

1

Named Entity Recognition and Disambiguation using
Linked Data and Graph-based Centrality Scoring
Sherzod Hakimov

 TOBB University of Economics and
Technology

Computer Engineering
Ankara, Turkey

hakimov@etu.edu.tr

Salih Atilay Oto
 TOBB University of Economics and

Technology
Computer Engineering

Ankara, Turkey

saoto@etu.edu.tr

Erdogan Dogdu
 TOBB University of Economics and

Technology
Computer Engineering

Ankara, Turkey

edogdu@etu.edu.tr

ABSTRACT

Named Entity Recognition (NER) is a subtask of information

extraction and aims to identify atomic entities in text that fall into

predefined categories such as person, location, organization, etc.

Recent efforts in NER try to extract entities and link them to

linked data entities. Linked data is a term used for data resources

that are created using semantic web standards such as DBpedia.

There are a number of online tools that try to identify named

entities in text and link them to linked data resources. Although

one can use these tools via their APIs and web interfaces, they use

different data resources and different techniques to identify named

entities and not all of them reveal this information. One of the

major tasks in NER is disambiguation that is identifying the right

entity among a number of entities with the same names; for

example “apple” standing for both “Apple, Inc.” the company and

the fruit. We developed a similar tool called NERSO, short for

Named Entity Recognition Using Semantic Open Data, to

automatically extract named entities, disambiguating and linking

them to DBpedia entities. Our disambiguation method is based on

constructing a graph of linked data entities and scoring them using

a graph-based centrality algorithm. We evaluate our system by

comparing its performance with two publicly available NER tools.

The results show that NERSO performs better.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval - Retrieval models, Selection process

I.2 [Artificial Intelligence]: Miscellaneous

I.7.5 [Document and Text Processing]: Document Capture –

Document analysis

General Terms

Algorithms, Experimentation, Performance

Keywords

Named entity, named entity disambiguation, linked data,

DBpedia, semantic databases, centrality algorithms, text

annotation, closeness centrality

1. INTRODUCTION

Web of Data and Linked Data

Linked data refers to the web of data in contrast to the web of

documents. Linked data extends the current web that consists of

documents and the links between documents. In the case of linked

data or the web of data, not just documents but also data elements

(or things) and the links between these data elements exist. Not

only that, but the links are meaningful unlike the links in the web

of documents; links between data elements have types. Linked

data is therefore more structured and machine processable;

applications can traverse this data web, easily find useful

information and pinpoint the right information [15]. In the web of

documents, or the current web, searching and finding information

is by way of parsing documents and looking for useful

information by matching keywords and terms; therefore it is a

dummy search.

One of the central projects towards linked data vision is Linked

Open Data (LOD)1 project. It collects links and pointers to all

linked data datasets on the web. There are over 300 datasets listed

in LOD currently, consisting billions of information assertions (or

triples). Linked data datasets are created using 4 simple rules as

outlined by Tim Berners-Lee2 : (1) use URIs as names for data

elements or things, (2) use HTTP URIs so people can look up

those names, (3) when a URI is looked up, provide useful

information in RDF3 and SPARQL, (4) include links to other

URIs, so that more things can be discovered.

DBpedia

DBpedia4 is one of the central linked data datasets in LOD. It is

created from Wikipedia by converting structured information

(such as infobox information) to RDF data model. It currently

contains more than 3.5 million things, including 416,000 persons,

526,000 places, 106,000 music albums, 60,000 films, etc. in 15

different languages. All this information is captured in nearly a

billion RDF triples.

Named entity recognition and disambiguation

Since the web of documents is not structured, it is difficult to

locate the actual data in the documents. Locating the data within

documents, which are basically free text documents, depends on

lexical analysis and natural language processing techniques. One

recent approach to finding relevant information within free text

and web documents is associating and annotating the “named

entities” within documents to the linked data entities that explain

1 http://linkeddata.org/
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/RDF/
4 http://dbpedia.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SWIM 2012, May 20, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1446-6/20/05…$10.00.

2

those named things. Once the annotation and the linking are done,

then the navigation software can reach other related data and

information by following the links from the linked data entities.

This process is also called “named entity recognition” and it

follows a similar approach as in information extraction

techniques. Named entities are identified by matching entity

names with the names of the entities in linked data datasets. One

major problem in named entity recognition process is that names

could be linked to multiple different entities in linked data. This is

because some entities are named the same but they refer to

different things. For example, “Washington” is a short name for

“Washington, DC” as well as the name of “Washington State”.

Finding the right entity requires finding the context of the text

surrounding the named entity; meaning other named entities

should be identified and their relationships should be considered

to find the right entity. This process is called “named entity

disambiguation”.

We developed a system called NERSO, short for Named Entity

Recognition Using Semantic Open Data. It is in the category of

other named entity recognition and disambiguation systems that

are using linked data, such as Spotlight, etc. We use a centrality

scoring mechanism on the entity graph to disambiguate the

similarly named entities.

In section 2 related work is presented. Linked data and DBpedia,

the data source we use, and its features are explained in section 3.

We describe our named entity recognition and disambiguation

method in section 4. Tests we conducted and the evaluation

results are presented in section 5 and we conclude in section 6.

2. RELATED WORK
Word sense disambiguation (WSD) is a closely related area to

named entity recognition (NER). It is about finding the right sense

for words used in sentences and documents. WSD requires

linguistic approaches and possibly large linguistic databases such

as WordNET5.

Wikipedia as a source for WSD has been used in a number of

works. Fogarolli proposed to use link structure of Wikipedia

articles [7]. In their work, words are disambiguated using

semantic relatedness by crawling Wikipedia articles using the

links between them. Links between Wikipedia articles can provide

a way for identifying relationships and understanding how some

topics are connected. They found that strongly connected topics

belong to the same context in general [7].

Another WSD system using an external source like WordNET to

disambiguate was also proposed in [1]. Connection between

concepts is calculated by similarity measuring algorithms using

WordNET’s taxonomy. A graph of relations between words is

scored using well known centrality scoring methods. It is shown

that centrality scoring methods can be used to disambiguate words

with multiple meanings [1].

Regarding NED (Named Entity Disambiguation), systems using

linked open data (LOD) for annotating entities have gained

popularity recently due to the growth in the area of semantic web

and its manifestation on the web, namely linked data. In LOD

cloud, DBpedia, DBLP, YAGO, FreeBase are the most known

data sources for this purpose.

Hassel et al. create an ontology from DBLP dataset and populate

its data by parsing messages from DBWorld mailing list [4].

5 http://wordnet.princeton.edu/

Using this “populated ontology” they disambiguate the entities

such as names of authors written in their papers or domain of

interests. They consider text similarity of entities in order to

disambiguate. They also use text co-occurrence relationships,

such as text proximity.

Most of the recent work on NED is focused using Wikipedia or

DBpedia due to their wide coverage of entities. Some of them use

BOW (Bag of Words) approach while others use semantic

relatedness between concepts.

Bunesco and Pasca [10], Cucerzan [5], Michalcea and Csomai

[16] used texts from Wikipedia to annotate. Bunesco and Pasca

proposed using encyclopedic data to annotate named entities and

disambiguate using ranking algorithms [10]. They used cosine

similarity to distinguish between meanings of words as a ranking

solution for disambiguation of named entities. Cucerzan proposes

a very similar approach [5]. First, he pre-processes the Wikipedia

collection and extracted more than 1.4 million entities with an

average of 2.4 terms for each entity and 540 thousand (entity,

category) pairs. The knowledge extracted from Wikipedia is then

used for the disambiguation process; the vectorial representation

of the processed document is compared with the vectorial

representation of the Wikipedia entities to decide.

DBpedia Spotlight project is a well-known NER tool, it classifies

and disambiguates named entities based on DBpedia ontology [9].

Spotlight automatically annotates free text documents with links

to DBpedia entities. Spotting function first finds named entities in

the text with all corresponding resources. Then the

disambiguation step matches named entities to the right DBpedia

resources based on the context similarity measures. Their context

similarity measure is based on term frequency (TF) and an inverse

candidate frequency (ICF) which measure the power of words

based on their co-occurrence in articles. The intuition behind ICF

is that the discriminate power of a word is inversely proportional

to the number of entities it is associated with. Spotlight is

configurable with a ‘confidence’ and a ‘support’ parameter.

Setting the confidence parameter high lets Spotlight to avoid

incorrect annotations at the risk of losing correct ones. With

support parameter, users can set the minimum number of inlinks a

DBpedia resource has to have in order to be annotated so that high

precision or high recall can be obtained. Results show that

DBpedia as a service for annotating named entities has promising

results.

Hoffart et al. present another online tool called AIDA for the

disambiguation of named entities leveraging knowledge bases like

DBpedia or YAGO [12]. Their method builds the subgraph of

entities mentioned in the text with a greedy algorithm that

approximates the best joint mention-entity mapping.

Gentiles et al, like our work, propose a graph-based model

combining features from Wikipedia. They calculate the semantic

relatedness over a graph to resolve the problem. In order to

compute the semantic relatedness of two entities, they proposed a

random graph walk model on a combination of features extracted

from Wikipedia [2]. Our method on the other hand does not

extract any features of entities, only considers link relations

between them. Additionally, we propose a novel scoring method

for disambiguation process instead of a random-walk model.

Han et al proposes similarity measure for annotating entities using

Wikipedia as a semantic network [8]. Initially, they construct a

large-scale semantic network from Wikipedia so that semantic

knowledge can be used efficiently. And then, by leveraging this

3

semantic knowledge like social relatedness between named

entities, they measure the similarity between occurrences of

names.

Ni et al propose a method that extracts information from LOD

about entities and builds a type-oriented knowledge base [6].

Named entities are scored based on their types and then this score

is used in an existing classifier. It is shown that the classifier’s

performance is increased with the use of the scoring method.

Kulkarni et al. [11] propose the collective disambiguation of

entities defined in a context by optimization methods. Authors

proposed to use Linear Programming and a Hill-climbing

approach for optimization.

Ferragina at al. [13] propose a system called TAGME which uses

Wikipedia as a source. The method disambiguates entities based

on “collective agreement” which is the sum of votes from other

entities detected in the text. These votes are computed using

semantic relatedness of entities mentioned in the text [13].

A survey of named entity recognition systems is collected in [3].

They specifically survey many of the existing semantic tagging

technologies and services and compare them.

We follow the named entity recognition and disambiguation

approach in our work and provide a hybrid solution combining a

number of known approaches. Our method is based on graph-

based centrality methods and relatedness of entities in the given

document.

3. LINKED DATA AND DBPEDIA

Linked data has been growing rapidly, now consisting more than

300 datasets, and DBpedia has a very central and prominent place

in this network [14], many datasets have links to DBpedia

resources. DBpedia is getting more centralized and developing as

a linking hub between other data sources in the linked open data

cloud. For each entity, DBpedia defines a globally unique

identifier that can be referenced over the Web in the RDF

description of an entity.

Surface Forms

Terms that are used to name the entities in the text are called

“surface forms”. In DBpedia Spotlight project surface forms are

identified with a preprocessing step and stored in the DBpedia

Lexicalizations Dataset6 (DLD). Surface form entries in this

dataset are identified by entity labels, redirects and

disambiguations in DBpedia.

Utilization of DBpedia as a Source for NER

We do not use DLD directly in our work. We however utilize a

similar approach. We use three kinds of sources in DBpedia to

extract surface forms. These are (1) label and other similar data

properties we have chosen, (2) disambiguation and (3) redirect

pages (DBpedia ontology properties dbont:

wikiPageDisambiguates7 and dbont:wikiPageRedirects8). All

entities spotted using these sources are essential in the

disambiguation step of our method. Each surface form has a

candidate list of entities and if any surface form contains multiple

entities then that surface form should be disambiguated.

6 http://dbpedia.org/Lexicalizations
7 http://dbpedia.org/ontology/wikiPageDisambiguates
8 http://dbpedia.org/ontology/wikiPageRedirects

(1) Data properties

We consider rdfs:label and other similar data properties that might

contain surface form data. We chose a short list of data properties

that express the title, name, or similar data. In the current setting

the list contains these data properties: rdfs:label, foaf:name,

dbpprop:officialName, dbpprop:name, foaf:givenName,

dbpprop:birthName, dbpprop:alias.

(2) Disambiguation pages

dbont:wikiPageDisambiguates property is a predicate used to

group entities that have various meanings for the same title. For

example, “Washington.D.C” and “George_Washington” are

grouped under “Washington(disambiguation)” entity because they

can both be referenced with a common title “Washington”. Any

object with the type dbont:wikiPageDisambiguates and a label

that contains the searched surface form will be selected, meaning

all entities grouped under these selected objects will be added to

the candidate list of a surface form.

(3) Redirect pages

dbont:wikiPageRedirects property is a predicate that is used to

show alternative titles of a given entity. These type of pages have

no content itself, only redirects the reader to the base article. For

example, “Edison Arantes Do Nascimento” redirects to “Pele” the

famous football player. Reference pages of objects with a type

dbont:wikiPageRedirects and a label that contains the searched

surface form will be added to the candidate list. In this example if

the text contains a surface form “Edison Arantes Do Nascimento”

then the base page (redirect) “Pele” will be added to the candidate

list of that particular surface form.

4. METHOD
We designed a named-entity disambiguation algorithm that

consists of 3 main steps. These are:

(1) Spotting algorithm

The text is parsed from beginning to end using a sliding window

of a certain maximum number of words to find the surface forms

and the matching linked data (DBpedia) entities.

(2) Constructing the graph of entities and relationships

A graph is formed using the spotted entities that are found in the

previous step and the relationships (links) between these entities

that exist in the linked data source.

(3) Disambiguation

Several nodes (entities) in the constructed graph might match to

the same surface form as explained above. Only a single node

(entity) needs to be selected to represent each surface form when

multiple nodes exist in the graph. This is the disambiguation step.

Below we explain these 3 steps in detail.

4.1 Spotting
In this subsection we present how the text parsing and surface

form selection process is carried out. To spot the surface forms in

a text, a “sliding window” approach is used. The text is parsed

from beginning to end, and in each step the sliding window selects

a small number of consecutive words. The sliding window size is

set to a maximum size (the maximum number of words to be

selected) at the beginning. In each step the selected word set from

the window is searched in the database. If a surface form is found

then it is added to the list of spotted surface forms, otherwise the

window size is decreased by one from the right end of the window

4

and the new surface form candidate is searched again in the

database until a match is found. In the case a match is found, the

sliding window size set to the maximum size again and slide over

the matching words to the next word in line. If no match is found

when the window size is shrunk to one word, then the window is

again set to the maximum size and slide over to the next word in

line.

In this approach, the maximum size of the sliding window must be

set to a realistic one. The size should neither be too small so that

the entities or surface forms that have long labels are not missed,

nor too large so that the processing time is not too high. After

some experiments we decided to use a sliding window with the

maximum size of 4 words. Consider the following text that we

used in our experiments.

Jailbreaking also allows an owner to unlock their phone and

switch mobile carriers. Apple's phones, and its iPads, typically

come with an exclusive contract with a mobile provider

(originally only AT&T in the United States, although Verizon and

Sprint versions have been added).

Figure 1 Sample Text from Dataset2 in EVALUATION

Spotting the surface forms in the text follows the steps listed in

Table 1 assuming that the sliding window size is set to a

maximum of 4 words. Surface form candidates, which are

selected by the sliding window, are searched in the target dataset

by looking up the 3 resources as explained above. Table 2 lists

the queries we run to find the surface forms.

Table 1 Steps for spotting surface forms using sliding window

on the sample text

Step Sliding window Result

1 Jailbreaking also allows an not found, reduce window size

2 Jailbreaking also allows not found, reduce window size

3 Jailbreaking also not found, reduce window size

4 Jailbreaking found, add to the list, move
window

5 also allows an owner not found, reduce window size

6 … …

Table 2 Queries for spotting surface forms

Query Source

SELECT distinct ?s WHERE {

 ?s rdfs:label "+searchText+"@en."

 ?s foaf:name "+searchText+"@en."

 ?s foaf:givenName

"+searchText+"@en."

 …

}

Data properties

SELECT distinct ?s WHERE {

 ?redirect dbont:wikiPageRedirects

 ?s.

 ?redirect rdfs:label

 "+searchText+"@en.

}

Redirect pages

SELECT distinct ?s WHERE {

 ?disamb dbont:wikiPageDisambiguates

?s.

 ?disamb rdfs:label "+searchText+".

}

Disambiguation
pages

Let D={w1, … , wn} be the set of words in a text. Our goal is to

find the surface forms in the text. After the spotting step we find

S(D)={s1........sm} the spotted surface forms in the text. For the

sample text in Figure 1, following is the list of spotted surface

forms:

S(D)={“Jailbreaking”, “Apple's”, “iPads”, ...}

After finding the surface forms, the next step is extracting all the

entities that match the surface form.Formally, let E(s)={e1, ... , ek}

be the set of entities for a surface form s. For each s in S(D),

matching entities (URI representations) are extracted from

DBpedia triple store and added to E(s). For example, for the

surface form “Jailbreaking”:

E(“Jailbreaking”)={Jailbreaking, Jailbreak_(album),

Jailbreak_(TV_series), ….}

Entities spotted are listed with their resource types, which are data

properties (such as labels), redirect entities, and disambiguation

entities (Figure 2). This information is later used in the scoring;

disambiguation entities have a lower constant factor.

Figure 2 Entities spotted for a surface form “Jailbreaking”

Stopwords

Prepositions, adverbs, verbs, adjectives, pronouns are considered

stopwords, not named entities. Words like “also” does not have

any meaning on their own; they are meaningful along with a

named entity. For example, “I_Am_Not_a_Human_Being” is the

name of a play which is only meaningful with all 6 words. The

words “am”, “not”, and “a” are stopwords. Our spotting algorithm

skips stop words, meaning it does not search stopwords as surface

forms when the sliding window has a single stopword in view. We

developed a stopword list which is derived and extended from

DBpedia Spotlight project’s stopword list. Our stopword list is

available for download in project’s homepage9.

4.2 Constructing the graph of entities and

relationships
Wikipedia articles have hyperlinks to other articles and these links

are embedded in the text. These page links between articles are

denoted in DBpedia with the property called

“dbont:wikiPageWikiLink”. Not only the regular page links but

other tagged links (object and data properties) also have

corresponding dbont:wikiPageWikiLinks added. For example,

DBpedia has the triple “Washington,_D.C. country

United_States” and for this it also has a second triple in the form

of “Washington,_D.C. dbont:wikiPageWikiLink United_States”

triple indicating that “Washington,_D.C.” is related to

“United_States”.

In our method we search for “dbont:wikiPageWikiLink” links

between spotted entities and using entities and the links found

between the entities form a graph first. For example, if

“Washington,_D.C.” and “United_States” are spotted in the

9 http://wis.etu.edu.tr/nerso/files/stopword.txt

5

process (4.1), we search for links between these two entities using

the “dbont:wikiPageWikiLink” property. All links between

spotted entity pairs are queried and a graph is constructed using

the entities and the links between entities. Formally, S(D) is the

set spotted surface forms for the text D that is to be annotated:

S(D)={s1, s2, … , sm}

And, E(s) is the set of all entities in the linked dataset for each

surface form s in S(D):

E(s)={e1, e2, ..., ek} for s S(D)

The set of all entities for the document D is then E(D):

S(D) s

E(s))(

DE

If there is a dbont:wikiPageWikiLink link between any two

entities in E(D), then the link is added to the relationships set or

the link set R(D). We then build a graph of spotted entities and the

directed edges between these entities.

The graph is a 3-tuple construct G=(E(D), R(D), sf), where E(D)

is the set of nodes representing the entities corresponding to

surface forms, R(D) is the set of directed edges between any two

entities in E(D) representing a dbont:wikiPageWikiLink link in

the linked data from entity a to entity b, and sf is a scoring

function that we use to nodes that will be used in the

disambiguation step (next).

We used Java Universal Network Graph (JUNG)10 library to

construct and visualize the graph using entities and relationships

list. Figure 3 is a partial representation of our sample text using

JUNG libraries.

4.3 Disambiguation
In the graph we constructed some nodes are more central than

others, they have more incoming and/or outgoing edges than the

others. For example in Figure 3, “Apple_Inc.”, “Apple” and

“Apple_Switch_ad_campaign” are three of the entities spotted for

the surface form “Apple’s” in the sample text (Figure 1).

“Apple_Inc.” node in the graph has more links to the other

entities. Incoming and outgoing links play an important role in the

disambiguation process. In this graph “Apple_Inc.” has 2

outgoing and 5 incoming links in contrast to “Apple” and

“Apple_Switch_ad_campaign” with only 1 outgoing link.

Graph based Centrality Scoring methods have been proposed

before [1]. Centrality scoring methods have been successful

because they take into account the relationships between nodes.

Also in our method, it is crucial to calculate how central a node is

in the graph. As our graph is directed, not all nodes are reachable

from other nodes. For example, “AT&T” is not reachable from

“Apple_Inc.”, and “AT&T_Mobility” is reachable through

“IPAD”, that is a path with length 2 (Figure 3).

Closeness centrality concept in graphs11 is similar to our

customized centrality factor given below. We modified traditional

closeness centrality scoring method to take into account the

number of all related nodes. For every node the shortest path from

that node to all reachable nodes in the graph is calculated using

Djikstra’s shortest path algorithm.

10 http://jung.sourceforge.net/
11 http://en.wikipedia.org/wiki/Centrality#Closeness_centrality

Figure 3 Graph for text above (partially) full image can be

obtained from project homepage

Centrality factor for a given node is then calculated by dividing

the total number of reachable nodes from the node to the sum of

the lengths of the shortest paths to those nodes. Or formally, for

node Va centrality factor can be calculated using the following

formula.

VV

ba

V

a

b

a

VVs
VCF

),(
)(

is the sum of the shortest distances between Va and

the reachable nodes from Va.
aV is the number of all reachable

nodes from Va.

For the partial graph represented in Figure 3, the node

“Apple_Inc.” has three reachable nodes {AT&T_Mobility, IPAD,

Mobility Phone} and the sum of the shortest distances to these

nodes is 4. Centrality factor of the node “Apple_Inc.” will be 3

divided by 4 or 0.75.

Centrality factor of a node Va is used to score the node as below:

Score(Va) = CF(Va) * in_links(Va) * out_links(Va) * k

CF(Va) is the centrality factor for node Va, in_links(Va) is the

number of incoming links for node Va, out_links(Va) is the

number of outgoing links for node Va. And k is a constant number

depending on the type of node Va. k is set to 6 if the entity is from

data properties or redirect pages, and k is set to 1 if the entity is

retrieved from disambiguation pages. k is determined by the

performance of the disambiguation process in our tests.

As explained in section 4.1 entities are spotted depending on data

property attributes, redirect labels or from disambiguation pages.

Disambiguation pages collect a high number of unrelated entities

VV

ba

b

VVs),(

6

of many different types, which might affect the disambiguation

adversely. Therefore, entities from disambiguation pages are

given less weight in the scoring function.

Finally, depending on the score of nodes that need to be

disambiguated, for each surface form the disambiguation

algorithm finds the highest scoring candidate, and selects it to

represent and annotate the surface form in the text, and eliminates

the other candidate entities. For example, for surface form

“Apple’s”, entity “Apple_Inc.” has the highest score in Figure 3,

is therefore selected to annotate “Apple’s”.

5. EVALUATION
We evaluated our approach using two different datasets which are

publicly available. Each dataset contains links to DBpedia

resources. We named the test datasets as Dataset1 and Dataset2:

 Dataset1: This dataset is from DBpedia Spotlight Project [9].

It contains a goldset from 10 different news articles with a

total of 251 entities. 217 out of these entities are ambiguous,

meaning they match to multiple DBpedia entities.

 Dataset2: We also created our own goldset for testing. We

selected 10 different news articles from NY Times,

Washington Post, and CNN. We included 1 to 4 paragraphs

from each article in the dataset. We asked two people to

annotate these articles on their own separately. They decided

on the most important entities in each article and a common

set of entities are created as Dataset212. This dataset contains

157 different entities. Out of these 157 entities, 128 of them
are ambiguous.

Both datasets have a high number of ambiguous entities to test the

success of disambiguation process meaningfully. Dataset1 has

86% of 251 entities ambiguous and Dataset2 has 81% of 157

entities ambiguous (Table 3). To give an example, “David

Beckham” is not an ambiguous entity, it matches to a single entity

in DBpedia; yet “Washington” is an ambiguous entity, it matches

to “Washington,_D.C.”, “Washington_(state)” and other entities

in DBpedia.

Table 3 Dataset statistics

Number of

entities

Number of

ambiguous

entities

Ratio of

ambiguous

entities

Dataset1 251 217 86%

Dataset2 157 128 81%

We have used 3.6 version of DBpedia, which is open to

everyone13, and performed our tests on it. DBpedia 3.6 was loaded

into Virtuoso Database Server14 which runs on a cluster with four

nodes each having 4 GB Memory and 1.3 GHz AMD Phenom(tm)

9950 Quad-Core Processor.

We compared our system NERSO with two other publicly

available NER and annotation projects: Zemanta15 and DBpedia

Spotlight16. Spotlight was tested with default configurations on its

online demo site. Zemanta annotates entities in the following

categories only: persons, books, music, movies, locations, stocks,

12 http://wis.etu.edu.tr/nerso/evaluation.html
13 http://wiki.dbpedia.org/Downloads36?v=ebv
14 http://virtuoso.openlinksw.com
15 http://www.zemanta.com/demo/
16 http://spotlight.dbpedia.org/demo

and companies. DBpedia Spotlight annotates all types of entities

that are defined in DBpedia dataset. DBpedia Spotlight annotates

given text documents with links to DBpedia entities. Zemanta on

the other hand annotates given text documents with links to

Wikipedia, Amazon, IMDB and others like the homepage of the

annotated entity. We took into account only Wikipedia links as all

annotated entities contained Wikipedia links. At the time of

writing DBpedia Spotlight’s v0.5 was released and both datasets

were tested on the online version of Spotlight v0.5.

Test results are presented in Table 4.

Table 4 Disambiguation results for Spotlight, Zemanta and

NERSO

 Dataset1 Dataset2

Precision Recall F1 Precision Recall F1

NERSO 42% 60% 50% 29% 70% 41%

Spotlight 39% 45% 42% 30% 51% 38%

Zemanta 73% 21% 33% 62% 29% 39%

For Dataset1, DBpedia Spotlight (no configuration) shows a 45%

recall rate. Zemanta on the other hand recognizes and

disambiguates 21% of entities correctly. Our system NERSO

performs higher than Zemanta and Spotlight with a recall rate of

60% which is a promising performance. Also F1 score17 of

NERSO is in range of competition. Evaluation results in [9] does

not contain disambiguated entity list for each annotation system.

For a better comparison we tested both Spotlight and Zemanta and

reported all annotation results with the disambiguated entities and

regarding surface forms. In the Spotlight paper F1 score of the

Spotlight project with no configuration is reported as 45% [9]

whereas we calculated 42%. In the same paper, Zemanta project

result is reported with 39% F1 score, whereas we calculated F1 as

33%. We cannot explain these differences since we do not have

the annotation results as performed in the paper [9]. But we are

guessing the difference could be due to using the different

versions of datasets or software. For example, we used the online

version of Spotlight 0.5, which is probably newer than the version

used in the paper.

For Dataset2, DBpedia Spotlight (no configuration) disambiguates

with a recall rate of 51% and Zemanta has a 29% recall rate. Our

system NERSO on the other hand outperforms both Spotlight and

Zemanta with 70% recall rate. F1 score of NERSO (41%) is also

slightly higher than both systems (38% and 39% respectively).

These results show that NERSO performs well for disambiguating

entities correctly with a success of 70% recall rate.

Precision rates are high for Zemanta while it is lower for Spotlight

and NERSO. This is because Zemanta annotates fewer entities

(selected categories only) and does it mostly correctly (73% and

62% for Dataset1 and Dataset2 respectively).

NERSO performs better than Zemanta and Spotlight projects in

terms of catching the most number of entities from both datasets.

Zemanta performed the worst among the three (lowest recall

rates).

We also evaluated the success of the disambiguation process by

counting the number of successful disambiguations for both

datasets. That is for surface forms with multiple entity matches

(86% for Dataset1 and 81% for Dataset2 as shown in Table 3) we

measure the ratio of matching to the right entities in DBpedia.

Results are listed in Table 5. This data is not available for

17 http://en.wikipedia.org/wiki/F1_score

http://en.wikipedia.org/wiki/F1_score

7

Spotlight and Zemanta since we do not have access to the datasets

of those systems.

Table 5. Disambiguation success of NERSO

 Dataset1 Dataset2

Ratio of ambiguous

surface forms
86% 81%

Recall rate for

ambiguous forms
69% 84%

According to the results presented in Table 5, NERSO shows a

69% successful disambiguation rate for the multiple-entity surface

forms in Dataset1 (86% of 251 entities), and 84% successful

disambiguation for multiple-entity surface forms in Dataset2

(81% of 157 entities). This is consistent with the results in Table 3

for Dataset1 and much better for Dataset2.

6. CONCLUSION
We presented NERSO, a named entity recognition and

disambiguation system using graph-based scoring method for

annotating named entities in a given text using linked data. Our

approach is based on spotting surface forms in the text by

mapping them to linked data entities, and then constructing a

directed graph of spotted entities using their relationships in the

linked data, and then finally disambiguating the multiple entities

that match to the same surface forms. We have shown

experimentally that our graph-based approach performs better

than a bag of words approach such as Spotlight’s. Graph-based

approaches perform better since they take into account

information drawn from the entire graph of semantically related

entities. In the disambiguation process, in order to score entities,

we used a centrality scoring method (closeness centrality). An

entity is selected if it is more central among the other candidates

of a surface form since it has more semantic relations with the

other entities in the graph.

We compared our system with two well-known and publicly

available named entity recognition and annotation services. As

shown in the evaluation section our system performs better than

the two other systems.

For future work we plan to improve the system in terms of query

execution time by using parallel computers, developing new

scoring methods for disambiguation, and using multiple linked

data resources. Lower precision rates in the results indicate that

our system over annotates somehow, and this should also be

worked on to increase the precision rates.

All of our test data is available online18 so that it can be checked

and compared against for future works.

7. REFERENCES
[1] Sinha, R., Mihalcea,R. 2007. Unsupervised graph-based

word sense disambiguation using measures of word semantic

similarity. In Proceedings of the IEEE International

Conference on Semantic Computing (ICSC 2007).

[2] Gentile, A., Zhang, Z., Xia, L. 2009. Graph-based semantic

relatedness for named entity disambiguation. In Proceedings

of International Conference on Software, Services &

Semantic Technologies, 2009.

[3] Gerber, A., Gao, L. 2011. A Scoping Study of (Who, What,

When, Where) Semantic Tagging Services. Research report

18 http://wis.etu.edu.tr/nerso

Public Release February 2011, eResearch Lab, The

University of Queensland

[4] Hassell, J., Aleman-Meza, B. 2006. Ontology-driven

automatic entity disambiguation in unstructured text. In Proc.

5th International Semantic Web Conference (ISWC), volume

4273 of LNCS, pp. 44–57, Athens, GA, 2006

[5] Cucerzan, S. 2007. Large-scale named entity disambiguation

based on Wikipedia data. In Proc. of Empirical Methods in

Natural Language Processing Conference on Computational

Natural Language Learning 2007, pp. 708–716, 2007.

[6] Ni, Y., Zhang, L., Qiu, Z., Wang, C. 2010. Enhancing the

open-domain classification of named entity using linked open

data. In Proc. 9th International Semantic Web Conference

(ISWC 2010), pp. 566–581, Shanghai, China, 2010.

[7] Fogarolli, A. 2009. Word Sense Disambiguation Based on

Wikipedia Link Structure. IEEE International Conference on

Semantic Computing, pp. 77-82, 2009.

[8] Han, X., Zhao, J. 2009. Named entity disambiguation by

leveraging Wikipedia semantic knowledge. In Proc. of the

18th ACM Conference on Information and Knowledge

Management, (CIKM 2009), pp. 215–224, 2009.

[9] Mendes, P. N., Jakob, M., García-Silva, A., Bizer, C. 2011.

DBpedia Spotlight: Shedding Light on the Web of

Documents. Proceedings of the 7th International Conference

on Semantic Systems (I-Semantics). Graz, Austria, 7–9

September 2011.

[10] Bunescu, R., Pasca, M. 2006. Using encyclopedic

knowledge for named entity disambiguation. In Proc. of

EACL , pp. 9–16.

[11] Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.

2009. Collective annotation of Wikipedia entities in web text.

In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining (KDD

2009), pp. 457–466, New York, NY, USA, 2009.

[12] Hoffart, J., Yosef, M., A., Bordino, I., Furstenau, H., Pinkal,

M., Spaniol, M., Taneva, B., Thater, S., Weikum. G. 2011.

Robust Disambiguation of Named Entities in Text. In Proc.

of Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 782–792, July 2011.

[13] Ferragina, P., Scaiella, U. 2010. Tagme: on-the-fly

annotation of short text fragments (by Wikipedia entities). In

Proc. of the 19th ACM Conference on Information and

Knowledge Management, (CIKM 2010), 1625–1628.

[14] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,

Cyganiak, R., Hellmann, S. 2009. DBpedia - A

crystallization point for the Web of Data. Journal of Web

Semantics: Science, Services and Agents on the World Wide

Web, 7(3), 154-165, 2009.

[15] Bizer, C., Heath, T., Berners-Lee, T. 2009. Linked data-the

story so far. Int. Journal on Semantic Web and Information

Systems, Special Issue on Linked Data, 4(2), 1–22, 2009.

[16] Mihalcea, R., Csomai, A. 2007. Wikify!: linking documents

to encyclopedic knowledge. In Proc. of the 16th ACM

Conference on Information and Knowledge management

(CIKM 2007), Lisbon, Portugal, pp. 233-242, 2007

