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ABSTRACT
Animations express a sense of process and continuity that is
difficult to convey through other techniques. Although
interfaces can often benefit from animation, User Interface
Management Systems (UIMSs) rarely provide the tools
necessary to easily support complex, state-dependent appli-
cation output, such as animations. Here we describe Player,
an interface component that facilitates sequencing these
animations. One difficulty of integrating animations into
interactive systems is that animation scripts typically only
work in very specific contexts. Care must be taken to estab-
lish the required context prior to executing an animation.
Player employs a precondition and postcondition-based
specification language, and automatically computes which
animation scripts should be invoked to establish the neces-
sary state. Player’s specification language has been
designed to make it easy to express the desired behavior of
animation controllers. Since planning can be a time-
consuming process inappropriate for interactive systems,
Player precompiles the plan-based specification into a state
machine that executes far more quickly. Serving as an
animation controller, Player hides animation script depen-
dencies from the application. Player has been incorporated
into the Persona UIMS, and is currently used in the Peedy
application.

KEYWORDS: Animation, planning, User Interface Manage-
ment Systems, UIMS, user interface components, 3D inter-
faces.

INTRODUCTION
With the advent of inexpensive graphics rendering hardware
and faster computers, interface animation will become
commonplace. One building block of many such interfaces
will be a User Interface Management System (UIMS)
component that controls the sequencing of animation
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actions. We have developed such a component, called
Player, that simplifies the task of coordinating these anima-
tions. Player supports a convenient plan-based specification
of animation actions, and compiles this specification into a
representation that can be executed efficiently at run time.

To better motivate the need for this capability in a UIMS,
consider the Persona UIMS currently being developed by
our group, and a prototype agent-based interface called
Peedy, built on Persona, and demonstrated at CHI ‘94 [1].
Peedy’s visual representation is that of a 3D animated
parrot. Peedy has a rich repertoire of animated bird-like and
human-like behaviors, and responds to spoken natural
language requests for musical selections. The Peedy appli-
cation is shown in a video clip accompanying electronic
distributions of this paper.

Figure 1a illustrates the slice of the Persona UIMS’s archi-
tecture that handles output. The application sends control
events to the animation controller. This controller interprets
the incoming events according to its current internal state,
informs the low level graphics system (called Reactor) what
animations to perform, and adjusts its own current internal
state accordingly.

For example, consider the path of actions when the user
asks Peedy “What do you have by Bonnie Raitt?” This is
illustrated in Figure 1b. First the application interprets the

FIGURE  1. Persona and Peedy. (a) architecture of the
output component of the Persona UIMS; (b) an
example of its use in the Peedy application.
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message, and sends an evSearch event to the animation
controller, to have Peedy search for the disc. The animation
controller knows that Peedy is in his “deep sleep” state, so it
sequentially invokes the wakeup, standup, and search
animations. It also changes Peedy’s current state (as repre-
sented in the animation controller) to standing, so that if
another evSearch event is received immediately, Peedy will
forego the wakeup and standup animations, and immedi-
ately perform a search.

One can view the animation controller as a state machine,
that interprets input events in the context of its current state,
to produce animation actions and enter a new state. Origi-
nally we specified the animation controller procedurally as a
state machine, but as new events, actions, and states were
added, the controller became unwieldy, and very difficult to
modify and debug. It became clear that we needed a differ-
ent manner of specifying the controller’s behavior. One of
the difficulties of specifying this behavior is that graphical
actions make sense only in limited contexts for either
semantic reasons (Peedy cannot sleep and search at the
same time) or animation considerations (the search script
was authored with the expectation that Peedy would be in a
standing position).

In traditional UIMSs, the programmer must specify all these
transitions, which can be a tedious and error-prone process.
The Player component of the Persona UIMS calculates
these transitions automatically, freeing the implementer
from part of the chore of constructing animated interfaces.
To accomplish this, Player relies on planning, a technique
traditionally used by the AI community to determine the
sequence of operators necessary to get from an initial start
state to a goal state. In our system, the operators that affect
system state are animation scripts, and the programmer
declares preconditions and postconditions that explain how
each of the scripts depend on and modify state. One of the
major problems with planning algorithms is that they are
computationally intensive. Animation controllers, however,
have to operate in real time. Our solution is to precompile
the conveniently specified planning notation into an effi-
cient to execute state machine.

There are several contributions of this work. We describe a
UIMS component that isolates animation dependencies
from the application, and identify a valuable use of planning
technology within this component. To satisfy the real-time
constraints of a user interface, we present an algorithm suit-
able for converting a plan-based specification into a state
machine. Unlike traditional AI planning techniques, this
algorithm must find transitions to a goal from any possible
state, not just a single start state. We describe a technique
for doing this efficiently, exploiting coherence in the search
space. Our language for specifying animation controllers is
described in this paper. It includes provisions for handling
goal-oriented behaviors (such as speaking), as well as
autonomous actions (such as snoring). Our system employs
a novel state hierarchy to simplify the task of specifying
preconditions and postconditions. A final contribution of
this work is an implementation within the Persona UIMS,

and its use within the Peedy application, as a proof of
concept of this research.

The next section describes other research that shares some
of the same goals or uses related techniques. Following that,
we present our language for specifying the behavior of the
animation controller. The subsequent section explains
Player’s planning algorithm. Additional implementation
issues are described following this, and then the paper
presents our conclusions and possible future directions.

RELATED WORK
One way to discuss UIMSs is in terms of the Seeheim
model [14], presented in Figure 2. The user interacts
directly with the presentation component, which passes
interaction events on to the dialogue control. The dialogue
control component then determines which application
services should be requested through the application inter-
face model. To produce output, the application interface
model can drive the presentation component to display
graphics and play sound. Alternatively, it can send events to
the dialogue control, which in turn can drive the presenta-
tion. Note that the Persona output architecture of Figure 1a
can be mapped directly to the Seeheim model of Figure 2,
with the animation controller serving as the dialogue
control, and Reactor handling presentation services.

UIMSs have employed several different techniques for
dialogue control. Green compares the state machine, gram-
mar, and event-based approaches in [9]. However, these
techniques have focused on interpreting sequences of input,
producing graphics only incidentally in the process. Olsen
writes, “The notion of dialog control having an influence
over the presentation of application data is signified in the
diagram [Figure 2] by the small circle around the path from
the application interface to the presentation. This data
display facet of the model has not been fully realized in any
UIMS” [14]. It is this facet that Player attempts to address.

The UIDE system also relies on preconditions and postcon-
ditions for dialogue control [5] [8], using them to determine
when to enable application actions, and to support interface
transformations. However, UIDE does not use planning to
automatically sequence visual presentations. An exception
to this is Sukaviriya’s Cartoonist system, that extends the

FIGURE  2. The Seeheim UIMS model (adapted from
[14]).

Application
Interface

Model

Dialogue
Control Presentation

User
2 of 8



UIDE model to automatically provide context-sensitive help
animations [16]. UIDE also uses planning to generate
context-sensitive textual help [4]. However, the UIDE work
does not use planning to sequence general animation
presentations, and does not employ precompilation tech-
niques to maintain real-time constraints.

Many researchers have addressed other aspects of incorpo-
rating animation into the interface. For example, PARC’s
Cognitive Co-processor deals with timing issues [2].
Several interfaces incorporate traditional animation effects
[3] [10]. Virtual reality research frequently coordinates
simulation and novel interface devices with animation [13].

Researchers in artificial intelligence have studied planning
issues extensively, and their work is summarized in several
surveys [7] [6]. The planning technique described here is a
simple variant of goal regression, and is not intended to
contribute to the planning literature. However, we do
believe that this paper presents a novel application for plan-
ning technology. Our approach differs from traditional plan-
ning by precompiling all necessary plans prior to execution.
Schoppers also precompiles plans, though his methods
differ somewhat from ours and he applies his work to the
robotics domain [15].

Others have applied planning to computer animation. For
example, Lengyel uses graphics hardware to accelerate path
planning, and then animates his results [12]. Koga uses
special purpose planning techniques to compute grasping
animations [11]. None of this work exploits precompilation,
nor is integrated in a UIMS.

THE LANGUAGE
This section describes the language used to express the
desired run-time behavior of the animation controller.
Presenting this language here serves two purposes. The
language helps us communicate the capabilities of the
controller. Also the language has been refined over time to
make behavior specification easier, so our design choices
should be of general interest. 

There are five components to the language. Recall that the
animation controller accepts high-level animation events
and outputs animations scripts. So the language must
contain both event and script definitions. The language also
contains constructs for defining state variables that repre-
sent animation state, autonomous actions called autoscripts,
and a state class hierarchy that makes defining precondi-
tions easier. Each of these language constructs will now be
described in turn.

State variables
State variables represent those components of the animation
configuration that may need to be considered when deter-
mining whether a script can be invoked. State variable defi-
nitions take on the form:

(state-variable name type initial-value <values>)

All expressions in the language are LISP s-expressions (thus
the parentheses), and bracketed values represent optional
parameters. The first three arguments indicate the name,
type, and initial value of the variable. State variables can be
of type boolean, integer, float, or string. The last argument is
an optional list of possible values for the variable. This can
turn potentially infinitely-valued types, such as strings, into
types that can take on a limited set of values (enumeration
types). Examples of state-variable definitions are:

(state-variable ‘holding-note ‘boolean false)
(state-variable ‘posture ‘string ‘stand ‘(fly stand sit))
The first definition creates a variable called holding-note,
which is a boolean and has an initial value of false. The
second creates a variable called posture, which is a string
that is initialized to stand. It can take on only three values
(fly, stand, and sit), and this should be expressed to the
system because in some cases the system can reason about
the value of the variable by knowing what it is not.

There is a special class of state variable, called a time vari-
able. Time variables are set to the last time one of a group of
events was processed.

Autoscripts
Autoscripts make it easy to define autonomous actions,
which are actions that occur typically continuously when
the animation system is in a particular set of states. Exam-
ples of this would be having an animated character snore
when it is asleep, or swing its legs when it is bored. Auto-
scripts are procedures that are executed whenever a state
variable takes on a particular value. For example, to have
the snore procedure called when a variable called alert is set
to sleep, we write the following:

(autoscript ‘alert ‘sleep ‘(snore))
The third argument is a list, because we may want to associ-
ate multiple autonomous actions with a given state variable
value. Note that though we typically bind autoscripts to a
single value of a state variable, we could have an autoscript
run whenever an arbitrary logical expression of state vari-
ables is true, by binding the autoscript to multiple variable
values, and evaluating whether the expression is true within
the autoscript itself before proceeding with the action.

Event definitions
For every event that might be received by the animation
controller, an event definition specifies at a high-level what
needs to be accomplished and the desired timing. Event
definitions take on the form:

(event name <directives>*)
The term <directives>* represents a diverse set of statements
that can appear in any number and combination. The :state
directive tells the controller to perform the sequence of
operations necessary to achieve a particular state. The single
argument to this directive is a logical expression of state
variables, permitting conjunction, disjunction, and negation.
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This high-level specification declares the desired results,
not how to attain these results. In contrast, the :op directive
instructs the system to perform the operation specified as its
only argument. The animation controller may not be in a
state allowing the desired operation to be executed. In this
case, the controller will initially perform other operations
necessary to attain this state, and then execute the specified
operation. 

For example, the evBadSpeech event is received by Player
whenever our animated agent cannot recognize an utterance
with sufficient confidence. Its effect is to have Peedy raise
his wing to his ear, and say “Huh?” This event definition is
as follows:

(event ‘evBadSpeech :state ‘wing-at-ear :op ‘huh)
When an evBadSpeech event comes over the wire, the
controller dispatches animations so that the expression
wing-at-ear (a single state variable) is true. It then makes
sure that the preconditions of the huh operator are satisfied,
and then executes it. Note that wing-at-ear could have been
defined as a precondition for the huh operator, and then the
:state directive could have been omitted above. However,
we chose to specify the behavior this way, because we
might want huh to be executed in some cases when wing-at-
ear is false.

By default, the directives are achieved sequentially in time.
Above, wing-at-ear is made to be true, and immediately
afterwards huh is executed. The :label and :time directives
allow us to override this behavior, and define more flexible
sequencing. The :label directive assigns a name to the point
in time at which it appears in the directives sequence. The
:time directive adjusts the current time in one of these
sequences. An example follows:

(event ‘evThanks
:op ‘bow
:label ‘a
:time ‘(+ (label a) 3)
:op ‘camgoodbye
:time ‘(+ (label a) 5)
:op ‘sit)

As defined above, when the animation controller receives
an evThanks event, Peedy will bow. The label a represents
the time immediately after the bow due to its position in the
sequence. The first :time directive adjusts the scheduling
clock to 3 seconds after the bow completes, making this the
time that the camgoodbye operator executes, moving the
camera to the “goodbye” position. The second :time direc-
tive sets the scheduling clock to 5 seconds after the bow,
and then Peedy sits. If Peedy must perform an initial
sequence of actions to satisfy the sit precondition, these will
begin at this time, and the sit operation will occur later. Note
that these two timing directives allow operations to be
scheduled in parallel or sequentially. 

Four additional directives are used, albeit less frequently.
The :if statement allows a block of other directives to be
executed only if a logical expression is true. This allows us,
for example, to branch and select very different animation

goals based on the current state. Occasionally it is easier to
specify a set of actions in terms of a state machine, rather
than as a plan. The :add and :sub directives change the
values of state variables, and in conjunction with the :if
directive, allow small state machines to be incorporated in
the controller code. The :code directive allows arbitrary
C++ code to be embedded in the controller program.

Operator definitions
Scripts are the operators that act on our graphical scene,
often changing the scene’s state in the process. Operator
definitions are of the following form:

(op opname <:script scriptname>
<:precond precondition>
<:add postcondition>
<:sub postcondition>
<:must-ask boolean>)

This creates an operator named opname associated with the
script called scriptname. The operator can only execute
when the specified precondition is true, and the postcondi-
tion is typically specified relative to this precondition using
:add or :sub. Since operators typically change only a few
aspects of the state, relative specification is usually easiest.
The :must-ask directive defaults to false, indicating that the
planner is free to use the operator during the planning
process. When :must-ask is true, the operator will only be
used if explicitly requested in the :op directive of an event
definition. An example script definition appears below:

(op ‘search
:script ‘stream
:precond ‘((not holding-note) and ...)
:add ‘holding-note)

This defines an operator named search, associated with a
script called stream. The precondition is a complex logical
expression that the state class hierarchy, described in the
next section, helps to simplify. The part shown here says
that Peedy cannot be holding a note before executing a
search. After executing the search, all of the preconditions
will still hold, except holding-note will be true.

Though we have so far referred to operators and scripts
interchangeably, there are really several different types of
operators in Player. Operators can be static scripts, dynamic
scripts (procedures that execute scripts), or arbitrary code.
In the latter two cases, the :director or :code directives
replace the :script directive.

We can also define macro-operators, which are sequences of
operators that together modify the system state. As an
example, the hard-wake macro-operator appears below:

(macro-op ‘hard-wake
:precond ‘(alert.snore and ...)
:add ‘alert.awake
:seq ‘(:op snort :op exhale :op focus))

The above expression defines a macro-operator that can
only be executed when, among other things, the value of
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alert is snore. Here, the ‘.’ (“dot”) comparator denotes
equality. Afterwards, the value of alert will be awake. The
effect of invoking this macro-operator is equivalent to
executing the snort, exhale, and focus operators in
sequence, making Peedy snort, exhale, then focus at the
camera in transitioning from a snoring sleep to wakefulness
in our application. The :time and :label directives can also
appear in a macro definition to control the relative start
times of the operators, however, our system requires that
care be taken to avoid scheduling interfering operators
concurrently.

State class hierarchy
In the last two examples, the preconditions were too
complex to fit on a single line, so parts were omitted. Writ-
ing preconditions can be a slow, tedious process, especially
in the presence of many interdependent state variables. To
simplify the task, we allow programmers to create a state
class hierarchy to be used in specifying preconditions. For
example the complete precondition for the search operator
defined earlier is:

((not holding-note) and alert.awake and
posture.stand and (not wing-to-ear) and
(not wearing-phones))

Since this precondition is shared by five different operators,
we defined a state class (called standing-noteless) that
represents the expression, and is used as the precondition
for these operators. This makes the initial specification
easier, but also subsequent modification, since changes can
be made in a single place.

Class definitions take the following form:

(state-class classname states)

State class hierarchies support multiple inheritance. Here,
states is a list of state variable expressions or previously
defined state classes. A state-class typically inherits from all
of these states, and in the case of conflicts, the latter states
take precedence. State hierarchies can be arbitrarily deep.
The stand-noteless class is not actually defined as the
complex expression presented earlier, but as:

(state-class stand-noteless
‘(stand-op (not holding-note)))

In other words, the stand-noteless class inherits from
another class called stand-op. Figure 3 shows most of the
state class hierarchy used in the Peedy system, with extra
detail given for the descendents of ack-op. It shows the
expressions that each class adds to those inherited from its
parents.

We have found that the semantics of an application and its
animations tend to reveal a natural class hierarchy. For
example, for our animated character to respond with an
action, he must be awake, and for him to acknowledge the
user with an action, he must not have his wing to his ear as
if he could not hear, and cannot be wearing headphones.
These three requirements comprise the class ack-op (for

acknowledgment operation), from which most of our opera-
tions inherit, at least indirectly.

ALGORITHM
Typical planning algorithms take a start state, goal state, and
set of operators, compute for a while, then return a sequence
of operators that transforms the start into the goal. Since our
animated interface must exhibit real-time performance,
planning at run-time is not an option. Instead, Player pre-
compiles the plan-based specification into a state machine
that has much better performance. This places an unusual
requirement on the planning algorithm—it must find paths
from any state in which the system might be to every speci-
fied goal state.

A naive approach might apply a conventional planner to
each of these states and goals independently. Fortunately,
there is coherence in the problem space that a simple varia-
tion of a traditional planning algorithm allows us to exploit.
Our planning algorithm appears in Figure 4, and like other
goal regression planners, works by beginning with goals
and applying operator inverses until finding the desired start
state (or in our case, start states). The algorithm is a breadth-
first planner, and is guaranteed to find the shortest sequence
of operators that takes any possible start state to a desired
goal.

The basic algorithm consists of two procedures: Main and
an auxiliary routine called SubPlan. Main begins by iterat-
ing over the goals specified in the event definitions (line 2).
These include each argument to the :state directives, and the
preconditions of the operators specified by the :op direc-
tives. Often the same goal appears in multiple event defini-
tions, so we remove duplicates after putting the goals in a
canonical form that makes identifying these duplicates easy.

Next, the algorithm sets up two queues, called ResultQ and
WorkingQ. These queues both hold plans, which are pairs
whose first element is a state, and whose second element is

sleeping
...

sit-op
posture.sit

(not holding-note)

stand-noted
holding-note

stand-noteless
(not holding-note)

stand-op
posture.stand

ack-op
alert.awake

(not wearing-phones)
(not wing-to-ear)

flying
...

pd-op

FIGURE  3. The state class hierarchy used in the Peedy
system. Class names are in the larger font.
Classes inherit state components from their
ancestors.
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a sequence of operators that transform this state to the
current goal. ResultQ will hold all the plans (ordered from
shortest to longest) found for a given goal, and WorkingQ
holds those plans that perhaps can still be expanded to form
other plans. Both of these queues are initialized to contain
the empty plan, representing the fact that when the start
state is the goal state, no operators need be executed (lines
3-6).

The SubPlan procedure performs regression-based plan-
ning, beginning with the empty plan, sequentially adding
operators to it in a breadth-first manner. It takes as argu-
ments the two queues and the parameter SolvedStates, an
expression representing the disjunction of the start states for
which we have already found solutions. WorkingQ repre-
sents the current positions in the search. While there are still
plans in WorkingQ, we remove the first element, call it
RootPlan, call this plan’s start state RootState, and its opera-
tor sequence RootOps (lines 12-15). It is from these roots
that we try to build the next plans. If the length of RootOps
is greater than a predefined MAXDEPTH constant, then we
truncate the search (line 16). This guarantees that the algo-
rithm will terminate when presented with an infinite search
space.

The procedure now considers, in sequence, concatenating
each operator onto the front of RootOps (line 17). Actually,
it need only consider those operators that can change Root-
State in some way. If the operator does not change Root-
State,  then we have already found a plan (namely
RootPlan), that transforms RootState to the goal state in
fewer operations. We need not consider operators with the
same preconditions as postconditions. Also, operators
whose :must-ask flag is true (see the Language section)
need not be considered, since they cannot participate in the
planning process.

For each of the operators that we need to consider, we
ensure that its postconditions might possibly be true in
RootState (line 18). If so, we calculate the effect of applying
the inverse of the operator to RootState, and call this
NewState (line 19). If NewState is not subsumed by Solved-
States, then we need to build a plan for it (line 20). First, we
construct the operation sequence that converts NewState to
the goal state, by concatenating the new operation onto the
front of RootOps to form NewOps (line 21). Next, we
enqueue the plan represented by NewState and NewOps
onto the ends of ResultQ and WorkingQ (lines 22-23).
Finally, we express that we have now found a solution for
NewState by setting SolvedStates to be the disjunction of
the previous SolvedStates and NewState (line 24).

When SubPlan returns, ResultQ contains plans that take any
possible state to the goal state (except those whose opera-
tion sequences would be longer than MAXDEPTH). Back
in the Main procedure, these plans are recorded for this
particular goal (line 7), and then Main continues to solve for
other goals.

IMPLEMENTATION
The next step, after the planning algorithm finishes, is to
build the actual state machine. Our system generates C++
code for the state machine, which is compiled and linked
together with the Reactor animation library and various
support routines. The heart of the state machine has already
been calculated by the planner. Recall that plans are (state
conditional, action sequence) pairs, which the planner
computed for every goal state. These plans can readily be
converted to if-then-else blocks, which are encapsulated
into a procedure for their corresponding goal. These proce-
dures also return a value indicating whether or not the goal
state can be achieved. We refer to these procedures as state-
achieving procedures, since they convert the existing state
to a desired state.

Next, the system outputs operator-execution procedures for
every operator referenced in event definitions. These proce-
dures first call a state-achieving procedure, attempting to
establish their precondition. If successful, the operator-
execution procedures execute the operator and adjust state
variables to reflect the postcondition. When multiple opera-
tors share the same precondition, their operator-execution
procedures will call the same state-achieving procedures. 

Procedure Main ():
for each goal state, G, specified in an event definition do

WorkingQ := MakeEmptyQueue()
ResultQ := MakeEmptyQueue()
Enqueue([G, NULL], ResultQ)
Enqueue([G, NULL], WorkingQ)
SubPlan(WorkingQ, G, ResultQ)
RecordPlan(G, ResultQ)

end for
end procedure

Procedure SubPlan(WorkingQ, SolvedStates, ResultQ):
while (NotEmpty(WorkingQ)) do

RootPlan := Pop(WorkingQ)
RootState := First(RootPlan)
RootOps := Second(RootPlan)
if (Length(RootOps) >= MAXDEPTH) exit loop
for each state transforming operator O do

if (not(RootState => not(Postconditions(O))) do
NewState := TransformState(RootState, O)
if (not (NewState => SolvedStates)) do

NewOps := Concatenate(O, RootOps)
Enqueue([NewState, NewOps], ResultQ)
Enqueue([NewState, NewOps], WorkingQ)
SolvedStates := SolvedStates OR NewState

end if
end if

end for
end while

end procedure

1
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FIGURE  4. Regression-based planner, which finds plans
from all possible states, leading to specified
goals. The algorithm is explained in the text.
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Finally, we generate event procedures for every event defi-
nition. These procedures, called whenever a new event is
received from the application interface, invoke state-achiev-
ing procedures for each :state directive, and operator-execu-
tion procedures for each :op  directive in the event
definition. The :time directive produces code that manipu-
lates a global variable, used as the start time for operator
dispatch. The :label directive generates code to store the
current value of this variable in an array, alongside other
saved time values.

The planner and ancillary code for producing the state
machine are implemented in Allegro Common Lisp, and run
under Microsoft Windows NT. Our animation controller
specification for the Peedy demo contains 7 state variables
(including 1 time variable), 5 autoscripts, 43 operators, 9
state classes, and 35 event definitions. The planner had to
solve for 13 unique goals, and the plans tended to be short
(all were 5 operators or less). The system took about 4
seconds to generate a state machine from this controller
specification on a 90 MHz Pentium.

It is important to note that in our Peedy application, not all
animation is scheduled via planning. We have found that
low-level animation actions, such as flying or blinking, are
conveniently implemented as small procedural entities or
state machines that are invoked by the higher-level anima-
tion planner. These state machines can be activated through
autoscripts and the :director directive, and they can maintain
their own internal state, or reference and modify the anima-
tion controller’s state variables at run-time. As mentioned
earlier, state machines can also be embedded into the anima-
tion controller using the event definition’s :if directive. Our
experience suggests that planning-based specification
should not entirely replace procedurally based specification.
The two techniques can best be used together.

CONCLUSIONS
Animation is of increasing interest to people building user
interfaces, and tools must be created to facilitate incorporat-
ing animation in the interface. Animation actions or scripts
often have strict dependencies on the state of the scene, so
one of these tools should be concerned with tracking these
dependencies and guaranteeing that they are satisfied. We
have built such a tool, called Player, that uses a precondition
and postcondition based specification to encode these
dependencies, and automatically determine the sequence of
animation actions that must be executed when a high-level
animation event is received.

Effectively, this raises the level of the protocol used by the
application interface to put graphics on the screen. On the
input side, traditional UIMSs rely on a dialogue control
subsystem to mediate between low-level input events from
the presentation component and higher-level application
services. However, on the output side, the application inter-
face typically controls the screen state directly through low-
level calls to the presentation interface. For complex presen-
tations, such as animations, this low-level output dialogue is

inadequate, since it requires that the application concern
itself with the detailed requirements of the animation
scripts. The animation controller described here raises the
level of the output protocol, hiding presentation details from
the application, by serving as an output dialogue control
component. By acting as a dialogue control for output,
Player establishes a link from the dialogue component to the
presentation component of the Seeheim model, which
though called for by the model, is typically ignored by
UIMSs.

Initially we implemented an animation controller specified
entirely as a state machine, but as the controller grew, the
state machine became difficult to maintain and enhance.
The plan-based specification described here has proven
easier to work with, in part because the system automati-
cally calculates necessary transitions between animation
states. Player has been incorporated within the Persona
UIMS, and is employed by the Peedy application. In build-
ing Player, we made a number of design decisions to
simplify specifying the animation. We have found the need
to incorporate autonomous actions, as well as goal-directed
behaviors. A state class hierarchy has simplified the process
of specifying operator preconditions. In event definitions,
we have found it useful to provide directives for both estab-
lishing new states, and invoking particular operators.
Timing directives provide necessary control over the over-
lap and spacing of animation actions. It has proven conve-
nient to allow small state machines and procedures to be
embedded in the plan-based specification, providing a
greater degree of expressivity within the easily-specified
plan-based framework.

To provide real-time interaction, particularly as planning
time increases, we believe it necessary to precompile the
plan-based behavior specification into a state machine. This
requires an algorithm that computes plans from all possible
start states to all goal states expressed in event definitions.
The paper describes such an algorithm, and the process for
converting the resulting plans into a state machine. We have
been happy with both the ease of specifying animation
control, and the performance of this approach, for control-
lers of the complexity described earlier.

Although we have referred to Player as an animation
controller, it truly can be applied to a wide range of presen-
tation media. In the Peedy application, Player controls the
sequencing of several media types, including animation,
sound, and text. It could also be used to sequence static
graphics, and general multimedia systems could benefit
from this technology.

FUTURE WORK
This work suggests a number of important topics for subse-
quent research. Planning algorithms tend not to scale well,
and planning research has investigated ways of dealing with
this problem. We would like to determine the realistic maxi-
mum specification size and state space complexity that can
be handled by our approach, and explore acceleration tech-
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niques that others have developed for traditional planning
that might be also applicable to our plan precompilation
method.

We have not adequately dealt with the problem of animation
parallelism across events. In the current system, people can
specify that two animation actions dispatched by a single
event definition should execute in parallel, but they cannot
indicate how two parallel event executions should affect
each other. For example, if the system receives two events
in rapid succession, one that requires Peedy to fly to a given
location, and another requiring him to sit, there are several
ways to interpret this sequence. The actions can be inter-
preted sequentially, allowing Peedy to sit only after he
reaches his destination. The second action might preempt
the first, making Peedy start to fly, and then sit instead.
Alternatively the first action might override the second,
circumventing the sit operation entirely. The actions could
also be interleaved, with the character starting his flight,
deciding to sit instead, and then reconsidering and complet-
ing his flight. A more complete animation controller would
allow these alternatives to be expressed. Currently our
application interface never sends conflicting events to
Player simultaneously, however this should be allowed.

Several software engineering issues should be considered.
We have no simple mechanism for automatically duplicat-
ing the name space of event, operator, and state variable
definitions, to allow multiple identical agents to be
controlled in the same scene. It would be helpful to have
graphical tools for debugging and performing regression
testing on plan specifications. We would like to build an
animation authoring environment in which planning is
performed dynamically during the development cycle,
compiling plans only after the interface is debugged.

Projects are currently under way to add collision detection,
inverse kinematics, and dynamics into our graphical envi-
ronment. We hope to make our animation controller work
seamlessly with these techniques. In addition, we would like
to explore more sophisticated planning techniques, includ-
ing temporal planning.
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