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ABSTRACT 
 

Named Entity Recognition (NER) is a subtask of information 

extraction and aims to identify atomic entities in text that fall into 

predefined categories such as person, location, organization, etc. 

Recent efforts in NER try to extract entities and link them to 

linked data entities. Linked data is a term used for data resources 

that are created using semantic web standards such as DBpedia. 

There are a number of online tools that try to identify named 

entities in text and link them to linked data resources. Although 

one can use these tools via their APIs and web interfaces, they use 

different data resources and different techniques to identify named 

entities and not all of them reveal this information. One of the 

major tasks in NER is disambiguation that is identifying the right 

entity among a number of entities with the same names; for 

example “apple” standing for both “Apple, Inc.” the company and 

the fruit. We developed a similar tool called NERSO, short for 

Named Entity Recognition Using Semantic Open Data, to 

automatically extract named entities, disambiguating and linking 

them to DBpedia entities. Our disambiguation method is based on 

constructing a graph of linked data entities and scoring them using 

a graph-based centrality algorithm. We evaluate our system by 

comparing its performance with two publicly available NER tools. 

The results show that NERSO performs better. 
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1. INTRODUCTION 

Web of Data and Linked Data 

Linked data refers to the web of data in contrast to the web of 

documents. Linked data extends the current web that consists of 

documents and the links between documents. In the case of linked 

data or the web of data, not just documents but also data elements 

(or things) and the links between these data elements exist. Not 

only that, but the links are meaningful unlike the links in the web 

of documents; links between data elements have types. Linked 

data is therefore more structured and machine processable; 

applications can traverse this data web, easily find useful 

information and pinpoint the right information [15]. In the web of 

documents, or the current web, searching and finding information 

is by way of parsing documents and looking for useful 

information by matching keywords and terms; therefore it is a 

dummy search. 

One of the central projects towards linked data vision is Linked 

Open Data (LOD)1  project. It collects links and pointers to all 

linked data datasets on the web. There are over 300 datasets listed 

in LOD currently, consisting billions of information assertions (or 

triples). Linked data datasets are created using 4 simple rules as 

outlined by Tim Berners-Lee2 : (1) use URIs as names for data 

elements or things, (2) use HTTP URIs so people can look up 

those names, (3) when a URI is looked up, provide useful 

information in RDF3 and SPARQL, (4) include links to other 

URIs, so that more things can be discovered. 

DBpedia 

DBpedia4 is one of the central linked data datasets in LOD. It is 

created from Wikipedia by converting structured information 

(such as infobox information) to RDF data model. It currently 

contains more than 3.5 million things, including 416,000 persons, 

526,000 places, 106,000 music albums, 60,000 films, etc. in 15 

different languages. All this information is captured in nearly a 

billion RDF triples. 

Named entity recognition and disambiguation 

Since the web of documents is not structured, it is difficult to 

locate the actual data in the documents. Locating the data within 

documents, which are basically free text documents, depends on 

lexical analysis and natural language processing techniques. One 

recent approach to finding relevant information within free text 

and web documents is associating and annotating the “named 

entities” within documents to the linked data entities that explain 

                                                                 
1 http://linkeddata.org/ 
2 http://www.w3.org/DesignIssues/LinkedData.html 
3 http://www.w3.org/RDF/ 
4 http://dbpedia.org 
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those named things. Once the annotation and the linking are done, 

then the navigation software can reach other related data and 

information by following the links from the linked data entities. 

This process is also called “named entity recognition” and it 

follows a similar approach as in information extraction 

techniques. Named entities are identified by matching entity 

names with the names of the entities in linked data datasets. One 

major problem in named entity recognition process is that names 

could be linked to multiple different entities in linked data. This is 

because some entities are named the same but they refer to 

different things. For example, “Washington” is a short name for 

“Washington, DC” as well as the name of “Washington State”. 

Finding the right entity requires finding the context of the text 

surrounding the named entity; meaning other named entities 

should be identified and their relationships should be considered 

to find the right entity. This process is called “named entity 

disambiguation”. 

We developed a system called NERSO, short for Named Entity 

Recognition Using Semantic Open Data. It is in the category of 

other named entity recognition and disambiguation systems that 

are using linked data, such as Spotlight, etc. We use a centrality 

scoring mechanism on the entity graph to disambiguate the 

similarly named entities. 

In section 2 related work is presented. Linked data and DBpedia, 

the data source we use, and its features are explained in section 3. 

We describe our named entity recognition and disambiguation 

method in section 4. Tests we conducted and the evaluation 

results are presented in section 5 and we conclude in section 6. 

2. RELATED WORK 
Word sense disambiguation (WSD) is a closely related area to 

named entity recognition (NER). It is about finding the right sense 

for words used in sentences and documents. WSD requires 

linguistic approaches and possibly large linguistic databases such 

as WordNET5. 

Wikipedia as a source for WSD has been used in a number of 

works. Fogarolli proposed to use link structure of Wikipedia 

articles [7].  In their work, words are disambiguated using 

semantic relatedness by crawling Wikipedia articles using the 

links between them. Links between Wikipedia articles can provide 

a way for identifying relationships and understanding how some 

topics are connected. They found that strongly connected topics 

belong to the same context in general [7].  

Another WSD system using an external source like WordNET to 

disambiguate was also proposed in [1]. Connection between 

concepts is calculated by similarity measuring algorithms using 

WordNET’s taxonomy. A graph of relations between words is 

scored using well known centrality scoring methods. It is shown 

that centrality scoring methods can be used to disambiguate words 

with multiple meanings [1]. 

Regarding NED (Named Entity Disambiguation), systems using 

linked open data (LOD) for annotating entities have gained 

popularity recently due to the growth in the area of semantic web 

and its manifestation on the web, namely linked data. In LOD 

cloud, DBpedia, DBLP, YAGO, FreeBase are the most known 

data sources for this purpose. 

Hassel et al. create an ontology from DBLP dataset and populate 

its data by parsing messages from DBWorld mailing list [4]. 

                                                                 

5 http://wordnet.princeton.edu/ 

Using this “populated ontology” they disambiguate the entities 

such as names of authors written in their papers or domain of 

interests. They consider text similarity of entities in order to 

disambiguate. They also use text co-occurrence relationships, 

such as text proximity. 

Most of the recent work on NED is focused using Wikipedia or 

DBpedia due to their wide coverage of entities. Some of them use 

BOW (Bag of Words) approach while others use semantic 

relatedness between concepts. 

Bunesco and Pasca [10], Cucerzan [5], Michalcea and Csomai 

[16] used texts from Wikipedia to annotate. Bunesco and Pasca 

proposed using encyclopedic data to annotate named entities and 

disambiguate using ranking algorithms [10]. They used cosine 

similarity to distinguish between meanings of words as a ranking 

solution for disambiguation of named entities. Cucerzan proposes 

a very similar approach [5]. First, he pre-processes the Wikipedia 

collection and extracted more than 1.4 million entities with an 

average of 2.4 terms for each entity and 540 thousand (entity, 

category) pairs. The knowledge extracted from Wikipedia is then 

used for the disambiguation process; the vectorial representation 

of the processed document is compared with the vectorial 

representation of the Wikipedia entities to decide. 

DBpedia Spotlight project is a well-known NER tool, it classifies 

and disambiguates named entities based on DBpedia ontology [9]. 

Spotlight automatically annotates free text documents with links 

to DBpedia entities. Spotting function first finds named entities in 

the text with all corresponding resources. Then the 

disambiguation step matches named entities to the right DBpedia 

resources based on the context similarity measures. Their context 

similarity measure is based on term frequency (TF) and an inverse 

candidate frequency (ICF) which measure the power of words 

based on their co-occurrence in articles. The intuition behind ICF 

is that the discriminate power of a word is inversely proportional 

to the number of entities it is associated with. Spotlight is 

configurable with a ‘confidence’ and a ‘support’ parameter. 

Setting the confidence parameter high lets Spotlight to avoid 

incorrect annotations at the risk of losing correct ones. With 

support parameter, users can set the minimum number of inlinks a 

DBpedia resource has to have in order to be annotated so that high 

precision or high recall can be obtained. Results show that 

DBpedia as a service for annotating named entities has promising 

results. 

Hoffart et al. present another online tool called AIDA for the 

disambiguation of named entities leveraging knowledge bases like 

DBpedia or YAGO [12]. Their method builds the subgraph of 

entities mentioned in the text with a greedy algorithm that 

approximates the best joint mention-entity mapping. 

Gentiles et al, like our work, propose a graph-based model 

combining features from Wikipedia. They calculate the semantic 

relatedness over a graph to resolve the problem. In order to 

compute the semantic relatedness of two entities, they proposed a 

random graph walk model on a combination of features extracted 

from Wikipedia [2]. Our method on the other hand does not 

extract any features of entities, only considers link relations 

between them. Additionally, we propose a novel scoring method 

for disambiguation process instead of a random-walk model.  

Han et al proposes similarity measure for annotating entities using 

Wikipedia as a semantic network [8]. Initially, they construct a 

large-scale semantic network from Wikipedia so that semantic 

knowledge can be used efficiently. And then, by leveraging this 
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semantic knowledge like social relatedness between named 

entities, they measure the similarity between occurrences of 

names. 

Ni et al propose a method that extracts information from LOD 

about entities and builds a type-oriented knowledge base [6]. 

Named entities are scored based on their types and then this score 

is used in an existing classifier. It is shown that the classifier’s 

performance is increased with the use of the scoring method. 

Kulkarni et al. [11] propose the collective disambiguation of 

entities defined in a context by optimization methods. Authors 

proposed to use Linear Programming and a Hill-climbing 

approach for optimization.  

Ferragina at al. [13] propose a system called TAGME which uses 

Wikipedia as a source. The method disambiguates entities based 

on “collective agreement” which is the sum of votes from other 

entities detected in the text. These votes are computed using 

semantic relatedness of entities mentioned in the text [13]. 

A survey of named entity recognition systems is collected in [3]. 

They specifically survey many of the existing semantic tagging 

technologies and services and compare them. 

We follow the named entity recognition and disambiguation 

approach in our work and provide a hybrid solution combining a 

number of known approaches. Our method is based on graph-

based centrality methods and relatedness of entities in the given 

document. 

3. LINKED DATA AND DBPEDIA 

Linked data has been growing rapidly, now consisting more than 

300 datasets, and DBpedia has a very central and prominent place 

in this network [14], many datasets have links to DBpedia 

resources. DBpedia is getting more centralized and developing as 

a linking hub between other data sources in the linked open data 

cloud. For each entity, DBpedia defines a globally unique 

identifier that can be referenced over the Web in the RDF 

description of an entity. 

Surface Forms 

Terms that are used to name the entities in the text are called 

“surface forms”. In DBpedia Spotlight project surface forms are 

identified with a preprocessing step and stored in the DBpedia 

Lexicalizations Dataset6 (DLD). Surface form entries in this 

dataset are identified by entity labels, redirects and 

disambiguations in DBpedia. 

Utilization of DBpedia as a Source for NER 

We do not use DLD directly in our work. We however utilize a 

similar approach. We use three kinds of sources in DBpedia to 

extract surface forms. These are (1) label and other similar data 

properties we have chosen, (2) disambiguation and (3) redirect 

pages (DBpedia ontology properties dbont: 

wikiPageDisambiguates7 and dbont:wikiPageRedirects8). All 

entities spotted using these sources are essential in the 

disambiguation step of our method. Each surface form has a 

candidate list of entities and if any surface form contains multiple 

entities then that surface form should be disambiguated.  

 

                                                                 
6 http://dbpedia.org/Lexicalizations 
7 http://dbpedia.org/ontology/wikiPageDisambiguates 
8 http://dbpedia.org/ontology/wikiPageRedirects 

(1) Data properties 

We consider rdfs:label and other similar data properties that might 

contain surface form data. We chose a short list of data properties 

that express the title, name, or similar data. In the current setting 

the list contains these data properties: rdfs:label, foaf:name, 

dbpprop:officialName, dbpprop:name, foaf:givenName, 

dbpprop:birthName, dbpprop:alias.  

(2) Disambiguation pages 

dbont:wikiPageDisambiguates property is a predicate used to 

group entities that have various meanings for the same title. For 

example, “Washington.D.C” and “George_Washington” are 

grouped under “Washington(disambiguation)” entity because they 

can both be referenced with a common title “Washington”. Any 

object with the type dbont:wikiPageDisambiguates and a label 

that contains the searched surface form will be selected, meaning 

all entities grouped under these selected objects will be added to 

the candidate list of a surface form. 

(3) Redirect pages 

dbont:wikiPageRedirects property is a predicate that is used to 

show alternative titles of a given entity. These type of pages have 

no content itself, only redirects the reader to the base article. For 

example, “Edison Arantes Do Nascimento” redirects to “Pele” the 

famous football player. Reference pages of objects with a type 

dbont:wikiPageRedirects and a label that contains the searched 

surface form will be added to the candidate list. In this example if 

the text contains a surface form “Edison Arantes Do Nascimento” 

then the base page (redirect) “Pele” will be added to the candidate 

list of that particular surface form. 

4. METHOD 
We designed a named-entity disambiguation algorithm that 

consists of 3 main steps. These are: 

(1) Spotting algorithm 

The text is parsed from beginning to end using a sliding window 

of a certain maximum number of words to find the surface forms 

and the matching linked data (DBpedia) entities. 

(2) Constructing the graph of entities and relationships  

A graph is formed using the spotted entities that are found in the 

previous step and the relationships (links) between these entities 

that exist in the linked data source. 

(3) Disambiguation 

Several nodes (entities) in the constructed graph might match to 

the same surface form as explained above. Only a single node 

(entity) needs to be selected to represent each surface form when 

multiple nodes exist in the graph. This is the disambiguation step. 

Below we explain these 3 steps in detail. 

4.1 Spotting 
In this subsection we present how the text parsing and surface 

form selection process is carried out. To spot the surface forms in 

a text, a “sliding window” approach is used. The text is parsed 

from beginning to end, and in each step the sliding window selects 

a small number of consecutive words. The sliding window size is 

set to a maximum size (the maximum number of words to be 

selected) at the beginning. In each step the selected word set from 

the window is searched in the database. If a surface form is found 

then it is added to the list of spotted surface forms, otherwise the 

window size is decreased by one from the right end of the window 
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and the new surface form candidate is searched again in the 

database until a match is found. In the case a match is found, the 

sliding window size set to the maximum size again and slide over 

the matching words to the next word in line. If no match is found 

when the window size is shrunk to one word, then the window is 

again set to the maximum size and slide over to the next word in 

line. 

In this approach, the maximum size of the sliding window must be 

set to a realistic one. The size should neither be too small so that 

the entities or surface forms that have long labels are not missed, 

nor too large so that the processing time is not too high. After 

some experiments we decided to use a sliding window with the 

maximum size of 4 words. Consider the following text that we 

used in our experiments. 

Jailbreaking also allows an owner to unlock their phone and 

switch mobile carriers. Apple's phones, and its iPads, typically 

come with an exclusive contract with a mobile provider 

(originally only AT&T in the United States, although Verizon and 

Sprint versions have been added). 

Figure 1 Sample Text from Dataset2 in EVALUATION 

Spotting the surface forms in the text follows the steps listed in 

Table 1 assuming that the sliding window size is set to a 

maximum of 4 words. Surface form candidates, which are 

selected by the sliding window, are searched in the target dataset 

by looking up the 3 resources as explained above. Table 2  lists 

the queries we run to find the surface forms. 

Table 1 Steps for spotting surface forms using sliding window 

on the sample text  

Step Sliding window Result 

1 Jailbreaking also allows an not found, reduce window size 

2 Jailbreaking also allows not found, reduce window size 

3 Jailbreaking also not found, reduce window size 

4 Jailbreaking found, add to the list, move 
window 

5 also allows an owner not found, reduce window size 

6 … … 

Table 2 Queries for spotting surface forms 

Query Source 

SELECT distinct ?s WHERE { 

  ?s rdfs:label "+searchText+"@en." 

  ?s foaf:name "+searchText+"@en." 

  ?s foaf:givenName 

"+searchText+"@en." 

  … 

} 

Data properties 

SELECT distinct ?s WHERE { 

  ?redirect dbont:wikiPageRedirects 

 ?s.   

  ?redirect rdfs:label 

 "+searchText+"@en. 

} 

Redirect pages 

SELECT distinct ?s WHERE { 

  ?disamb dbont:wikiPageDisambiguates 

?s. 

  ?disamb rdfs:label "+searchText+".  

} 

Disambiguation 
pages 

 

Let D={w1, … , wn} be the set of words in a text. Our goal is to 

find the surface forms in the text. After the spotting step we find 

S(D)={s1........sm} the spotted surface forms in the text. For the 

sample text in Figure 1, following is the list of spotted surface 

forms: 

S(D)={“Jailbreaking”, “Apple's”, “iPads”,  ...} 

After finding the surface forms, the next step is extracting all the 

entities that match the surface form.Formally, let E(s)={e1, ... , ek} 

be the set of entities for a surface form s. For each s in S(D), 

matching entities (URI representations) are extracted from 

DBpedia triple store and added to E(s). For example, for the 

surface form “Jailbreaking”: 

E(“Jailbreaking”)={Jailbreaking, Jailbreak_(album), 

Jailbreak_(TV_series), ….} 

Entities spotted are listed with their resource types, which are data 

properties (such as labels), redirect entities, and disambiguation 

entities (Figure 2). This information is later used in the scoring; 

disambiguation entities have a lower constant factor. 

 

Figure 2 Entities spotted for a surface form “Jailbreaking” 

Stopwords 

Prepositions, adverbs, verbs, adjectives, pronouns are considered 

stopwords, not named entities. Words like “also” does not have 

any meaning on their own; they are meaningful along with a 

named entity. For example, “I_Am_Not_a_Human_Being” is the 

name of a play which is only meaningful with all 6 words. The 

words “am”, “not”, and “a” are stopwords. Our spotting algorithm 

skips stop words, meaning it does not search stopwords as surface 

forms when the sliding window has a single stopword in view. We 

developed a stopword list which is derived and extended from 

DBpedia Spotlight project’s stopword list. Our stopword list is 

available for download in project’s homepage9. 

4.2 Constructing the graph of entities and 

relationships 
Wikipedia articles have hyperlinks to other articles and these links 

are embedded in the text. These page links between articles are 

denoted in DBpedia with the property called 

“dbont:wikiPageWikiLink”.  Not only the regular page links but 

other tagged links (object and data properties) also have 

corresponding dbont:wikiPageWikiLinks added. For example, 

DBpedia has the triple “Washington,_D.C. country 

United_States” and for this it also has a second triple in the form 

of “Washington,_D.C. dbont:wikiPageWikiLink United_States” 

triple indicating that “Washington,_D.C.” is related to 

“United_States”. 

In our method we search for “dbont:wikiPageWikiLink” links 

between spotted entities and using entities and the links found 

between the entities form a graph first. For example, if 

“Washington,_D.C.” and “United_States” are spotted in the 

                                                                 
9 http://wis.etu.edu.tr/nerso/files/stopword.txt 
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process (4.1), we search for links between these two entities using 

the “dbont:wikiPageWikiLink” property. All links between 

spotted entity pairs are queried and a graph is constructed using 

the entities and the links between entities. Formally, S(D) is the 

set spotted surface forms for the text D that is to be annotated: 

S(D)={s1, s2, … , sm} 

And, E(s) is the set of all entities in the linked dataset for each 

surface form s in S(D): 

E(s)={e1, e2, ..., ek}   for s   S(D) 

The set of all entities for the document D is then E(D): 


S(D) s

E(s)  )(


DE  

If there is a dbont:wikiPageWikiLink link between any two 

entities in E(D), then the link is added to the relationships set or 

the link set R(D). We then build a graph of spotted entities and the 

directed edges between these entities. 

The graph is a 3-tuple construct G=(E(D), R(D), sf), where E(D) 

is the set of nodes representing the entities corresponding to 

surface forms, R(D) is the set of directed edges between any two 

entities in E(D) representing a dbont:wikiPageWikiLink link in 

the linked data from entity a to entity b,  and sf is a scoring 

function that we use to nodes that will be used in the 

disambiguation step (next). 

We used Java Universal Network Graph (JUNG)10  library to 

construct and visualize the graph using entities and relationships 

list. Figure 3 is a partial representation of our sample text using 

JUNG libraries. 

4.3 Disambiguation 
In the graph we constructed some nodes are more central than 

others, they have more incoming and/or outgoing edges than the 

others. For example in Figure 3, “Apple_Inc.”, “Apple” and 

“Apple_Switch_ad_campaign” are three of the entities spotted for 

the surface form “Apple’s” in the sample text (Figure 1). 

“Apple_Inc.” node in the graph has more links to the other 

entities. Incoming and outgoing links play an important role in the 

disambiguation process. In this graph “Apple_Inc.” has 2 

outgoing and 5 incoming links in contrast to “Apple” and 

“Apple_Switch_ad_campaign” with only 1 outgoing link. 

Graph based Centrality Scoring methods have been proposed 

before [1]. Centrality scoring methods have been successful 

because they take into account the relationships between nodes. 

Also in our method, it is crucial to calculate how central a node is 

in the graph. As our graph is directed, not all nodes are reachable 

from other nodes. For example, “AT&T” is not reachable from 

“Apple_Inc.”, and “AT&T_Mobility” is reachable through 

“IPAD”, that is a path with length 2 (Figure 3). 

Closeness centrality concept in graphs11 is similar to our 

customized centrality factor given below. We modified traditional 

closeness centrality scoring method to take into account the 

number of all related nodes. For every node the shortest path from 

that node to all reachable nodes in the graph is calculated using 

Djikstra’s shortest path algorithm. 

                                                                 
10 http://jung.sourceforge.net/ 
11 http://en.wikipedia.org/wiki/Centrality#Closeness_centrality 

 

Figure 3 Graph for text above (partially) full image can be 

obtained from project homepage 

 

Centrality factor for a given node is then calculated by dividing 

the total number of reachable nodes from the node to the sum of 

the lengths of the shortest paths to those nodes. Or formally, for 

node Va centrality factor can be calculated using the following 

formula. 
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is the sum of the shortest distances between Va and 

the reachable nodes from Va. 
aV  is  the number of all reachable 

nodes from Va.  

For the partial graph represented in Figure 3, the node 

“Apple_Inc.” has three reachable nodes {AT&T_Mobility, IPAD, 

Mobility Phone} and the sum of the shortest distances to these 

nodes is 4. Centrality factor of the node “Apple_Inc.” will be 3 

divided by 4 or 0.75. 

Centrality factor of a node Va is used to score the node as below: 

Score(Va) = CF(Va) * in_links(Va) * out_links(Va) * k 

CF(Va)  is the centrality factor for node Va, in_links(Va) is the 

number of  incoming links for node Va, out_links(Va) is the 

number of outgoing links for node Va. And k is a constant number 

depending on the type of node Va. k is set to 6 if the entity is from 

data properties or redirect pages, and k is set to 1 if the entity is 

retrieved from disambiguation pages. k is determined by the 

performance of the disambiguation process in our tests.  

As explained in section 4.1 entities are spotted depending on data 

property attributes, redirect labels or from disambiguation pages. 

Disambiguation pages collect a high number of unrelated entities 
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of many different types, which might affect the disambiguation 

adversely. Therefore, entities from disambiguation pages are 

given less weight in the scoring function.  

Finally, depending on the score of nodes that need to be 

disambiguated, for each surface form the disambiguation 

algorithm finds the highest scoring candidate, and selects it to 

represent and annotate the surface form in the text, and eliminates 

the other candidate entities. For example, for surface form 

“Apple’s”, entity “Apple_Inc.”  has the highest score in Figure 3, 

is therefore selected to annotate “Apple’s”. 

5. EVALUATION 
We evaluated our approach using two different datasets which are 

publicly available. Each dataset contains links to DBpedia 

resources. We named the test datasets as Dataset1 and Dataset2: 

 Dataset1: This dataset is from DBpedia Spotlight Project [9]. 

It contains a goldset from 10 different news articles with a 

total of 251 entities. 217 out of these entities are ambiguous, 

meaning they match to multiple DBpedia entities. 

 Dataset2: We also created our own goldset for testing. We 

selected 10 different news articles from NY Times, 

Washington Post, and CNN. We included 1 to 4 paragraphs 

from each article in the dataset. We asked two people to 

annotate these articles on their own separately. They decided 

on the most important entities in each article and a common 

set of entities are created as Dataset212. This dataset contains 

157 different entities. Out of these 157 entities, 128 of them 
are ambiguous. 

Both datasets have a high number of ambiguous entities to test the 

success of disambiguation process meaningfully. Dataset1 has 

86% of 251 entities ambiguous and Dataset2 has 81% of 157 

entities ambiguous (Table 3). To give an example, “David 

Beckham” is not an ambiguous entity, it matches to a single entity 

in DBpedia; yet “Washington” is an ambiguous entity, it matches 

to “Washington,_D.C.”, “Washington_(state)” and other entities 

in DBpedia. 

Table 3 Dataset statistics 

 

Number of 

entities 

Number of 

ambiguous 

entities 

Ratio of 

ambiguous 

entities 

Dataset1 251 217 86% 

Dataset2 157 128 81% 

 

We have used 3.6 version of DBpedia, which is open to 

everyone13, and performed our tests on it. DBpedia 3.6 was loaded 

into Virtuoso Database Server14 which runs on a cluster with four 

nodes each having 4 GB Memory and 1.3 GHz AMD Phenom(tm) 

9950 Quad-Core Processor. 

We compared our system NERSO with two other publicly 

available NER and annotation projects: Zemanta15 and DBpedia 

Spotlight16. Spotlight was tested with default configurations on its 

online demo site. Zemanta annotates entities in the following 

categories only: persons, books, music, movies, locations, stocks, 

                                                                 
12 http://wis.etu.edu.tr/nerso/evaluation.html 
13 http://wiki.dbpedia.org/Downloads36?v=ebv 
14 http://virtuoso.openlinksw.com 
15 http://www.zemanta.com/demo/ 
16 http://spotlight.dbpedia.org/demo 

and companies. DBpedia Spotlight annotates all types of entities 

that are defined in DBpedia dataset. DBpedia Spotlight annotates 

given text documents with links to DBpedia entities. Zemanta on 

the other hand annotates given text documents with links to 

Wikipedia, Amazon, IMDB and others like the homepage of the 

annotated entity. We took into account only Wikipedia links as all 

annotated entities contained Wikipedia links. At the time of 

writing DBpedia Spotlight’s v0.5 was released and both datasets 

were tested on the online version of Spotlight v0.5.   

Test results are presented in Table 4. 

Table 4 Disambiguation results for Spotlight, Zemanta and 

NERSO 

 Dataset1 Dataset2 

Precision Recall F1 Precision Recall F1 

NERSO 42% 60% 50% 29% 70% 41% 

Spotlight 39% 45% 42% 30% 51% 38% 

Zemanta 73% 21% 33% 62% 29% 39% 

 

For Dataset1, DBpedia Spotlight (no configuration) shows a 45% 

recall rate. Zemanta on the other hand recognizes and 

disambiguates 21% of entities correctly. Our system NERSO 

performs higher than Zemanta and Spotlight with a recall rate of 

60% which is a promising performance. Also F1 score17 of 

NERSO is in range of competition. Evaluation results in [9] does 

not contain disambiguated entity list for each annotation system. 

For a better comparison we tested both Spotlight and Zemanta and 

reported all annotation results with the disambiguated entities and 

regarding surface forms. In the Spotlight paper F1 score of the 

Spotlight project with no configuration is reported as 45% [9] 

whereas we calculated 42%. In the same paper, Zemanta project 

result is reported with 39% F1 score, whereas we calculated F1 as 

33%. We cannot explain these differences since we do not have 

the annotation results as performed in the paper [9]. But we are 

guessing the difference could be due to using the different 

versions of datasets or software. For example, we used the online 

version of Spotlight 0.5, which is probably newer than the version 

used in the paper. 

For Dataset2, DBpedia Spotlight (no configuration) disambiguates 

with a recall rate of 51% and Zemanta has a 29% recall rate.  Our 

system NERSO on the other hand outperforms both Spotlight and 

Zemanta with 70% recall rate. F1 score of NERSO (41%) is also 

slightly higher than both systems (38% and 39% respectively). 

These results show that NERSO performs well for disambiguating 

entities correctly with a success of 70% recall rate.  

Precision rates are high for Zemanta while it is lower for Spotlight 

and NERSO. This is because Zemanta annotates fewer entities 

(selected categories only) and does it mostly correctly (73% and 

62% for Dataset1 and Dataset2 respectively). 

NERSO performs better than Zemanta and Spotlight projects in 

terms of catching the most number of entities from both datasets. 

Zemanta performed the worst among the three (lowest recall 

rates). 

We also evaluated the success of the disambiguation process by 

counting the number of successful disambiguations for both 

datasets. That is for surface forms with multiple entity matches 

(86% for Dataset1 and 81% for Dataset2 as shown in Table 3) we 

measure the ratio of matching to the right entities in DBpedia. 

Results are listed in Table 5. This data is not available for 

                                                                 
17 http://en.wikipedia.org/wiki/F1_score 

http://en.wikipedia.org/wiki/F1_score
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Spotlight and Zemanta since we do not have access to the datasets 

of those systems. 

Table 5. Disambiguation success of NERSO 

 Dataset1 Dataset2 

Ratio of ambiguous 

surface forms 
86% 81% 

Recall rate for 

ambiguous forms 
69% 84% 

 

According to the results presented in Table 5, NERSO shows a 

69% successful disambiguation rate for the multiple-entity surface 

forms in Dataset1 (86% of 251 entities), and 84% successful 

disambiguation for multiple-entity surface forms in Dataset2 

(81% of 157 entities). This is consistent with the results in Table 3 

for Dataset1 and much better for Dataset2. 

6. CONCLUSION 
We presented NERSO, a named entity recognition and 

disambiguation system using graph-based scoring method for 

annotating named entities in a given text using linked data. Our 

approach is based on spotting surface forms in the text by 

mapping them to linked data entities, and then constructing a 

directed graph of spotted entities using their relationships in the 

linked data, and then finally disambiguating the multiple entities 

that match to the same surface forms. We have shown 

experimentally that our graph-based approach performs better 

than a bag of words approach such as Spotlight’s. Graph-based 

approaches perform better since they take into account 

information drawn from the entire graph of semantically related 

entities. In the disambiguation process, in order to score entities, 

we used a centrality scoring method (closeness centrality). An 

entity is selected if it is more central among the other candidates 

of a surface form since it has more semantic relations with the 

other entities in the graph. 

We compared our system with two well-known and publicly 

available named entity recognition and annotation services. As 

shown in the evaluation section our system performs better than 

the two other systems. 

For future work we plan to improve the system in terms of query 

execution time by using parallel computers, developing new 

scoring methods for disambiguation, and using multiple linked 

data resources. Lower precision rates in the results indicate that 

our system over annotates somehow, and this should also be 

worked on to increase the precision rates. 

All of our test data is available online18 so that it can be checked 

and compared against for future works. 
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