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ABSTRACT 

Big information worlds cause big problems for interfaces. 
There is too much to see. They are hard to navigate. An 
armada of techniques has been proposed to present the 
many scales of information needed. Space-scale diagrams 
provide an analytic framework for much of this work. By 
representing both a spatial world and its different magnifi-
cations explicitly, the diagrams allow the direct visualiza-
tion and analysis of important scale related issues for 
interfaces. 

KEYWORDS: Zoom views, multiscale interfaces, fisheye 
views, information visualization, GIS; visualization, user 
interface components; formal methods, design rationale. 

INTRODUCTION 

For more than a decade there have been efforts to devise sat-
isfactory techniques for viewing very large information 
worlds. (See, for example, [6] and [9] for recent reviews and 
analyses^ The list of techniques for viewing 2D layouts alone 
is quite long: the Spatial Data Management System [3], Bifo-
cal Display[l], Fisheye Views [4][12], Perspective Wall [8], 
the Document Lens [11], Pad [10], and Pad++ [2], the Macro-
Scope[7], and many others. 

Central to most of these 2D techniques is a notion of what 
might be called multiscale viewing. An interface is devised 
that allows information objects and the structure embedding 
them to be displayed at many different magnifications, or 
scales. Users can manipulate which objects, or which part of 
the whole structure, will be shown at what scale. The scale 
may be constant and manipulated over time as with a zoom 
metaphor, or varying over a single view as in the distortion 
techniques (e.g., fisheye or bifocal metaphor). In either case, 
the basic assumption is that by moving through space and 
changing scale the users can get an integrated notion of a very 
large structure and its contents, navigating through it in ways 
effective for their tasks. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of ACM. To copy othenwise, or to 
republish, requires a fee and/or specific permission. 
CHI' 95, Denver, Colorado, USA 
© 1995 ACM 0-89791-694-8/95/0005...$3.50 

This paper introduces space-scale diagrams as a technique 
for understanding such multiscale interfaces. These diagrams 
make scale an explicit dimension of the representation, so 
that its place in the interface and interactions can be visual-
ized, and better analyzed. We are finding the diagrams useful 
for understanding such interfaces geometrically, for guiding 
the design of code, and as interfaces to authoring systems for 
multiscale information. 

This paper will first present the necessary material for under-
standing the basic diagram and its properties. Subsequent 
sections will then use that material to show several examples 
of their uses. 

THE SPACE-SCALE DIAGRAM 

The basic diagram concepts 

The basic idea of a space-scale diagram is quite sunple. Con-
sider, for example, a square 2D picture (Figure la). The 
space-scale diagram for this picture would be obtained by 
creating many copies of the original 2D picture, one at each 
possible magnification, and stacking them up to form an 
inverted pyramid (Figure lb). While the horizontal axes rep-

(a) 

Figure 1. The basic construction of a Space-Scale dia-
gram from a 2D picture. 
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resent the original spatial dimensions, the vertical axis repre-
sents scale, i.e., the magnification of the picture at that level. 
In theory, this representation is continuous and infinite: all 
magnifications appear from 0 to infinity, and the "picture" 
may be a whole 2D plane if needed. 

Before we can discuss the various uses of these diagrams, 
three basic properties must be described. Note first that a 
user's viewing window can be represented as a fixed-size 
horizontal rectangle which, when moved through the 3D 
space-scale diagram, yields exacdy all the possible pan and 
zoom views of the original 2D surface (Figure 2). This prop-
erty is useful for studying pan and zoom interactions in con-
tinuously zoomable interfaces like Pad and Pad++ [2] [10]. 

Secondly, note that a point in the original picture becomes a 
ray in this space-scale diagram. The ray starts at the origin 
and goes through the corresponding point in the continuous 
set of all possible magnifications of the picture (Figure 3). We 
call these the great rays of the diagram. As a result, regions of 
the 2D picture become generalized cones in the diagram. For 
example, circles become circular cones and squares become 
square cones. 

A third property follows from the fact that typically the prop-
erties of the original 2D picture (e.g., its geometry) are con-
sidered invariant under moving the origin of the 2D 
coordinate system. In the space-scale diagrams, such a 
change of origin corresponds to a "shear" (Figure 4), i.e., 
sUding all the horizontal layers linearly so as to make a differ-
ent great ray become vertical. Thus, if one only wants to con-
sider properties of the original diagram that are invariant 
under change of origin, the only meaningful properties of the 
space-scale diagram are those invariant under such a shear. 
For example, the absolute angles between great rays change 
with shear, and so should be given no special meaning. 

Now that the basic concepts and properties of space-scale 
diagrams have been introduced by the detailed Figures 1-4, 

Viewing Window 

Figure 2. The viewing window (a) is shifted rigidly 
around the 3D diagram to obtain all possible pan/ 
zoom views of the original 2D surface, e.g., (b) a 
zoomed in view of the circle overlap, (c)a zoomed out 
view including the entire original picture, and (d) a 
shifted view of a part of the picture. 

Figure 3. Points like p and q in the original 2D surface 
become corresponding "great rays" p and q in the 
space-scale diagram. (The circles in the picture there-
fore become cones in the diagram, etc.) 

we can make a simplification. Those figures have been three 
dimensional, comprising two dimensions of space and one of 
scale ("2+ID"). Substantial understanding may be gained, 
however, from the much simpler two-dimensional versions, 
comprising one dimension of space and one dimension of 
scale ("1+lD"). It could, for example be a vertical sUce fi"om, 
or an edge on view of, the 2+lD version, or just a space-scale 
view of a truly ID world (e.g., a time line). In the 1+lD dia-
gram, since the spatial world is ID, a viewing window is a 
line segment that can be moved around the diagram to repre-

Figure 4. Shear invariance. Shifting the origin in the 2D 
picture from ptoq corresponds to shearing the layers 
of the diagram so the q line becomes vertical. Each 
layer is unchanged, and great rays remain straight. 
Only those conclusions which remain true under all 
such shears are valid. 
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1-D Viewing Window 

9. 

(c)z 
(b)z 
(a)t 

"zoomed in" 

"zoomed out" 

Figure 5. A "1+lD" space-scale diagram has one spatial 
dimension, u, and one scale dimension, v. The six 
great rays here correspond to six points in a ID spa-
tial world, put together at all magnifications. The 
viewing window, like the space itself, is one dimen-
sional, and is shown as a narrow slit with the corre-
sponding 1-D window view being visible through the 
slit. Thus the sequence of views (a), (b), (c) begins 
with a view of all six points, and then zooms in on the 
point q. The views, (a), (b), (c) are redrawn at bottom 
to show the image at those points. 

sent different pan and zoom positions. It is convenient to 
show the window as a narrow slit, so that looking through it 
shows the corresponding ID view. Figure 5 shows one such 
diagram illustrating a sequence of three zoomed views. 

The basic math. 
It is helpful to characterize these diagrams mathematically. 
This will allow us to use analytic geometry along with the 
diagrams to analyze multiscale interfaces, and also will allow 
us to map conclusions back into the computer programs that 
implement them. 

The mathematical characterization is simple. Let the pair 
(x, z) denote the point x in the original picture considered 
magnified by the multiplicative scale factor z. We define any 
such (x, z) to correspond to the point (u, vj in the space-scale 
diagram where u=xz and v=z. This second trivial equation is 
needed to make the space-scale coordinates distinct, and 
because there are other versions of space-scale diagrams, e.g., 
where v=log(z). Conversely, of course, a point (u, v) in the 
space-scale diagram corresponds to (x, z), i.e., a point x in the 
original diagram magnified by a factor z, where x=u/v, and 
z=v. The notation is a bit informal, in that x and u are single 
coordinates in the 1+ID version of the diagrams, but a 
sequence of two coordinates in the 2+lD version. 

A few words are in order about the XZ vs. UV characteriza-
tions. The (x,z) notation can be considered a world-based 

coordinate system. It is important in interface implementation 
because typically a world being rendered in a multiscale 
viewer is stored internally in some fixed canonical coordinate 
system (denoted with ;c's). The magnification parameter, z, is 
used in the rendering process. Technically one could define a 
type of space-scale diagram that plots the set of all (x,z) pairs 
Erectly. This "XZ" diagram would stack up many copies of 
the original diagram, all of the same size, i.e., without rescal-
ing them. In this representation, while the picture is always 
constant size, the viewing window must grow and shrink as it 
moves up and down in z, indicating its changing scope as it 
zooms. Thus while the world representation is simple, the 
viewer behavior is complex. In contrast, the "UV" represen-
tation of the space-scale diagrams focused on in this paper 
can be considered view-based. Conceptually, the world is 
statically prescaled, and the window is rigidly moved about. 
The UV representation is thus very useful in discussing how 
the views should behave. The coordinate transform formulas 
allow problems stated and solved in terms of view behavior, 
i.e., in the UV domain, to have their solutions transformed 
back into XZ for implementation. 

EXAMPLE USES OF SPACE-SCALE DIAGRAMS 
With these preliminaries, we are prepared to consider various 
uses of space-scale diagrams. We begin with a few examples 
involving navigation in zoomable interfaces, then consider 
how the diagrams can help visualize multiscale objects, and 
finish by showing how other, non-zoom multiscale views can 
be characterized. 

Pan-zoom trajectories 
One of the dominant interface modes for looking at a large 
2D world is to provide an undistorted window onto the world 
and allow the user to pan and zoom. This method is used in 
[2][3][7][10], as well as essentially all map viewers in GISs 
(geographic information systems). Space-scale diagrams are 
a very useful way for researchers studying interfaces to visu-
alize such interactions, since moving a viewing window 
around via pans and zooms corresponds to taking it on a tra-
jectory through scale-space. If we represent the window by 
its midpoint, the trajectories become curves and are easily 
visualized in the space-scale diagram. In this section, we first 
show how easily space-scale diagrams represent pan/zoom 
sequences. Then we show how they can be used to solve a 
very concrete interface problem. Finally we analyze a more 
sophisticated pan/zoom problem, with a rather surprising 
information theoretic twist. 

Basic trajectories. Figure 6 shows how the basic pan-zoom 
trajectories can be visualized. In a simple pan (a), the win-
dow's center traces out a horizontal line as it slides through 
space at a fixed scale. A pure zoom around the center of the 
window follows a great ray (b), as the window's viewing 
scale changes but its position is constant. In a "zoom-around" 
the zoom is centered around some fixed point other than the 
center of the window, e.g., q at the right hand edge of the win-
dow. Then the trajectory is a straight line parallel to the great 
ray of that fixed point. This moves the window so that the 
fixed point stays put in the view. In the figure, for example, 
the point, q, always intersects the windows on trajectory (c) at 
the far right edge, meaning that the point, q, is always at that 
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Figure 6. Basic Pan-Zoom trajectories are shown in the 
heavy dashed lines:, (a) Is a pure Pan,, (b) is a pure 
Zoom (out), (c) is a "Zoom-around" the point q. 

position in the view. If as in this case the fixed point is itself 
within the window, we call it a zoom-around-within-window 
or zaww. Other sorts of pan-zoom trajectories have their char-
acteristic shapes as well and are hence easily visualized with 
space-scale diagrams. 

The joint pan-zoom problem. There are times when the sys-
tem must automatically pan and zoom from one place to 
another, e.g., moving the view to show the result of a search. 
Making a reasonable joint pan and zoom is not entirely triv-
ial. The problem arises because in typical implementations, 
pan is linear at any given scale, but zoom is logarithmic, 
changing magnification by a constant factor in a constant 
time. These two effects interact. For example, suppose the 
system needs to move the view fi-om some first point (xi,Zj) 
to a second point (x2, Z2)- For example, a GIS might want to 
shift a view of a map firom showing the state of Kansas, to 
showing a zoomed in view of the city of Chicago, some thou-
sand miles away. A naive implementation might compute the 
linear pans and log-linear zooms separately and execute them 
in pardlel. The problem is that when zooming in, the world 
view expands exponentially fast, and the target point X2 runs 
away faster than the pan can keep up with it. The net result is 
that the target is approached non-monotonically: it first 
moves away as the zoom dominates and only later comes 
back to the center of the view. Various seat-of-the pants 
guesses (taking logs of things here and there) do not work 
either. 

What is needed is a way to express the desired monotonicity 
of the view's movement in both space and scale. This view-
based constraint is quite naturally expressed in the UV space-
scale diagram as a bounding parallelogram (Figure 7). Three 
sides of the parallelogram are simple to understand. Since 
moving up in the diagram corresponds to increasing magnifi-
cation, any trajectory which exits the top of the parallelogram 
would have overshot the zoom-in. A trajectory exiting the 
bottom would have zoomed out when it should have been 
zooming in. One exiting the right side would have overshot 
the target in space. The fourth side, on the left, is the most 
interesting. Any point to the left of that Une corresponds to a 

Figure 7. Solution to the si^le joint pan-zoom problem. 
The trajectory s monotonically approaches point 2 in 
both pan and zoom 

view in which the target X2 is fiirther away fi-om the center of 
the window than where it started, i.e., violating the non-
monotonic approach. Thus any admissible trajectory must 
stay within this parallelogram, and in general must never 
move back closer to this left side once it has moved right. The 
simplest such trajectory in UV space is the diagonal of the 
parallelogram. Calculating it is sunple analytic geometry. The 
coordinates of points 1 and 2 would typically come fi-om the 
implementation in terms of XZ. These would first be trans-
formed to UV. The linear interpolation is done trivially there, 
and the resulting equation transformed back to XZ for use in 
the implementation. If one composes all these algebraic steps 
into one formula, the trajectory in XZ for this 1-D case is: 

z = 
Zj -mZiX^ 

1 ~mx 
where m = 

Thus to get a monotonic approach, the scale factor, z, must 
change hyperbolically with the panning of x. This mathemati-
cal relationship is not easily guessed but falls directly out of 
the analysis of the space-scale diagram. We implemented the 
2D analog in Pad++ and found the net effect is visually much 
more pleasing than our naive attempts, and count this as a 
success of space-scale diagrams. 

Optimal pan-zooms and shortest paths In scale-space. 
Since panning and zooming are the dominant navigational 
motion of these undistorted multiscale interfaces, finding 
"good" versions of such motions is important.The previous 
example concerned finding a trajectory where "good" was 
defin^ by monotonicity properties. Here we explore another 
notion of a "good" trajectory, where "good" means "short". 

Paradoxically, in scale-space the shortest path between two 
points is usually not a straight line. This is in fact one of the 
great advantages of zoomable interfaces for navigation and 
results fi-om the fact that zoom provides a kind of exponential 
accelerator for moving around a very large space. A vast dis-
tance may be traversed by first zooming out to a scale where 
the old position and new target destination are close together, 
then making a small pan from one to the other, and finally 
zooming back in (see Figure 8). Since zoom is naturally loga-
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Figure 8. The shortest path between two points is often 
not a straight line. Here each arrow represents one 
unit of cost. Because zoom is logarithmic, it is often 
"shorter" to zoom out (a), make a small pan (b), and 
zoom back in (c), than to make a large pan directly (d). 

rithmic, the vast separation can be shrunk much faster than it 
can be directly traversed, with exponential savings in the 
limit. Such insights raise the question of what is really the 
optimal shortest path in scale-space between two points. 

When we began pondering this question, we noted a few 
important but seemingly unrelated pieces of the puzzle. First, 
one naive intuition about how to pan and zoom to cross large 
distances says to zoom out until both the old and new loca-
tion are in the view, then zoom back into the new one. Is this 
related at all to any notion of a shortest path? Second, win-
dow size matters in this intuitive strategy: if the window is 
bigger, then you do not have to zoom out as far to include 
both the old and new points. A third piece of the puzzle arises 
when we note that the "cost" of various pan and zoom opera-
tions must be specified formally before we can try to solve 
the shortest path question. While it seems intuitive that the 
cost of a pure pan should be linear in the distance panned, and 
the cost of a pure zoom should be logarithmic wiA change of 
scale, there would seem to be a puzzling free parameter relat-
ing these two, i.e., telling how much pan is worth how much 
zoom. 

Surprisingly, there turns out to be a very natural information 
metric on pan/zoom costs which fits these pieces together. It 
not only yields the linear pan and log zoom costs, but also 
defines the constant relating them and is sensitive to window 
size. The metric is motivated by a notion of visual informa-
tional complexity: the number of bits it would take to effi-
ciently transmit a movie of a window following the 
trajectory. 

Consider a digital movie made of a pan/zoom sequence over 
some 2D world. Successive frames differ from one another 
only slightly, so that a much more efficient encoding is possi-
ble. For example, if successive frames are related by a small 
pan operation, it is necessary only to transmit the bits corre-
sponding to the new pixels appearing at the leading edge of 
the panning window. The bits at the trailing edge are thrown 
away. The ID version is shown in Figure 9a. If the bit density 
is P (i.e., bits per centimeter of window real estate), then the 
number of bits to transmit a pan of size d is rfp. 

Similarly, consider when successive frames are related by a 
small pure zoom-in operation (Figure 9b), say where a win-
dow is going to magnify a portion covering only (w-d)/w of 
what it used to cover (where w is the window size). Then too, 
dp bits are involved. These are the bits thrown away at the 
edges of the window as the zoom-in narrows its scope. Since 
this new smaller area is to be shown magnified, i.e., with 
higher resolution, it is exactly this number of bits, d^, of high 
resolution information that must be transmitted to augment 
the lower resolution information that was already available. 

The actual calculation of information cost for zooms requires 
a little more effort, since the amount of information required 
to make a total zoom by a factor r depends on the number and 
size of the intermediate steps. For example, two discrete step 
zooms by a factor of 2 magnification require more bits than a 
single step zoom by a factor of 4. (Intuitively, this is because 
showing the intermediate step requires temporarily having 
some new high resolution information at the edges of the 
window that is then thrown away in the final scope of the 
zoomed-in window.) Thus the natural case to consider is the 
continuous Umit, where the step-size goes to zero. The result-
ing formula says that transmitting a zoom-in (or out) opera-
tion for a total magnification change of a factor r requires 
pwlog(r) bits. 

Thus the information metric, based on a notion of bits 
required to encode a movie efficiently, yields exactly what 
was promised: linear cost of pans (dP), log costs of zooms 
(Pvflog(r)), and a constant (w) relating them that is exactly 
the window size. Similar analyses give the costs for other ele-
mentary motions. For example, a zoom around any other 
point within the window (a zaww) always turns out to have 
the same cost as a pure (centered) zoom. Other arbitrary 
zoom-arounds are somewhat more complicated. 

(a) PAN: 

old window position ^ 

new window position 

(b) ZOOM: 

old window, w 

X 

d/2 
V 

new window, w-d 
' V 
d/2 

Figure 9. Information metric on pan and zoom operations 
on a ID world, (a) Shifting a window by d requires d^ 
new bits, (b) Zooming in by a factor of (w-d)/w, throws 
away d^ bits, which must be replaced with just that 
amount of diffuse, higher resolution information when 
the window is magn^ed and brought back to full reso-
lution. 
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From these components it is possible to compute the costs of 
arbitrary trajectories, and therefore in principle to find mini-
mal ones. Unfortunately, the truly optimal ones will have a 
complicated curved shape, and finding it is a complicated cal-
culus-of-variations problem. We have limited our work so far 
to finding the shortest paths within certain parameterized 
famiUes of trajectories, all of which are piecewise pure pans, 
pure zooms or pure zavvw's. We sketch typical members of 
the families on a space-scale diagram, pick parameterizations 
of them and apply simple calculus to get the minimal cases. 
There is not room here to go through these in detail, but we 
give an overview of the results. 

Before doing so, however, it should be mentioned that, 
despite all this formal work, the real interface issue of what 
constitutes a "good" pan/zoom trajectory is an empirical/cog-
nitive one. The goal here is to develop a candidate theory for 
suggesting trajectories, and possibly for modelling and 
understanding future empirical work. The suitability of the 
information-based approach followed here hinges on an 
implicit cognitive theory that humans watching a pan/zoom 
sequence have somehow to take in, i.e., encode or under-
stand, the sequence of views that is going by. They need to do 
this to interpret the meaning of specific things they are seeing, 
understand where they are moving to, how to get back, etc. It 
is assumed that, other things being equal, "short" movies are 
somehow easier, taking fewer cognitive resources (process-
ing, memory, etc.) than longer ones. It is also assumed that 
human viewers do not encode successive frames of the movie 
but that a small pan or small zoom can be encoded as such, 
with only the deltas, i.e., the new information, encoded. Thus 
to some approximation, movies with shorter encoded lengths 
will be better. (We are also at this point ignoring the content 
of the world, assuming that no special content-based encod-
ing is practical or at least that information density at all places 
and scales is sufficiently uniform that its encoding would not 
change the relative costs.) 

To get some empirical idea of whether this information-theo-
retic approach to "goodness" of pan-zoom trajectories 
matches human judgment, we implemented some simple test-
ing facilities. The testing interface allows us to animate 
between two specified points (and zooms) with various tra-
jectories, trajectories that were analyzed and programmed 
using space-scale diagrams. We did informal testing among a 
few people in our lab to see if there was an obvious prefer-
ence between trajectories and compared these to the theory. 

For large separations, pure pan is very bad. There is strong 
agreement between theory and subjects' experience. Theory 
says the information description of a pure pan movie should 
be exponentially longer than one using a substantial amount 
of zoom. Empirically, users universally disliked these big 
pans. They found it difficuh to maintain context as the anima-
tion flew across a large scene. Further, when the distance to 
be travelled was quite large and the animation was fast, it was 
hard to see what was happening; if the animation was too 
slow, it took too long to get there. 

At the other extreme, for small separations viewers preferred 
a short pure pan to strategies that zoomed out and in. It turns 
out that this is also predicted by the theory for the family 

piecewise pan/zoom/zaww trajectories we considered here. 
Depending on exactly which types of motions are allowed, 
the theory predicts that to traverse separations of less than 1 
to 3 window widths, the corresponding movie is information-
ally shorter if it is just a pan. 

Does the naively proposed navigation strategy ("zoom out 
until the starting and ending points are close, then pan in") 
ever arise in this analysis? At this high level of description, 
the answer is definitely "yes." The fine points, however, are 
more subtle. If only zavvvv's are allowed, the shortest path 
indeed involves zooming out until both are visible, then 
zooming in (Figure 10). For users this was quite a well-liked 

(a) (b) (c). 

Figure 10. The shortest zaww path between p faj and q 
zooms out till both are within the window (b), then 
zooms in (c). The corresponding views are shown 
below the diagram. 

trajectory. If pans are allowed, however, the information met-
ric disagrees slightly with the naive intuition. It says instead 
to stop the zoom just before both are in view, then make a pan 
of 1-3 screen separations (just as described for short pans), 
then finally zoom in. The information difference between this 
optimal strategy and the naive one is small, and our users 
similarly found small differences in the acceptability. It will 
be interesting to examine these variants more systematically. 

Our overall conclusion is that the information metric, based 
on analyses of space-scale diagrams, is quite a reasonable 
way to determine "good" pan/zoom trajectories. 

Showing semantic zooming 
Another whole class of uses for space-scale diagrams is for 
the representation of semantic zooming[lO]. In contrast to 
geometric zooming, where objects change only their size and 
not their shape when magnified, semantic zooming allows 
objects to change their appearance as the amount of real 
estate available to them changes. For example, an object 
could just appear as a point when small. As it grows, it could 
then in turn appear as a solid rectangle, then a labeled rectan-
gle, then a page of text, etc. 
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Figure 11 shows how geometric zooming and semantic 
zooming appear in a space-scale diagram. The object on the 
left, shown as an infinitely extending triangle, corresponds to 
a ID gray line segment, which just appears larger as one 
zooms in (upward: 1,2,3). On the right is an object that 
changes its appearance as one zooms in. If one zooms out too 
far (a), it is not visible. At some transition point in scale, it 
suddenly appears as a three segment dashed line (b), then as a 
solid line (c), and then when it would be bigger than the win-
dow (d), it disappears again. 

The importance of such a diagram is that it allow one to see 
several critical aspects of semantic objects that are not other-
wise easily seen. The transition points, i.e., when the object 
changes representation as a function of scale, is readily appar-
ent. Also the nature of the changing representations, what it 
looks like before and after the change, can be made clear. The 
diagram also allows one to compare the transition points and 
representations of the different objects inhabiting a multi-
scale world. 

We are exploring direct manipulation in space-scale diagrams 
as an interface for multi-scale authoring of semantically 
zoomable objects. For example, by grabbing and manipulat-
ing transition boundaries, one can change when an object will 
zoom semantically. Similarly, suites of objects can have their 
transitions coordinated by operations andogous to the snap, 
align, and distribute operators familiar to drawing programs, 
but applied in the space-scale representation. 

As another example of semantic zooming, we have also used 
space-scale diagrams to implement a "fractal grid." Since 
grids are useful for aiding authoring and navigation, we 
wanted to design one that worked at all scales - a kind of vir-
tual graph paper over the world, where an ever finer mesh of 
squares appears as you zoom in. We devised the implementa-

(d) 

(c) 

(b) 

Figure 11. Semantic Zooming. Bottom slices show views 
at different points. 

Figure 12. Fractal grid in ID. As the window moves up 
by a factor of 2 magnification, new gridpoints appear 
to subdivide the world appropriately at that scale. The 
view of the grid is the same in all five windows. 

tion by first designing the ID version using the space-scale 
diagram of Figure 12. This is the analog of a ruler where ever 
finer subdivisions appear, but by design here they appear only 
when you zoom in (move upward in the figure). There are 
nicely spaced gridpoints in the window at all five zooms of 
the figure. Without this fractal property, at some magnifica-
tion the grid points would disappear from most views. 

Warps and fisheye views 
Space-scale diagrams can also be used to produce many 
kinds of image warpings. We have characterized the space-
scale diagram as a stack of image snapshots at different 
zooms. So far in this paper, we have always taken each image 
as a horizontal slice through scale space. Now, instead imag-
ine taking a cut of arbitrary shape through scale space and 
projecting down to the u axis. Figure 13 shows a step-up-
step-down cut that produces a mapping with two levels of 
magnification and a sharp transition between them. Here, (a) 
shows the trajectory through scale space, (b) shows the result 
that would obtain if the cut was purely flat at the initial level, 
and (c) shows the warped result following. 

Different curves can produce many different kinds of map-
pings. For example. Figure 14 shows how we can create a 
fisheye view.* By taking a curved trajectory through scale-
space, we get a smooth distortion that is magnified in the cen-
ter and compressed in the periphery. Other cuts can create 
bifocal [1] and perspective wall [8]. 

For cuts as in Figure 13, which are piece-wise horizontal, the 
magnification of the mapping comes directly firom the height 
of the slice. When the cuts are curved and slanted, the geome-

was 
In fact exactly this strategy for creating 2D fisheye views 
is proposed years ago in [5], p 9,10. 
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(b) 

(c) 

1 2 3 4 5 6 7 8 9 
o oo-o-o-o o o - o o o-o-o o-o-o-o 

1 2 4 
o-o-o-o-

6 8 9 

Figure 13. Warp with two levels of magnification and 
an abrupt transition between them, (a) shows the 
trajectory through scale-space, (b) shows the 
unwarped view, and (c) shows the warped view 
(notice rays 3 and 7 don't appear). 

A: 
123 4 5 

- o -
6 789 
-0-0-CC3 

Figure 14. Fisheye view. 

try is more complicated, but the magnification can always be 
determined by looking at the projection as in Figure 14. 

CONCLUSION 

This paper introduces space-scale diagrams as a new tech-
nique for understanding multiscale interfaces. Their defining 
characteristic and principal virtue is that they represent scale 
explicitly. We showed how they can aid the analysis of pans 
and zooms because they take a temporal structure and turn it 

* Simple projection is only one way for such cuts to create 
views. For example if one t ^ e s the transformed version of 
these diagrams with cuts, one can use them directly as the mag-
nification functions of [6]. 

into a static one: a sequence of views becomes a curve in 
scale-space. This has already helped in the design of good 
pan/zoom trajectories for Pad++. We showed how the dia-
grams can help visualization of semantic zooming by show-
ing an o b j e c t in all i ts s c a l e - d e p e n d e n t v e r s i o n s 
simultaneously. We expect to use this as an interface for 
designing semantically zoomable objects. We also suggested 
that diagrams may be useful for examining other non-flat 
multiscale representation, such as fisheye views. 

Space-scale diagrams, therefore, are important for visualizing 
various problems of scale, for aiding formal analyses of those 
problems, and finally, for implementing various solutions to 
them. 
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