).

This approach differs from the one taken by some vendors

[Laur94] who are building systems based around costly

massively parallel processors. Our results in Section 7 show

that it is not necessary to spend a great deal of money to build

a viable video-on-demand system. In the following sections,

the video terminals and video server are discussed in detail.

5.1 The Video Terminals

The video terminals are used by movie-on-demand sub-

scribers to select and view movies. It neither possible nor

desirable for a terminal to retrieve a video in its entirety be-

fore beginning display of it. Instead each terminal attempts

to buffer only as much of the video as necessary to ensure

that display of the movie can proceed uninterrupted while the

next block of video is retrieved from the server.

Before initiating display of a movie, a terminal first fills

or primes its buffers with video data. Then, as illustrated by

Figure 2, it begins decompressing and displaying the movie

while simultaneously retrieving subsequent blocks of video.

A terminal will always request more video data from the

video server as long as it has the memory to buffer it. If

the terminal completely fills its buffer space, it temporarily

suspends the retrieval of additional video data until some

of the buffered data is displayed. If the terminal runs out

of video to display, a “glitch” occurs and the terminal must

pause the movie while it waits for more data to arrive. If a
glitch does occur, the terminal re-primes its buffers before

restarting display of the video. This strategy increases the

Figure 2: Video terminal operation.

duration of the glitch but reduces the likelihood of a second

glitch occuring immediately after the first.

5.2 The Video Server

The video server software is based on SPIFFI, a high-

performance, scalable parallel file system that we developed

for and implemented on an Intel Paragon [Free94]. SPIFFI

provides much of the necessary 1/0 functionality needed

to build a video server. Some of the features that were

particularly important were file striping, decentralized file
accesses, and buffering and prefetching.

SPIFFI automatically stripes files across all the disks in the
video server [Ries78]. As Figure 3 illustrates, when SPIFFI

declusters a file, it first alternates between the nodes and then

between the disks at each node. Thus, block A.O is stored

on node O, disk O; block A. 1 is stored on node 1, disk O;

block A.2 is stored on node O, disk 1; etc. The portion of a

video stored on one disk (e.g., blocks B.3, B.7, B.11, etc.) is

called a fragment and is laid out contiguously. Each block

(e.g., A.3) is referred to as a stripe block. The size of each

stripe block is constant and is termed the stripe size.

Node o n Node 1 n

Video A
{5

A.O

A.4

{n

B.O
Video B

B.4

ElA.2

A.6

B

B.2

B.6

ElA.1

A.5

B

B.1

B.5

ETA.3 Stripe Block

A.7

H

B.3
I Fragment

B.7
—

Figure 3: Striping of videos across multiple disks.

Fully striping the videos has two advantages. First, the

entire aggregate bandwidth of all the disks in the system is

available to show the most popular movies. This advantage

is particularly important since, as discussed in Section 2, the

movies most in demand are likely to change during each

24 hour period as well as on a daily and weekly basis. By

fully striping all videos, the system can automatically adapt

to workload changes without having to reorganize the disk

layout of the videos. Second, unpopular movies do not render

the disks that store them underutilized. That is, striping

automatically balances the I/O load across all the server’s

disks ensuring that no disks are either under or over utilized.

SPIFFI’s decentralized implementation streamlines the
performance and cost of the video server by routing read

requests for video data directly from the terminal to the

appropriate node and disk. Read requests need not pass

through any intermediate nodes and there is no need to consult

a global page mapping database before each disk access.

Finally, SPIFFI provides a buffer pool that includes a

highly effective prefetching mechanism, The basic SPIFFI

buffer pool uses a global LRU (least recently used) page
replacement algorithm and the elevator disk scheduling

algorithm that balances minimizing seek times against
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fairness [Si1b94]. After servicing an 1/0 request for a

terminal, SPIFFI issues a background prefetch request for

the next stripe block of the video file. When the terminal

ultimately requests this block, if the prefetch has completed,

the request will be satisfied by the buffer pool with a

significant reduction in service time. By prefetching, SPIFFI

takes advantage of idle time at the disks to do useful work.

As part of this project, we enhanced the SPIFFI buffer pool

by adding a new page replacement algorithm, love prefetch,

that favors prefetched pages over already referenced pages

[Teng84]. We augmented the disk scheduler with a real-

time disk scheduling algorithm and with an implementation

of the group sweeping scheme (GSS) proposed in [Yu92].

Finally, we added two new prefetching strategies, real-time

prefetching and delayed prefetching. The details of these

algorithms is described in the following sections.

5.2.1 Buffer Pool Page Replacement Algorithms

The global LRU algorithm [Silb94] simply places newly

referenced pages (i.e., stripe blocks) onto the end of a single

queue. When a new page is needed, the buffer pool searches

for the first available page starting from the head of the queue.

This algorithm does not distinguish between prefetched

pages and referenced pages (i.e., pages or stripe blocks that

have been explicitly requested by a video terminal).

Due to the huge size of the video files (2 hours equals

4 Gbytes) and the strictly sequential access pattern, it is

impossible to cache a significant portion of a video in memory

for reuse and the likelihood that a stripe block in the buffer

pool will be referenced more than once is low [Ozde94], The

love prefetch page replacement algorithm takes advantage of

this fact and breaks the global LRU chain into two separate

LRU chains: one for prefetched pages and one for referenced

pages [Teng84]. As Figure 4 illustrates, when a stripe block
is first prefetched, it is placed on the prefetched-pages LRU

chain. When it is subsequently referenced, it is moved to the

referenced-pages LRU chain. When a new page is needed,

the buffer pool first attempts to find an available page on the

referenced-pages LRU chain. If there are no available pages

on the referenced-pages LRU chain, the buffer pool takes a

page from the prefetched-pages LRU chain.

Prefetch Block X

Prefetched
LRU Chain: ~“ “ ●-Q-@l

Referenced
LRU MRU

‘Ruchain: =;:;e*

Reference Block X
Move this page to the
Referenced LRU Chain.

Prefetched
LRU Chain: xU+& “ “+3+3
Referenced
LRUChain: =“:”=

Figure 4: The love prefetch page replacement algorithm.

5.2.2 Disk Scheduling Algorithms

The elevator disk scheduling algorithm [Silb94] scans the

disk cylinders starting with the innermost cylinder and

working outward. When it reaches the outermost cylinder,

the algorithm reverses and begins scanning inward. An 1/0

request is serviced when the disk head reaches its cylinder.

This algorithm is popular because it combines nearly minimal

seek times and fairness.

The real-time disk scheduling algorithm is an extension

of an existing priority disk scheduling algorithm which is

itself an extension of the elevator algorithm [Care89], First,

terminals assign each disk access a deadline by which it

must be completed to avoid a glitch. This deadline is used

to assign each pending disk access to one of a fixed set of

priority classes. There are many ways to map deadlines

into priorities. To reduce the number of possible mappings,

we use uniformly spaced priority cutoffs. For example, in

Figure 5, there are 3 priority classes or simply 3 priorities

and the spacing between priority cutoffs or the priority

spacing is 2 seconds. Thus, the priority cutoffs are at

2 seconds and 4 seconds. Those requests within 2 seconds

of their deadlines are assigned to the highest priority class

while those requests with more than 4 seconds remaining are

assigned to the lowest.

now +1 +2 +3 +4 +5 +6 +7 sees.
I , I 1 1 , ITime , , F

~
Priority 1 1 Priority 2 1 Priority 3

(high) (low)

I 3 Prioritv Classes. 2 second Prioritv Sr)acin~ I

Figure 5: Assigning priorities to disk accesses.

After all disk accesses are assigned a priority, the highest

priority class with pending disk accesses is selected and

serviced using the elevator algorithm. For instance, in

Figure 6 request 2 is assigned priority 1 and is serviced first

even though the disk head must seek past cylinder 10 and skip

request 1 which only has priority 2. After each disk access,

priorities are recomputed using the current time. Thus,

continuing the example, request 1 is now within 2 seconds of

its deadline, is promoted to priority 1, and is serviced next.

EmEl-m
Pending Disk Requests:

mlm

Figure 6: The real-time disk scheduling algorithm.
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For comparison, we also implemented the group sweeping

scheme (GSS) described in [Yu92]. This algorithm assigns

each terminal to one of a fixed set of groups. These groups

are processed repeatedly in round-robin order. To process

a group, up to one request from each terminal within that

group is selected and serviced using the elevator algorithm.

Increasing the number of groups (and assigning a small

number of terminals to each group) causes the terminals to be

serviced more or less in round-robin order, thus, reducing the

maximum time that a terminal may have to wait to be serviced

and the maximum amount of video data that each terminal

must buffer to avoid a glitch. Decreasing the number of

groups (and assigning many terminals to each group) causes

the terminals to be serviced more or less in elevator order

which increases the efficiency of the disk scheduling but also

increases the maximum time that a terminal may have to

wait to be serviced. At one extreme, with one group the

algorithm is nearly identical to the elevator algorithm. The

only difference is that with GSS each terminal is serviced at

most once on each pass over the disk while with elevator a

terminal may be serviced many times on each pass. At the

other extreme, if the number of groups is equal to the number

of terminals, the algorithm is simply round-robin,

5.2.3 Prefetching Algorithms

The standard SPIFFI prefetching algorithm operates by

responding to each real reference to a stripe block on some

disk with a background request for the next stripe block at

the same disk. Each prefetch request is inserted into a first-in

first-out queue associated with the appropriate disk. A fixed

set of prefetch processes service each disk’s prefetch queue.

Once a prefetch request has been issued to the disk, it is

serviced according to the disk scheduling policy in effect. If

the real-time algorithm is used, prefetch requests are assigned

by default to the lowest possible priority.

By varying the number of prefetch processes and, hence,

the number of prefetch requests that are concurrently in

the disk queue, the “aggressiveness” of the prefetching

mechanism can be altered. Using many prefetch processes

leads to more aggressive prefetching while using fewer

processes leads to less aggressive prefetching. The non-

real-time disk scheduling algorithms are hurt by aggressive
prefetching because they do not distinguish between an

urgent request issued by a terminal and a non-urgent prefetch

request. The real-time disk scheduling algorithm can identify

and skip prefetches if necessary and, therefore, benefits from

aggressive prefetching. In each experiment, the prefetching
mechanism was configured to maximize the performance of

the disk scheduling algorithm in use.

We extended the basic prefetching algorithm in two ways.

The real-time prefetching algorithm is designed to augment

the real-time disk scheduling algorithm described above.

For each prefetch request it estimates the deadline that will

ultimately be assigned to the anticipated true request for the

same stripe block. Requests are inserted into a priority queue

so that the request with the most urgent deadline will always

be at the head of the queue. Finally, the real-time disk

scheduling algorithm uses a prefetch request’s deadline to

assign it a priority just as it assigns priorities to real requests.

Thus, an urgent prefetch request can take priority over a

non-urgent true request. This algorithm always benefits the

real-time disk scheduling algorithm and, therefore, these two

algorithms are always used together.

The delayed prefetching algorithm is a further extension

of the real-time prefetching algorithm and is intended to

reduce the overall memory requirements of the server. Often,

prefetch requests are issued and serviced several seconds

before the data is really needed. As a result, extra memory is

required to buffer the results of the prefetch until the actual

request for the data arrives. As Figure 7 shows, the delayed

prefetching algorithm simply delays issuing a prefetch until

it has less than a set amount of time left before its deadline.

The precise amount of time between a prefetch’s deadline

and when it may be issued is referred to as the maximum

advance prefetch time.

now +1 +2 +3 +4 +5 +6 +7 sees.
Time , , , , , , , I N

4 E

Issue these requests. ~Delay these requests.

I 4 second Maximum Advance Prefetch Time !

Figure 7: The delayed prefetching algorithm

6 Simulator Description

Our video-on-demand simulator is based on an existing

SPIFFI simulator that was validated against an actual SPIFFI

implementation on a 64 node/64 disk Intel Paragon [Free94].

The event-driven simulator is written in the CSIM/C++

process-oriented simulation language [Schw90].

We are primarily interested in the performance of the

system when all the terminals are actively viewing movies.

Furthermore, in a real system videos will be started at random

intervals. To capture this behavior, when a simulation begins,
the terminals start movies at random intervals. When a

terminal finishes one movie, it randomly selects a new video

and immediately begins playing it. Once all the terminals

have begun watching videos, the simulator begins collecting

performance and utilization data. The simulation continues

for a fixed period of simulated time and then is terminated

abruptly. Thus, the simulation is of a closed system of

terminals and the results represent a snapshot of the system’s

performance with all the terminals active.

The simulator parameters are summarized in Table 1. In

the remainder of this section, the various components of the

simulator are described in more detail.

6.1 Videos

To make the simulator as accurate as possible, the display

of individual MPEG frames is simulated. An MPEG
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Configuration Parameter

MpEG I P B:: frame frea ratio
MPEG I:P:B frame siz; ratio
Video Bit Rate
Video Length
Number of CPU
Number of Disk;/CPU
CPU Speed
CPU Scheduling
Disk Seek Factor
Disk Settle Time
Disk Rotation Time
Disk Transfer Rate
Disk Cache Context Size
Disk Cache Size
Disk Cylinder Size
Network Wire Delay
Start an 1/0
Send a message
Receive a messasze

Value

1:4:10
10:5:2
4 Mbits/second
60 minutes
4
4to 16
40 MIPS
FCFS
0.283
0.75 ms
8.333 ms
7.4 Mbyte/see
128 Kbytes
8 contexts
1,25 Mbytes
5 ps + 0.04 @byte
20000 instrs’
6800 instrs
2200 instrs

Table 1: Simulator parameters.

compressed video stream contains three types of frames:

intra (I), predicted (P), and bidirectional (B). I frames are

the least common and largest frame type while B frames

are the most common and smallest frame type. For this

study, the I:P:B frame frequency ratio was 1:4:10 and the

I:P:B frame size ratio was 10:5:2 with an overall frame rate

of 4 Mbits/second (NTSC broadcast quality) [Gal191 ]. The

specific sizes of frames of the same type vary depending

on the contents of the uncompressed frames. An analysis

of several MPEG videos showed that frame sizes typically

are exponentially distributed. Thus, each simulated video

consists of a sequence of I, P, and B frames with exponentially

distributed sizes. Each time the same video is played, the

same sequence of frames and frame sizes is repeated.

The simulated video library consists of 4 one hour long

videos per disk. Thus, a configuration with 16 disks would

have 64 videos with each video striped across all 16 disks.

The selection of one hour for the video length was intended

to limit the simulation time2 while remaining reasonably

representative of true movies. The number of videos was

limited by drive capacity (4 one hour videos per disk equates

to about 7 Gbytes per disk).

As discussed in Section 2, in any video-on-demand system

certain popular movies will be accessed frequently while

other less popular selections will be requested less frequently.

This access pattern corresponds to a Zipfian distribution (see

Figure 8) [Zipf49]. The parameter, z, determines how skewed

the distribution is. For most of our experiments, except where

otherwise noted, z was set to 1.

6.2 Disks and Network

The disks are based on the Seagate ST15150N SCSI-2

disk (5 Gbyte capacity) which is currently a state-of-the-

1This value was measured on an Intel Paragon. Although It is high, the
wdeo server M still completely 1/0 bound.

‘A Sun SPARCstatiou 10 required up to 2,5 hours to run a 16 disk

simulation, up to 5 hours to run a 32 disk simulation, and up to 10 hours to

run a 64 disk simulation.

1.0 ?

~ 0.8-
G
se
& ~,6_
%
g
4
~.n 0.4-~

z
s -O- Zipflan (z = 1 5)

3 0.2–
-C- Zipfian (z = 1.0)

+ Zipfian (z = O5)
* Uniform

0.0 I 1 I (
o 16 32 48 64

Video Number

Figure 8: Zipfian distribution.

art high-performance model. Although this disk has variable

capacity cylinders, for simplicity and ease of implementation

a constant cylinder size is assumed, No other simplifying

assumptions are made about this drive.
As indicated in Section 5, the details of the network design

are not considered as part of this study and the network

is assumed not to be a bottleneck. Thus, the network is

modeled as a bus with unlimited aggregate bandwidth and

constant latency regardless of which terminal and node are

communicating. The CPU times to initiate send and receive

operations as well as an appropriate wire delay based on

the length of the message are all simulated. If necessary,

messages are stored in a queue at the recipient’s node or

terminal while awaiting processing.

7 Results

In this section, we illustrate the effects of varying each of the

video server parameters and compare the performance of the

algorithms described in Section 5.2. The intent of this section

is not to demonstrate what the optimal values of the video

server parameters are since the optimal settings for many

of the parameters (e.g., stripe size or amount of memory)

ultimately depend on the exact hardware in use. Rather, our

goal is to show what the effect is of varying these values or

of using the various algorithms. These results can be used

to improve the overall design of an actual video-on-demand

system or to assist in its fine tuning.

To reduce the complexity of the analysis, we initially

experiment only with 16 disks (4 processors with 4 disks per

processor) and 64 videos (each video is one hour long). The

amount of memory at the video server is fixed at 4 Gbytes

(1 Gbyte at each of the 4 processors) and the basic global

LRU page replacement algorithm is used. The amount of

memory at the terminals is fixed at 2 Mbytes (enough to

buffer approximately 4 seconds of video). After analyzing

the effects of varying the stripe size and comparing the disk
scheduling algorithms, we show that by using the alternative

buffer pool page replacement and prefetching algorithms the

amount of video server memory can be substantially reduced

357



from 4 Gbytes without affecting the performance of the

system. We also demonstrate that striping videos across

the disks leads to substantially higher performance when

compared with a non-striped configuration and investigate

the effect of varying the relative access frequencies of the

movies. We finish by presenting some scaleup results using

32 and 64 disks.

In all our experiments, the read request size at both

the terminals and the server is set to the disk stripe size.

Furthermore, the terminals carefully align read requests so

that they correspond to exactly one stripe block (see Figure 3)

and may always be serviced by a single disk. This strategy

optimizes the performance of the system. Since a stripe

block represents a contiguous portion of a video file, it will

be completely consumed within a short period of time. The

data just preceding and just following a stripe block belong

to different portions of the video, are needed either much

earlier or much later, and are, thus, read separately. Finally,

by directing each read to a single disk, the terminals ensure

that the completion time for each request is determined by a

single disk and is, hence, minimal.

7.1 Metrics and Methodology

As discussed in Section 4, our primary metric is the maximum

number of terminals that a configuration can support without

glitches. This value is obtained by increasing the number

of terminals until the number of glitches becomes non-zero.

Figure 9 provides an example of this procedure. For the

configuration illustrated in the graph the maximum number

of terminals that can be serviced glitch-free is 220. To ensure

that our results are accurate, we ran each experiment until we

were 90770confident that the results were within 5910(about

10 terminals) of the actual maximum number of terminals,
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Figure 9: Finding the max. no. of terminals without glitches.

7.2 Disk Scheduling Algs. and Stripe Sizes

Our first experiment compares the performance of the various

disk scheduling algorithms over a range of stripe sizes. As

indicated at the beginning of this section, we simulated a

4 processor, 16 disk (4 disks per processor) system with

4 Gbytes of server memory (1 Gbyte per processor; enough

to ensure that memory does not limit performance) and the

global LRU page replacement algorithm. Each terminal

had 2 Mbytes of memory (enough to buffer 4 seconds of

video). The stripe size was varied from 128 to 1024 Kbytes

and the elevator, one group GSS, round-robin, and real-time

disk scheduling algorithms were compared. Although the

real-time disk scheduling algorithm takes two parameters

(the number of priority classes and the priority spacing)

and, hence, has numerous variations, only two are shown:

2 priority classes with 4 second priority spacing and 3 priority

classes with 4 seconds priority spacing. We explored a

wide variety of settings for these parameters and found that

regardless of how they were set there was little variation in

the performance of the system.

Figure 10 compares the various disk scheduling algorithms

over a variety of stripe sizes. These results show that among

the tested configurations elevator and both real-time disk

scheduling algorithms perform nearly identical y at all stripe

sizes. The best performance of 225 terminals is achieved with

real-time disk scheduling and a stripe sizeof512 Kbytes. As

the stripe size decreases, the disks spend more time seeking

per byte read and, hence, performance slowly declines.

With a stripe size of 1024 Kbytes, performance drops

substantially because the time to complete each disk read

is too long relative to the amount of video buffered at the

terminals. Thus, choosing a stripe size is a balance between

minimizing seeks, 1/0 service times, and video terminal

memory. Figure 10 also shows that while one group GSS

works well with a stripe size of 512 Kbytes, it performs

more poorly as the stripe size decreases, Round-robin
always performs more poorly than the other disk scheduling

algorithms as it makes no attempts to optimize seek distances.
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Figure 10: Comparison of disk sched. algs. and stripe sizes.

7,3 Video Server Memory Requirements

In the previous section, the subject of the server’s memory

requirements was ignored by using 4 Gbytes of memory and

the basic global LRU page replacement algorithm. In this

experiment, the aggregate amount of memory at the server
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was reduced to as little as 128 Mbytes (with fewer than

128 Mbytes the server began to run out of free pages) and the

performance of the global LRU, love prefetch, and delayed

prefetching algorithms were compared. Terminals continued

to have 2 Mbytes of memory for buffering video.

This experiment was repeated once with elevator disk

scheduling and again with real-time scheduling with 3 pri-

ority classes and 4 second priority spacing. The stripe size

was fixed at 512 Kbytes which was shown to optimal in

the preceding section, With elevator disk scheduling only

global LRU and love prefetch were compared since delayed

prefetching can only be used in conjunction with an algo-

rithm such as real-time scheduling that assigns deadlines

to requests. With real-time scheduling global LRU, love

prefetch, and delayed prefetching were all compared. When

delayed prefetching was used, its parameter, the maximum

advance prefetch time, was set to 8 and 4 seconds. As dis-

cussed in Section 5.2.3, this parameter determines how far

in advance of its estimated deadline a stripe block may be

prefetched.

Figure 11 presents the results using elevator disk schedul-

ing. With global LRU the performance of the system declines

when the server has less than 512 Mbytes. When the love

prefetch algorithm is used the system continues to work well
with as little as 128 Mbytes. Figure 12 presents the re-

sults using real-time disk scheduling. In this case, global

LRU performs extremely poorly as soon as the amount of

memory is reduced below 4 Gbytes. With the love prefetch

algorithm but unconstrained prefetching, performance de-

clines with less than 1 Gbyte, The love prefetch and delayed

prefetching (8 seconds) combination functions well with as
little as 512 Mbytes. Finally, when delayed prefetching is

used with only a 4 second maximum advance prefetch time

the performance of the system is significantly worse (30 to

40 fewer terminals) regardless of how much memory is used.

Thus, at current memory prices of about $40/Mbyte, the love

prefetch and delayed prefetching algorithms can reduce the

cost of the server memory to as little as $5,000 to $20,000.
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Figure 11: Reducing server memory requirements.
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The reason that global LRU performs much more poorly

with real-time disk scheduling than with elevator is that

with real-time scheduling, the server attempts to prefetch

aggressively, using the real-time prefetching algorithm

described in Section 5.2.3, while with elevator, prefetching is

severely limited to avoid interfering with actual 1/0 requests

from the terminals. Aggressive prefetching requires extra

memory in which to store the prefetched pages. If a

prefetched page cannot be cached until it is referenced, the

prefetch will have been a waste and the page will have to be
read a second time when it is ultimately referenced. The

love prefetch and delayed prefetching algorithms prevent

wasted prefetches and, consequently, reduce the amount of

memory required at the server. However, when delayed
prefetching (4 seconds) is used (Figure 12), performance

begins to suffer because prefetches are issued too late to

prevent actual terminal requests from resulting in disk 1/0s.

7.4 Non-Striped Disk Layout

In Section 5.2 we asserted that striping videos is necessary

to achieve maximum utilization of the disks and to adjust

dynamically to changing movie access patterns. In this

experiment this assertion is validated by comparing the

performance of a system with fully striped videos to a system

with non-striped videos. In the case of the non-striped videos,

each video was stored on a single, randomly chosen disk and

each disk held exactly 4 videos. For the striped case, a stripe

size of 512 Kbytes was used. A read size of 512 Kbytes

was used for both the striped and non-striped configurations.

Love prefetch page replacement and elevator disk scheduling

were used in both cases. The aggregate amount of server

memory was varied from 128 Mbytes to 4 Gbytes.

As Figure 13 shows, if the videos are requested using a

Zipfian distribution, the performance using the non-striped
layout is extremely poor (only 30 terminals), The problem
is that those disks storing the more popular movies rapidly

become overloaded while the other disks remain virtually
idle, Therefore, for comparison, a uniform access pattern was

also simulated. However, even with the uniform distribution,
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the non-striped layout leads to far worse performance (still

only 80 terminals) than the striped layout which supports

about 190 terminals regardless of whether videos are accessed

using a uniform or Zipfian distribution. Again, the reason is

that some disks experience many more requests than others.

Although the access pattern is uniform, there is still enough

variation to overload some disks while others remain largely

underutilized. Figure 14, which compares the average disk

utilization for the striped and non-striped layouts, shows the

extent of the underutilization. With the non-striped layouts,

average disk utilization never exceeds about 4070 while with

the fully striped layout disk utilization approaches 100’%..
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7.5 Movie Access Frequencies

As discussed in Sections 2 and 6.1, some movies are likely

to be accessed much more frequently than others. Thus,

throughout this study we have assumed that terminals request

movies using a Zipfian distribution. In this experiment, the

access frequencies of the movies was varied. A uniform

distribution and three Zipfian distributions with z equal to 0.5,

1.0, and 1.5 (see Figure 8) were compared. As in the previous

experiment, a stripe size of 512 Kbytes, love prefetch page

replacement, and elevator disk scheduling were used. Again,

the aggregate amount of server memory was varied from

128 Mbytes to 4 Gbytes.

Figure 15 shows that, with very little memory, performance

is independent of the video access frequencies. However,

as the amount of memory increases, the more skewed

distributions (Zipfian with z equal to 1.0 and 1.5) outperform

the less skewed distributions. As the access frequencies

become more skewed, the probability increases that two

terminals will independently choose to watch the same

video at approximately the same time. Thus. there is an

increase in the number of stripe blocks that are referenced

by more than one terminal. This increase is clearly visible

in Figure 16 which shows the percentage of buffer pool

references that request a page (i.e., stripe block) that was

previously referenced by another terminal.
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7.6 Scaleup

Our final experiment is intended to show that our video-on-

demand system continues to perform well even as the number
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Base
Disk

X2 x4
Terminal Server M Server Max,

Scheduling Mbytes Disks Te%s.
Server Max.

Mbytes Disks Mbytes Terms. Disks Mbytes Terms.
Elevator 2 16 128 190 32 256 345 (0.9 1) 64 512
Elevator 2.5 16 128 195

535 (0.70)
32 256 385 (0.99) 64 512 750 (0.96)

Elevator 2 16 512 195 32 1024 380 (0.97) 64 2048
Real-time 2 16 512 200

620 (0.79)
32 1024 395 (0.99) 64 2048 760 [0.95)

Table 2: Scaleup,

of disks and terminals is increased.

repeated with the four different base

All four base configurations used 4

This experiment was

server configurations.

processors, 16 disks,

64 videos, anda512 Kbyte stripe size. The first configuration

used elevator disk scheduling with 128 Mbytes of server

memory, love prefetch page replacement, and 2 Mbytes

of memory per terminal. The second configuration was

the same except that the amount of terminal memory was

increased to 2.5 Mbytes. The third configuration was also

the same as the first except that the server memory was

raised to 512 Mbytes. Finally, the fourth configuration used

real-time disk scheduling (3 priority classes and 4 second

priority spacing) with 512 Mbytes of server memory, love

prefetch page replacement, delayed prefetching (8 seconds),

and 2 Mbytes of terminal memory. The first and fourth

configurations were found in the preceding sections to

be optimal for the elevator and real-time disk scheduling

algorithms respectively. The second and third configurations

were chosen for comparison purposes. As the number

of disks was increased from 16 to 32 to 64, the amount

of server memory and the number of videos were also

increased proportionately. Four CPUS were used regardless

of the number of disks. All other parameters were also left

unchanged as the number of disks was increased.

Table 2, which presents the scaleup results for each of the

above configurations, shows that elevator disk scheduling

does not scale well. To maintain good performance as

the size of the server is increased, the elevator algorithm

requires that the amount of memory at the terminals also be

increased. This problem arises because as the number of

terminals increases, the maximum queue length and, hence,

the worst-case service time at the disks slowly increases.

With the elevator algorithm the amount of video buffered

at the terminals must be increased to compensate for the

increased service times. The real-time algorithm is able to

schedule disk requests based on when they are needed and,

therefore, does not suffer from this problem. It scales nearly

linearly to at least 64 disks, 256 videos, and 760 terminals.

As Figure 17 shows, CPU utilization is not a performance

factor even with the 16 disks per node (64 disks total)

configuration. Even if the CPU utilization, memory

bandwidth, or 1/0 bus was to become a bottleneck, the
number of nodes and CPUS could easily be increased and

the limitation overcome due to the “shared-nothing” design

of the system. Figure 18 shows the peak aggregate network

bandwidth used by the system as it is scaled. For instance,
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with 64 disks and 760 terminals, the system requires an

aggregate network bandwidth of just over 370 Mbytes/second

or about 4 Mbits/second per terminal (the compressed video

bit rate). Finally, disk utilization remains above 9597. as the

system is scaled.

As part of this study, we considered the disk-memory

tradeoff and attempted to find a video server analogy to
Gray’s five minute rule for database systems [Gray93]. This
rule states that database systems can achieve optimal price-

performance by keeping those objects in memory which

are accessed at least once every five minutes. However,
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as mentioned briefly in Section 5.2.1, due to the large size

of the videos (2 hours equals 4 Gbytes) and the sequential

access pattern, caching video data for reuse is impossible.

Thus, there is no analogy to the five minute rule for video

servers, and, as the results in Section 7.3 and in this section

confirm, it is best to purchase the minimum amount of

memory necessary (as extra memory has a minimal impact

on performance) and spend additional money purchasing

extra disks which do significantly increases the number of

terminals that may be supported without glitches.

At the time of this writing, 9 Gbyte disks are available for

approximately $4,000, and memory costs about $40/Mbyte.

Thus, the total storage (disk and memory) costs for a 64 disk,

2 Gbyte video-on-demand server would run about $338,000

or about $445 per “active” terminal.

Finally, in this experiment, the size of the video server

was scaled by increasing both the number of disks and the

number of videos. However, as disks increase in capacity,

it might be tempting to scale a video server by switching to

higher capacity disks rather than by increasing the number

of disks. Although using higher capacity disks may result

in a lower storage cost per Mbyte, they are unlikely to

increase the maximum number of concurrent users that a

video server supports glitch-free. Thus, there is a cost-

performance tradeoff that must be considered when a video-
on-demand server is designed. For example, a system to

support 64 videos could be built using 16 9-Gbyte, 324.5-

Gbyte,or642.2-Gbyte drives. Table 3 combines current disk

prices with the results in this section to compare the disk cost

per terminal and illustrates that minimizing a system’s cost

per Mbyte does not lead to a minimal cost per terminal.

E
Videos
Disks
Capacity
Cost/Disk
Cost/Mbyte
Total Cost
Terminals
Cost/Terminal

64

9 G~~
$4,000
$0.43

$64,000
200

$320

64
32

4.5 GBs
$2,500
$0.54

$80,000
395

$200

64
64

2.2 GBs
$1,500
$0.67

$96,000
760

$125

Table 3: Comparison of disk costs per terminal

8 Additional Features and Functionality

This section addresses how the SPIFFI video-on-demand

system might provide extra features that have not yet been

discussed. We explore how functions such as pause, rewind,

and fast-forward may be implemented. We also consider how
terminals viewing the same movie might be “piggybacked”

to minimize the demand placed on the video server.

8.1 Supporting Pause, Rewind, and Fast-Forward

Until now, only the sequential playback of movies has been
considered. A video-on-demand system must also support

pause and restart, rewind, and fast-forward. The SPIFFI
video-on-demand system is capable of easily providing this

support. The video server makes no special assumptions

about what portion of a particular video is currently being

viewed at any particular terminal. Thus, for example, If a

user presses pause, the terminal can simply halt the display

of video. Then, when the user presses play again, the terminal

can simply begin playing from where it left off. (It can even

use the time during which it is paused to fill its buffers and

prepare for the restart.) The procedure for the terminal is the

same regardless of where in the video it begins playback.

Figure 19 shows the results of an experiment “in which

each terminal paused each video on average twice for an

average of 2 minutes. As can easily be seen from the graph,

performance is essentially unaffected by the pausing.
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Figure 19: Pausing videos.

Rewind and fast-forward can be similarly supported by

simply seeking to a new position within the video, re-

priming the terminal’s buffers, and starting display from

the new position. If a visual search is desired, many

alternatives are available. For instance, the terminal can skip

forward or backward through the movie showing one or two

seconds out of every several seconds of video data. Since

the skipped video segments need not be read, this scheme
will not significantly increase the load on the video server.

Furthermore, the prefetching algorithm at the server can take

hints from the terminals so that the appropriate blocks of

video are always prefetched next, This scheme does not

require any extra resources at the video server or terminals,

but does result in a somewhat choppy picture as the terminal

skips over portions of the video.

Alternatively, a completely separate version of each movie

may be stored for supporting rewind and fast-forward
searches [Ozde94]. When a user presses rewind or fast-
forward, the terminal simply switches from the normal

version of the movie to the appropriate position within the

appropriate search version. When the user presses play again,

the terminal switches back to the normal version again. These

switches would require at most a few seconds to re-prime the

terminal’s buffers. The advantage of this scheme is that for a

small amount of additional disk space, the search versions of

the movie will provide a smooth, constant rate video stream

similar to what a typical VCR produces.
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8.2 Piggybacking Terminals

Although the video server does not explicitly try to

improve performance by synchronizing two terminals that

are watching the same movie (e.g., in a manner similar

to [Ozde94]), it is possible for two terminals to start the

same video at approximately the same time and inadvertently

share pages and 1/0s. Moreover, there is no reason why

the video server could not recognize popular movies and

intentionally delay the first subscriber (e.g., by playing a

few commercials) while it waits for additional subscribers to

request the same movie. In this way, a group of terminals

could be “piggybacked” and serviced as though they were

one terminal. The piggybacked terminals would place the

same demands on the video server as a single terminal would.

Since the delay to start a video is not inherently part of the

system, its length could be set to any value and could even

be selected based on the popularity of the particular movie.

Experiments show that a 5 minute delay more than doubles

the number of terminals that may be supported glitch-free.

9 Conclusions and Future Work

We have presented the design and performed a detailed

simulation analysis of the SPIFFI scalable video-on-demand

system. We introduced and analyzed the performance

of video server algorithms for real-time disk scheduling,

page replacement, and prefetching. We showed that the

love prefetch page replacement and delayed prefetching
algorithms substantially reduce the memory requirements,

and, thus, reduce the cost, of a video server. Furthermore,

we demonstrated that while the non-real-time elevator disk

scheduling algorithm can function well in a relatively small

(16 disk) video server with plenty of memory at the terminals,

it does not scale to larger systems. Our real-time disk

scheduling algorithm, on the other hand, does scale nearly

linearly to at least 64 disks, 256 videos, and 760 terminals.

Our future plans include implementing the SPIFFI scalable

video-on-demand system on a cluster of Sun workstations

connected by a high-speed network. In addition, we intend

to investigate further the algorithms that we outlined for

performing rewind and fast forward searches.
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