
Next Cache Line and Set Prediction

Brad Calder and Dirk Grunwald

Department of Computer Science,
Campus Box 430, University of Colorado,

Boulder, CO 80309-0430 USA
{calder,gmnwald} @cs.colorado.edu

Abstract

Accurate instruction fetch and branch prediction is increasingly
important on today’s wide-issue architectures. Fetch prediction is

the process of determining the next instruction to request from the

memory subsystem. Branch prediction is the process of predicting

the likely out-come of branch instructions. Several researchers have

proposed very effective fetch and branch prediction mechanisms

including branch target buffers (BTB) that store the target addresses

of taken branches. An alternative approach fetches the instruction

following a branch by using an index into the cache instead of a
branch target address. We call such an index a next cache line and
set (NLS) predictor. A NLS predictor is a pointer into the instruction
cache, indicating the target instruction of a branch.

In this paper we examine the use of NLS predictors for effi-

cient and accurate fetch and branch prediction. Previous studies
associated each NLS predictor with a cache line and provided only

one-bit conditional branch predictors. Our study examines the use
of NLS predictors with highly accurate two-level correlated con-

ditional branch architectures. We examine the performance of de-

coupling the NLS predictors from the cache line and storing them

in a separate tag-less memory buffer. Our results show that the

decoupled architecture performs better than associating the NLS

predictors with the cache line, that the NLS architecture benefits
from reduced cache miss rates, and it is particularly effective for
programs containing many branches. We also provide an in-depth
comparison between the NLS and BTB architectures, showing that
the NLS architecture is a competitive alternative to the BTB design.

Keywords: Instruction fetch prediction, Branch prediction,

Branch target buffers

1 Introduction

Modem superscalar processor designs are extremely sensitive to
control flow changes. Changes in control flow, be they conditional

or unconditional branches, director indirect function calls, or returns

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
ISCA ’95, Santa Margherita Ligure Italy
@ 1995 ACM 0-89791 -698 -0/95/0006 ...$3.50

are not detected until those instructions are decoded. The target ad-
dresses for conditional, unconditional branches, and procedure calls
are typically not calculated until the instruction is decoded. To keep
the pipeline fully utilized, processors typically fetch the address

following the most recent address. If the decodecl instruction is a

break in control flow, the previously fetched instruction can not be

used, and a new instruction must be fetched after the target address
is calculated, introducing a pipeline bubble or unused pipeline step.

This is called an instruction misfetch penalty, and is caused by wait-

ing to identify the instruction as a branch and to ca![culate the target

address.

The final destination for conditional branches, indirect function
calls and returns are typically not available until a IIater stage of the
pipeline. The processor may elect to fetch and decode instructions

on the assumption that the eventual branch target can be accurately
predicted. If the processor mispredicts the branch destination, in-

structions fetched from the incorrect instruction stream must be dis-

carded, leading to several pipeline bubbles. This is called a branch

mispredict penalty. In practice, pipeline stalls due to mispredicted
breaks in control flow degrade a programs perfomlance more than

the misfetch penalty,

As processors issue more instructions concurrently, these penal-
ties increase, and it is more likely that a branch will occur as more

instructions are fetched per cycle, decreasing the likely-hood that
the fall-through instruction will be executed. A branch target buffer
(BTB) is one mechanism for efficiently predicting the next instruc-
tion fetch when a branch is encountered. In this paper we examine
an alternative to the BTB called next cache line ami set (NLS) pre-

diction. A NLS predictor is a pointer into the instruction cache
indicating the target instruction of a taken branch. Johnson [4]

proposed a similar design using cache indices to predict the next in-

struction fetch. We propose an alternate organization that improves
fetch prediction accuracy.

In this paper we examine two varieties of the NLS architec-
ture. The NLS-cache is similar to the branch architecture described

by Johnson, where each NLS predictor is associated with a cache
line. The NLS-table uses NLS predictors stored in a separate di-
rect mapped tag-less memory buffer, We also examine the effects
of combining the NLS predictors with modem two-level correlated
branch prediction architectures. Our results show (that the NLS ar-
chitecture’s performance improves as the instruction cache miss rate

is lowered, and that the NLS architecture is particularly effective
for programs with many branches.

In $2, we describe prior branch prediction work. In ~3 we

describe an efficient BTB architecture and in 34 we describe the
NLS architecture. We use trace-driven simulation to compare the

performance of these two architectures. Section 5 describes the

287

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223982.224439&domain=pdf&date_stamp=1995-05-01


programs we traced and how we analyzed them. In $6, we describe

the NLS and BTB results and compare our NLS architecture to the

cache index architecture proposed by Johnson. In $7, we provide a

detailed performance comparison of the NLS and BTB architectures

and we summarize our findings in $8.

2 Prior Branch and Fetch Prediction Research

This section briefly surveys prior work on branch prediction tech-
niques used in this paper. Branch target buffers (BTB) have been
used as a mechanism for branch and instruction fetch prediction,

effectively predicting the behavior of a branch [1, 6,9, 13, 15,21].
The Intel Pentium is an example of a modern architecture using

BTBs -it has a 256-entry BTB organized as a four-way associative

cache. Only branches that are ‘taken’ are entered into the BTB. If

a branch address appears in the BTB and the branch is predicted as

taken, the stored address is used to fetch futnre instructions, oth-

erwise the fall-through address is used. For each BTB entry, the

Pentium uses a two-bit saturating counter to predict the direction of

a conditional branch [6]. In this BTB architecture, the branch pre-
diction information (the two-bit counter), is associated or coupled

with the BTB entry. Thus, the dynamic prediction can only be used
for branches in the BTB, and branches that miss in the BTB must

use less accurate static prediction.
An alternative BTB architecture is the decoupled design, where

the branch prediction information is not associated with the BTB
and is used for all conditional branches, including those not recorded
in the BTB. In an earlier study [2], we found that decoupled designs

performed better than coupled designs. This allows conditional
branches that do not hit in the BTB to use dynamic prediction. The

PowerPC 604 is an example of an architecture using a decoupled
design [16]. The PowerPC 604 has a 64-entry fully associative BTB
that holds the target address of the most recently taken branches,
and uses a separate512 entry pattern history table (PHT) to predict

the direction for conditional branches.
There are several different PHT variations. Pan et al. [12] and

Yeh and Patt [20, 22] investigated branch-correlation or two-level

branch prediction mechanisms. Although there are a number of

variants, these mechanisms generally combine the history of several

recent branches to predict the outcome of a branch. The simplest

example is the degenerate method of Pan et al. [ 12], When using a 2k

entry table, the processor maintains a k-bit shift register (the global
history register) that records the outcome of previous branches (a
taken branch is encoded as a 1, and a not-taken branch as a O).
The shift register is used as an index into the PHT, much as the

program counter is used for a direct-mapped PHT. This provides
contextual information and correlation about particular patterns of
branches. Recently, McFarling [8] showed that combining branch

history with the branch’s address was more effective. His method

used the exclusive-or of the global history register and the branch
address as the index into the PHT.

The NLS and BTB architectures we study in this paper use

a decoupled design with a separate PHT to predict the direction
of conditional branches. For both of the architectures, we use
McFarling’s form of the two-level PHT [8]. In the next two sections
we first describe the BTB architecture and then our alternative NLS
architecture.

3 A BTB-based Instruction Fetch Architecture

Figure 1 is a schematic representation of the decoupled BTB and

PHT branch prediction and instruction fetch architecture we simu-

I‘T-3‘7
Instmctm

Fetch
~ Address
-2
b
2
0
.-
:

Instruction

Fetch Si=
E Brunch Turxet.
~ A!@

~ Branch T

$ Address Ta
Top Of Stack

Target Address

2 Add

8
x
a
g Select Next
u Fetch MUX

Figure 1: A schematic representation of a coupled BTB branch
prediction architecture using two-level correlated branch prediction

for conditional branches and a return stack for return instructions.

lated. In Figure 1 the next instruction fetch address is concurrently

offered to: the instruction cache, the BTB, and the PHT. The ad-

dress is also used to compute the fall-through instruction’s address,

A 32-entry return address stack [5] predicts return instructions, and
conditional branches are predicted using the pattern history table

organization described by McFarling [8]. This is the degenerate
scheme of Pan et al [12], where we XOR the global history reg-
ister with the program counter and use this to index into a 4096
entry (1 KB yte) PHT. In this model, we store only taken branches in
the BTB, since previous studies have shown this to be more effec-
tive [2, 13]. If a branch is not taken while it is in the BTB, we leave
the branch (target address) in the BTB until it is removed due to

the LRU replacement policy, since we might need the taken target

address again in the near future. In this architecture, the BTB’s
main purpose is to provide the taken target address and the branch

type.

4 Next Cache Lke and Set Prediction Architecture

The NLS architecture is similar to the BTB architecture and is illus-

trated in Figure 2. The difference between these two architectures
is the NLS architecture is a tagless table providing a pointer into
the instruction cache to the next instruction to execute rather than
the target address, as in the BTB. Like the BTB, the main purpose

of the NLS architecture is to eliminate misfetch penalties by pro-
viding a pointer to the cache line and instmction that is the target

of a branch. This allows the next instruction to be correctly fetched
from the instruction cache while the branch instruction is decoded

and the target address is calculated, The NLS predictor also predicts
indirect jumps and provides the branch type.

As shown in Figure 2 there are three predicted addresses avail-
able for the next instruction fetch. These are the NLS predictor,
the fall-through line (previous predicted line + fetch size), and the
top of the return stack. Each NLS predictor contains the following
fields:

Npe Field: The following table shows the possible prediction
sources represented by the NLS type field, l%e type field is

288



—

1

IfE-f-l II [ Top Of Stack I

W
I

Select Next

Fetch

I
1

Nexthtruciron

Fetch bar

Figure 2: A schematic representation of the NLS-table architecture.

used to determine the proper prediction mechanism, shown
in Figure 2, to use when fetching the next instruction. Un-
used NLS entries have “00” stored in the type field indicating
the entry is invalid.l

Branch Type Prediction Source
o 0 Invatid Entry
o 1 Return Instruction Return Stack
1 0 Conditional Branch NLS Entry,

Conditionat on PHT
1 1 Other Types of Branches Always use NLS Entry

Line Field: This field contains the line number to be fetched from
the instruction cache. The high-order bits indicate the line
in the instruction cache and the low-order bits are used to
indicate the actual instruction in that line.

Set Field: In a multi-associative instruction cache, the destination

line may be in any set. The set field is used to indicate where
the predicted line is located if a multi-associative cache is

used. It is not needed for a direct mapped cache.

The NLS architecture assumes that during the instruction fetch
stage of the pipeline, each instruction can easily be identified as a

branch or non-branch instruction. The BTB does not have to make

this assumption since an instruction is known to be a branch if it hits

in the BTB. If the instruction set encoding does not contain such a
distinguishing bit in the instruction, that information can be stored

in the instruction cache or an instruction type prediction table, as
described in [2], Encoding this information in the instruction im-
proves the fetch accuracy for the NLS architecture, since non-branch
instructions fetch the fall-through address while branch instructions

use NLS predictors.
If the instruction being fetched from the instruction cache indi-

cates that it is a branch instruction, the NLS predictor is used and
the type field is examined to choose among the possible next fetch

addresses. Return instructions use the return stack. Unconditional

‘The type field is not needed for the NLS orBTB architectures if the type information
caa be easily extracted rrom the fetched instruction before the fetch cycle completes,

or from the instruction cache if the information has been pre-decoded.

branches and indirect branches use the cache line specified by the

NLS entry. If the type field indicates a conditional branch, the archi-
tecture uses the prediction given by the PHT, as is done in the BTB

architecture. If the branch is predicted as taken, the NLS line and
set fields are used to fetch the appropriate cache l!ine and instruction

from the instruction cache. If the conditional bramch is predicted as
not-taken, the precomputed fall-through line address is used on the

next instruction fetch.

The NLS entries are updated after instructions are decoded and

the branch type and destinations are resolved. The instruction type

determines the type field and the branch destination determines the
set and line field. Only taken branches update the set and line field,

but all branches update the type field. A conditional branch which
executes the fall-through should not update the set and line field,
since that would erase the pointer to the target instruction. For
conditional branches, this allows the branch prediction hardware to
use either the NLS predictor for taken conditional branches or to
use the precomputed fall-through line, depending on the outcome

of the PHT,

4.1 NLS-Table versus NLS-Cache

There are several possible variations on the basic NLS architecture

design, and they share many common structures. Figure 2 shows

one possible design. The intuition behind this architecture is that a
branch target address is actually a pointer into the instruction cache.
This pointer can be represented by an index pointing to the target

instruction of a taken branch.

We considered two possible designs: “NLS-caches” and “NLS-
tables”. In the NLS-cache, we associate the NLS predictors with

each cache line. Thus, the NLS entries share the instruction address

tag with the cache line. ‘I’here may be multiple NLS predictors

per cache line and we studied various replacement policies and
methods of associating the NLS predictors with specific instructions

in a cache line. The second design, the NLS-table, is a simpler and
more effective design that uses a tag-less direct-mapped table of NLS

predictors. The table is indexed by the branch instmction’s address.
Both architectures use the NLS entries to predict the next line to fetch

for a branch instruction, both architectures use the same conditional
branch prediction and return-prediction mechanisms used in the

BTB, and both designs replace the BTB with the NLS information.

The NLS-table has three advantages over the NLS-cache design

and one disadvantage. These points arise because the NLS predic-

tors are coupled with the cache lines in the NLS-cache design and

they are decoupled from the cache in the NLS-table design, For the

NLS-cache architecture, we found that associating two NLS pre-
dictors with an eight instruction cache line to be the most effective

organization. This design restricts the use of the .NLS predictors in

the NLS-cache, since some cache lines may not have any branches
while other cache lines may contain several branches. In contrast,
the NLS-table uses the lower order bits of the branch instructions ad-

dress to index into a tagless table. This allows a cache line to use as
many NLS predictors as needed. The second advantage comes when
an instruction cache line is replaced. The NLS-cache prediction in-

formation associated with a replaced cache line is discarded while
the prediction information for the NLS-table is preserved across
cache misses. The final advantage appears when examining differ-

ent instruction cache sizes. As the instruction cache size doubles,

the number of NLS-cache predictors must also double to achieve the
same branch prediction performance. Therefore the NLS-cache size

increases linearly with an increase in instruction cache size while
the NLS-table size increases only logarithmically,, This can greatly
increase the cost of the NL!Lcache design for large caches. There

289



# Insn’s Conditional Branches Percentage of Breaks During Tracing

Program Traced % Breaks Q-50 Q-90 Q-99 Q-1OO Static %Taken % CBr % IJ VOBr 70 Call 70Ret

doduc 1,149,864,756 8.53 3 175 296 1,447 7,073 48.68 81.31 0.01 4.97 6.86 6.86

espresso 513,008,174 17.12 44 163 470 1,737 4,568 61.90 93.25 0.20 1.88 2.29 2.39

gcc 143,737,915 15.97 245 1,612 3,742 7,640 16,294 59.42 78.85 2.86 5.7’5 6.04 6.49
Ii 1,355,059,387 17.67 16 52 127 556 2,428 47.30 63.94 2.24 7.74 12.92 13.16

cfront 16,529,540 13.66 69 833 2,894 5,644 17,565 53.18 73.45 2.17 6.40 8.72 9.26
groff 56,840,596 16.38 107 408 976 2,889 7,434 54.17 66.12 4.80 7.80 8.77 12.51

Table 1: Measured attributes of the traced programs.

is a disadvantage for the NLS-table in making it a tagless table, be-

cause prediction information from one branch may be erroneously
used for another branch. Our results show that this effect is small

for the NLS-table design when compared to the benefits of the three
advantages mentioned above.

4.2 Using Next Line Addresses with the Instruction
Cache

Unlike the BTB architecture, tbe NLS architecture does not have a

full next target address to offer to the instruction cache. It only has

the lower order bits of the full target address (the cache line index).

This is not a problem for a direct mapped cache, since the tag check
against the target address can be performed in the decode stage of

the pipeline. When an associative cache is used, the cache needs to
be slightly modified in order to properly use the next line address,

The following two different approaches may be taken.

The traditional implementation of an associative cache selects

the appropriate line from a set by performing a full tag comparison
on the tags from the different sets. For all branch instructions, the

set field in the NLS predictor is used to predict the the instruction

cache set instead of performing the tag comparison. When the pre-
computed fall through line address is used, a full tag comparison is

performed. The full fall-through address can be calculated by the
time the cache needs to perform the tag comparison using the pre-

computed fall-through line address, the carry bit from the addition
of the fall-through line address calculated in the previous cycle, and
the previous instruction’s tag.

The second approach to using next line addresses with an as-
sociative cache is more elegant and can lead to improved cache
performance. In this approach we assume that each cache line has a
setfield associated with it. This set field has the same use as the NLS

set fieid, and it predicts the set where the fall-through line is located
for each cache line. For each instruction cache lookup, either the

NLS predictor’s set field, for a branch instruction, or the previous

cache line’s set field, for a non-branch instruction, is used to predict

the set for the current cache access. Since the set field is used on
every cache access, only one cache set is driven at a time during
the lookup and the tag comparison can be performed in the decode

stage as if the cache where direct mapped. If the set prediction
was incorrect and the tag does not match the destination address
computed in the decode stage, the other sets in the cache need to be
checked in order to find the correct entry or to find if there is a cache
miss. This design is suitable for a two-way associative cache. If
the first set prediction is incorrect, the remaining set is checked for
the instruction. For higher degrees of associativity, other techniques

may be applied when the set prediction is incorrect, but these are

beyond the scope of this paper.

5 Experimental Methodology

We used trace driven simulation to quantify the performance for
many BTB and NLS architecture configurations. We instrumented

the programs from the SPEC92 benchmark suite and object-oriented
programs written in C++. We simulated several programs but only

show information for six programs because we felt this would be
more useful than presenting less detailed results for more programs.
We picked three of the programs (gee, c f rent and gro f f ) be-
cause they have high instnrction cache miss rates, execute a lot of

branches, and the branches are hard to predict.

We used ATOM [17] to instrument the programs. Due to the

structure of ATOM, we did not need to record traces and could trace

very long-running programs. The programs were compiled on a

DEC 3000-400 using either the DEC FORTRAN, C, or C++ com-

piler. All programs were compiled with standard optimization (-O).

For the SPEC92 programs, we used the largest input distributed with
the SPEC92 suite. The alternate programs include: c f rent, ver-

sion 3.0.1 of the AT&T C++ language preprocessor written in C++
and gro f f and a version of the ditrof f text formatter written in

C++. For these alternate programs, we used inputs we hoped would
exercise a large part of the program.

Table 1 describes the branching activity of the programs we in-

strumented. The first cohrmns list the number of instructions traced
and the second column indicates the percentage of simulated in-

structions that could cause a break in control flow, The columns

labeled ‘Q-SO’ ,’Q-90’ ,’Q-99’ and ‘Q-100’ show the number of con-

ditional branch instructions that contribute to 50,90,99 and 100% of
all the executed conditional branches in the traced program. Thus,
in doduc, three branch instructions constitute 50V0 of all executed
conditional branches. The column labeled “static” represents the
number of conditional branch sites in the program. The eighth col-
umn shows the percentage of executed conditional branches that are
‘taken’. The last five columns describe the frequency of different
type of branches encountered during tracing: conditional branches

(CBr), indirect jumps (IJ), unconditional branches (h-), procedure
calls (Call) and procedure returns (Ret).

5.1 Architectures Simulated

For each program, we simulated 8KB, 16KB, and 32KB instruction
caches with 32 byte cache lines and 4 byte instructions. For each
cache size, we simulated direct mapped, 2-way and 4-way asso-
ciative LRU replacement caches. When simulating the NLS-cache

architecture we used one to four NLS predictors per cache line with
varying replacement policies. We found that two NLS predictors

per cache line gave performance comparable to the NLS-table and
BTB architectures. In this configuration, the first NLS predictor is

associated with the first four instructions in the cache line and the

290



Register Bit Equivalent Costs for NLS and BTB Architectures
30,000

25,000

w 20,000
m
a
.= 15,000

5,000

0
8K 16K 32K 64K SK 1(5K 32K 64K 8K 1(5K 32K r54K SK 16K32K64K 1 2 4 1 4

NLS Cache
-L

512 NLS Table 1024 NLS Table 2048NLS Table J28 BT13 256 BTB

Figure 3: Register bit equivalent costs for the NLS-cache and a 512, 1024 and 2048-entry NLS-table for cache sizes of 8K, 16K, 32K and

64K, and for a 128-entry and 256-entry BTB with associativities of one, two and four.

second NLS predictor is associated with the last four instructions in
the cache line. We only show results for this configuration of the
NLS-cache architecture because of space limitations.

When simulating the NLS-table architecture, we simulated

NLS-tabIe sizes with 512, 1024 and 2048 NLS predictors. For the

BTB architecture, we simulated 128-entry and 256-entry BTB or-
ganizations with direct mapped, 2-way and 4-way associativity with

LRU replacement. Both the BTB and NLS architectures used a 32-

entry return stack [5] to predict procedure returns and a two-level
correlated 4096-entry pattern history table for conditional branches.

The accuracy of the pattern history table is the same for both the
BTB and NLS architectures. This allows us to isolate the fetch
performance differences between the BTB and NLS architectures.

5.2 Performance Metrics

We compare the branch architectures using a number of performance

metrics. We record the instruction cache miss rate since the NLS and
BTB architectures may fetch different instrtrctions,even for the same

cache organization. We also record the percentage of misfetched
branches (%MfB), and the percentage of mispredicted branches

(% MpB). Note that a mispredicted branch is never counted as a
misfetched branch and visa versa. It is often difficult to understand
how each of these metrics influence processor performance. Yeh &
Patt [21] defined the branch execution penaky to be:

~Ep = %MfB x misfetch penalty+ %MpB x misprediction penalty

100

The BEP reflects the average penalty suffered by a branch due to
misfetch and mispredict penalties. With a BEP of 0.5, the average

branch incurs a half-cycle execution penalty. The BEP provides
a more intuitive understanding of how the two penalties interact,
but requires us to use specific misfetch and mispredict penalties.
For our results, we assume a one cycle misfetch penalty and a

four cycle mispredict penalty, since these costs are reasonable for
current superscalar architectures. In all of our BEP graphs we break
the results into two parts. The top part shows the fraction of the

BEP caused by the misfetch penalties and the lower part shows the
fraction due to the mispredict penalties.

We also provide the cycles per instruction in order to illustrate

overall program performance. We define CPI to be:

(# Instructions executed+ BEP x # branches +

CPI =
# I-cache misses x miss penalty)

# Instructions executed

We assumed a five cycle instruction cache miss penalty. With a CPI

of 1.25, the average instruction takes 1.25 cycles to execute. Since
we are simulating a single-issue architecture, the CPI can not be

less than 1. The CPI does not include data cache misses or other
resource conflicts.

6 Results

In order to compare the NLS architecture to the BTB we must

first determine the resource costs for each architecture. In order
to evaluate the area implementation costs of the NLS and BTB

architectures, we used the register bit equivalent (RBE) model for
on-chip memories proposed by Mulder et al [1 1], where one RBE
equals the area of a bit storage cell.

Figure 3 shows the RBE costs for implementing the NLS and

BTB architectures using Mulderet al’s on-chip memory area model.
The figure shows the RBE costs for the NLS-cache (with two NLS

predictors per cache line) and a 512,1024, and 2048 entry NLS-table

for cache sizes of SK, 16K, 32K and 64K. It also shows the RBE
cost for a 128 entry and 256 entry BTB with associativities of one,

two and four. The RBE cost of the NLS architecture depends on the
size of the instruction cache. The NLS-table’s RBE cost increases

logarithmically as the instruction cache size increases, since the

line field for each NLS predictor has to also increase. When the
number of lines in the instruction cache are doubled, another bit
must be added to each NLS predictor’s line field. In the NLS-cache

architecture, the number of NLS entries per cache line is constant,
and as the cache size increases, the space devot,ed to NLS entries
increases linearly. The RBE cost of the BTB architecture depends

291



lnstru&ion Cache Size and As~ociativity

Figure 4: Branch execution penalty for the NLS-cache architecture

and the 512, 1024 and 2048 entry NLS-table architectures for direct
mapped and 4-way associative caches of size 8K, 16K and 32K. The
BEP value is broken into two parts with the upper part representing

the fraction of the BEP due to the misfetch penalty, and the lower
part the mispredict penalty.

on the associativity of the BTB and the size of the address space

not on the size of the instruction cache. In performing the BTB

calculations, we assumed a 32-bit address space is used. If the

address space is increased, the cost of the BTB would also increase.

6.1 Performance of the NLS Architecture

Figure 4 shows the branch execution penalty results averaged over
the programs in Table 1. The figure shows results for the NLS-

cache, and for 512, 1024 and 2048 entry NLS-tables for varying
instruction cache sizes and associativities. Each branch execution

penalty (BEP) value is broken into two parts with the upper part

representing the fraction of the BEP due to the misfetch penalty,
and the lower part the mispredict penalty.

Figure 4 shows that the NLS-table consistently outperforms the
NLS-cache when architectures with equivalent costs are examined:
the NLS-cache and the 512 NLS-table have equivalent costs when
using an 8K instruction cache, the NLS-cache and the 1024 NLS-

table have equivalent costs when using a 16K instruction cache, and

the NLS-cache and the 2048 NLS-table have equivalent costs when

using a 32K instruction cache. In terms of the RBE cost, the NLS-

cache is practical for only small caches (8K and 16K), but even then,

the NLS-table architecture has better performance when comparing

architectures with equivalent costs. The difference in performance

arises from the NLS-cache discarding useful prediction information
for each instruction cache miss and because the predictors in the
NLS-cache can only be used for the cache line they are associated
with. In contrast, the NLS-table preserves prediction information
across cache misses and a NLS-table predictor’s use is not restricted
to a given cache line. Figure 4 also shows that the difference in
performance between the 512 and 1024 NLS-tables is small, and

the difference between the 1024 and 2048 NLS-tables is smaller
still. In the remainder of the paper we focus on the NLS-table

design and only give results for the 1024 entry NLS-table.

6.2 Related Work

There are several branch prediction strategies related to the NLS

design, Our NLS-table architecture was derived from the BTB: each

uses a table holding pointers to branch destinations. The primary

difference, besides eliminating the tag, is that the BTB encodes the

full address, while the NLS encodes only the instruction cache line
and set, allowing for larger NLS-tables.

Bray and Flynn [1] described a design similar to ‘the NLS-cache

that associated branch target addresses with each ca[che line. As in
our study, they found approximately one entry per four instructions

provided the most cost effective design.

Johnson [4], suggested the idea of using cache su[ccessorindices

as in the NLS-cache architecture for instruction fetch and branch

prediction. His architecture associated the cache inclices with each

cache line as the NLS-cache architecture does. The architecture he

studied is slightly different than our NLS-cache design since he only

considered using the index for one bit conditional branch prediction.
With one bit prediction, the cache index stores either a pointer to
the fall-through line or the target line for the next instruction fetch.
In order to predict the fall-through line, the cache index is updated

even when anon-taken branch is executed. By ccrrrtpi~risrm, we only

update the NLS predictor when taken branches are (encountered to
obtain improved branch prediction accuracy when using a decoupled

PHT.

Variations on the NLS-cache design can be found in recent

microprocessor architectures, The TFP microprctcessor (MIPS

R8000) [3] has a 1024 entry NLS-cache architecture similar to

the design proposed by Johnson. It has one NLS predictor for every

four instructions, and a one-bit branch predictor coupled with each

NLS predictor. The UltraSPARC microprocessor also uses a similar
1024 entry NLS-cache design, associating an NLS predictor with
every four instructions. Instead of using one-bit prediction as in
the TFP, the UltraSPARC uses a 2-bit dynamic conditional branch
predictor for every two instructions in the instruction cache.

The NLS-table design uses an independent table of next line and

set predictors. This basic design was recently patented by Steely

and Sager [18]. However, they have not published any perfor-
mance comparisons, and the patented design only addresses direct

mapped caches, while our design addresses both direct mapped and

associative caches. Furthermore, the patented architecture uses a

single “computed goto” register to store the destination of indirect

jumps. By comparison, we use the NLS predictor to provide the
predicted cache index for all branch destinations c~ther than fall-
through branches and return instructions. Although we developed

our NLS architecture independently, there are several similarities as
well as other differences; see [18] for more details.

6.3 Performance of the BTB Architecture

Figure 5 shows the average branch execution penal~y (BEP) for the

programs simulated in this paper. The 1024 entry NLS-table has

better performance than the similar costing 128 entry BTB, even

when the BTB has a high degree of associativity. The 1024 entry

NLS-table and 256 entry BTB exhibit comparable performance even
though the 1024 entry NLS-table has roughly half the RBE cost of
the 256 entry BTB.

When comparing the NLS-table to the BTB, one must keep
in mind that a direct mapped BTB has a shorter access time than
an associative BTB. Figure 6 shows the estimated access time, in
nanoseconds, for a 128 entry BTB and 256 entry BTB with direct
mapped, two, and four way associativity. These (estimates were

derived using the CACTI timing model of Wllton and Jouppi [19].

292



Overall Average for BTB and 1024 NLS Table.—— --- — .———. . .. . . - . . .. . . . ... . .. . . . .

Figure 5: Branch execution penalty for the 1024 entry NLS-table

architecture for direct mapped and 4-way associativity instruction

caches of size 8K. 16K and 32K, and for a 128 entry and 256 entry

BTB.

Access Time for BTB Architecture,,8 ------- —------ --–— —--—--– -- - -------- ‘---
1

c.-
a14
E.-
+

m
i-
ml

0

128 Entry BTB 256 Entry BTB

f-+

----

■ Direct

12t2-way

4’

—

—

—

—

w!

Figure 6: Access time for the BTB architecture with varying assu-

Their model derives access times for direct mapped and associative

caches such as BTBs, but not for tag-less direct mapped memory

buffers. Therefore we do not show the access times for the NLS-

table, but we believe it would be similar to that of a direct mapped

BTB. This figure shows the access time differences between direct

mapped and associative cache structures. The differences arise
from the extra time needed to perform the tag comparison. In a

direct mapped cache, the tag comparison can be done in parallel
while the data output is being driven to the next stage. The figure

shows that the 4-way associative BTB access time is 30 to 40%
longer than direct mapped BTBs of the same size. This should be

considered when comparing the performance of the direct mapped

BTB and NLS architecture to the associative BI’B architectures

since the cycle limitation of the instruction fetch may effect the
entire machine. In [3], the designers of the TIT> (MIPS R8000)
microprocessor stated:

We evaluated several well-known branch prediction

algorithms for layout size, speed, and prediction ac-
curacy. The most critical factor affecting area was

the inji-astructure requiredto supporta cus~om block:
power ring and power straps to the ring, and global
routing between the branch prediction cache and its

control logic. Speed was a problem with tag com-
parisonsfor those schemes that are associative. Ac-

cordingly we chose a simple direct-mapped, one-bit
prediction scheme which can be implemented entirely

with a single-ported RAM.

7 Comparison of NLS Table and BTB Architec-
tures

Figure 7 compares the performance of the NLS and BTB architec-

tures using the branch execution penalty (BEP) for the programs
in Table 1. Each graph compares the direct mapped and 4-way set

associative 128 and 256 entry BTBs to tbe 1024 enky NLS table. It
was shown in $6 the 1024 entry NLS-table and the 128 entry BTB

have similar implementation costs using the RBE model, that the

256 entry BTB implementation cost is twice that of the 1024 entry

NLS-table, and that the access time of the associative BTB’s is 30

to 40% longer than similar sized direct mapped structures.
The differences in the BEP between the BTB and NLS archi-

tectures is attributable to differences in the number of misfetched

branches. Remember that the BTB and NLS architectures are not
used to predict the direction for conditional branchles. Conditional

branch prediction information is stored in a separate pattern history
table (PHT) and the conditional branches are predicted using the
PHT. The NLS and BTB architectures are used to eliminate the mis-
fetch penalty associated with the extra cycle taken 10 determine the

branch type and to compute the target address for the next instrtrc-
tion fetch. Once the branch type and target line are predicted, the

next fetch line can be chosen from the return stack, precomputed
fall-through line, or the predicted target line. Both the NLS and. . .

ciativities. The relative values between the BTB access times are
more important than the absolute values for a particular processor

[ethnology.

BTB arc~hectures are u~ed to predic~ the destination for indirect
jumps. Table 1 shows that indirect jumps constihlte O-5% of the
breaks in the programs we instrumented. In Figure 7, any differ-

ence in the mispredict penalty for a given programl is attributed to
the variation in the mispredict penalty for indirect jumps across the
different architectures. The figure shows that the difference in mis-
predict penalty across the different architectures is only noticeable
for grof f, and even then the difference is insignificant,

Figure 7 shows that the BEP for the NLS architecture decreases

as the cache size increases or the cache associativity increases.

293



!5
m 0.2-

1%
0.2-

0.

Espresso__...,_..,.,__.— __ ....._
HMisfetch

m Mispredid

Lin Q . ... .......... ... . . . . .... . .. .. . .. . . . ... .. . ..... . . . . ... . . .. .. . . . . . . . . . .... ..._..-

0.8
*
~ 0.7

it 0,6
c

.g 0.5
3
u
g 0,4

Ill
- 0.3

[
fil Misfetch

W M&predict I

i
I

Cfront
0.9 ~- ----------------..--..-.----..--.----..-...._...._.,._,--.,....,...-.._....._..._.

-. . . . . .

n

0,9 –----—--
Gee _._-.__.,._.._– ... ..

0.8-
K3Misfetch

=> ■ Mispredtct

~ 0,7, _

Figure 7: Performance comparison between the NLS and BTB architectures using branch execution penalty. Each value is broken into two

parts. The top represents the fraction of the BEP due to the misfetch penalty and the lower part the fraction due to the mispredict penalty. The
NLS results are given for an 8K, 16K and 32K instruction cache with direct mapped and four-way associativity. The BTB results are only

shown once, since their results do not change for the different instruction cache configurations. The 1024 entry NLS table and the 128 entry
BTB have equivalent implementation costs, and the cost for the 256 entry BTB is approximately twice that of the 1024 NLS-table.

294



Why? Recall that each NLS predictor indicates the cache line

that should be fetched. The information associated with an NLS

predictor is only useful if the actual destination of a branch is in

the predicted location in the instruction cache. In smaller caches,
the NLS predictors will often point to the proper cache line and

set, but the desired instruction may not be present or may have

been reloaded into a different set. Whh a NLS predictor, a branch

destination that has been displaced from the inst~ction cache causes
a misfetch penalty. When the current instruction is fully decoded,

the misfetch is detected and the actual instruction is fetched. In
this case, the misfetch penalty is associated with a cache miss. In

contrast, the BTB always uses the full target address. This allows
the BTB architecture to possibly locate the proper instruction in
set associative caches, or to initiate an instruction cache miss a
cycle earlier than the NLS architecture. If an associative cache

is used, the NLS architecture would have to look in the other set
on a misfetched branch, or do a full set lookup. When the cache

miss rate is lowered, there is an increased probability that a cache
line will still be resident when a NLS predictor is used. The BTB

architecture will not benefit from the lower cache miss rate, and
the there is no change in the BEP for varying cache configurations.

Whole-program restructuring [7, 10, 14] is one technique that can

be used to reduce the instruction cache miss rate at no additional

architectural cost.

Why does the NLS architecture have significantly better BEP

performance than the BTB for some programs, such as gee,
c f rent and gro f f, but only slightly better or comparable perfor-

mance for other programs, such as doduc and espresso? The

program characteristics in Table 1 shows the programs that bene-

fit most from the NLS architecture have more static branch sites
then the programs that show little benefit. For example, in doduc,

three individual branches constitute 50% of the branches encoun-
tered during program execution. One need only store those three
branches to achieve 50% fetch accuracy. By comparison, gee,
c f rent and gro f f have many more branches encountered dur-

ing execution. The larger number of branches leads to capacity

misses and conflicts in any prediction mechanism using a fixed-size

resource. Because each NLS predictor in the NLS architecture is

smaller than the comparable BTB entry, the NLS architecture has

many more prediction entries using the same resources. Overall,

the larger number of less-precise NLS predictors benefits program

performance more than the fewer, more precise, BTB entries.

Figure 8 shows the average CPI for a single issue architec-
ture with the different BTB and NLS configurations using 8KB,
16KB and 32KB direct-mapped and 4-way associative instruction
caches. The Figure shows that the difference in performance is smrdl
among the configurations examined, with the 1024 entry NLS-table
performing slightly better than the similar costing 128 entry BTBs.

In examining the performance of individual programs, our results
show that there is very little difference in performance between the

NLS and BTB architecture for programs, such as espresso, that
have a low cache miss rate. If the instruction cache miss rate is low,

the probability of the instruction line indicated by the NLS predictor
being in the instruction cache is very high. For programs that do
not execute many branches, such as doduc (with 8.5% branches),

there is also very little difference in the performance of the NLS
and BTB architecture. If a program doesn’t execute many branches,
then neither the NLS nor the BTB architecture will suffer from ca-
pacity misses. For programs such as gee, cfront and groff
with many branches, the NLS architecture performs better than the

BTB for most of the cache configurations examined, due to the large
number of capacity misses in the BTB.

Overall Average for BTB and 1024. NLS Table
1,30 ............ . . . ...... .. ....- -—.——-”..”–---.- . ...”. .. ..-..-..—”. ...--..-..

1

1.25

1,05

1.00

Instruction Cache Size and Associativity

Figure 8: Performance comparison between the NLS and BTB

architecture in cycles per instruction. The 1024 entry NLS-table
and the 128 entry BTB have equivalent RBE cclsts, and the cost for

the 256 entry BTB is approximately twice that of the 1024 NLS

table.

A larger program address space poses several problems for BTB

architectures, but is inconsequential for the NLS architecture. As

the program address space increases, the tag size used to identify
branches in the BTB must either increase, or the information stored
in the BTB will become less precise. Likewise, the size of tbe
destination address field must also increase, or the BTB architecture
would store inaccurate target addresses. In our RBE calculations we
assumed a 32-bit address space, so the target address stored in the

BTB is 30 bits. If the address space was increased, the area needed
by the BTB would also increase. By comparison, the NLS-table

design does not use a tag nor does it store the full target address,
so an increased address space has no effect on the size of the NLS-

table. The size of an NLS predictor depends unly on the number

of lines in the cache and the number of instructions in the line.

As the instruction cache size is increased the size of the NLS-table

increases logarithmically. In contrast, an increase in cache size has

no effect on the size of the BTB.

8 Conclusions

In this paper we have presented two alternative NLS architectures,
the NLS-cache and NLS-table. Our results show that decoupling
the NLS predictors from the instruction cache (NLS-table) performs

better than Johnson’s [4] approach of associating the NLS predictors
with the cache line (NLS-cache). We found the NLS-cache is not

a scalable design, because the number of NLS [predictors increases
linearly with the cache size. Our results also show that there is
little benefit from increasing the NLS-table size from 1024 entries

to 2048 entries,

The NLS-table is a tag-less, direct mapped buffer with better
instruction fetch prediction than direct-mapped BTBs with similar

costs. When comparing the performance of the NLS architecture
to associative BTBs, one should keep in mind that the access time
for an associative BTB is 30 to 40% longer than similar sized direct
mapped structures. Our results show that the 1024 entry NLS-table
performs better than the 128 entry BTB, with similar RBE costs. For

295



a 256 entry BTB, the 1024 NLS-table had comparable performance

for approximately half the RBE cost. me NLS-table can offer better
performance than the BTB because the cost of an NLS entry is much

less than a BTB entry, allowing the NLS-table to contain many more
entries than BTB architectures with similar implementation costs.

This allows the NLS-table to perform better than the BTB design
especially for programs with many branches. For programs with

fewer branches, the architectures have comparable performance.

The performance of the NLS architecture improves as the in-

struction cache miss rate is lowered, and its performance can be

improved by using whole-program analysis, basic block reordering,
and intelligent procedure layout. In contrast, improving the instruc-

tion cache miss rate has no effect on the branch performance of the
BTB architecture. In this paper, we focused on the improvements

offered by single-issue architectures and are currently investigating
a number of design extensions for multi-issue architectures. Noth-

ing in the design of the NLS architecture appears to be a problem
for wide-issue architectures.

Acknowledgements

We’d like to thank Joel Emer, Alan Eustace, Keith Farkas, Dennis
Lee and the anonymous reviewers for providing helpful comments.

We’d also like to thank Amitabh Srivastava and Alan Eustacefor de-
veloping ATOM, and Digital Equipment Corporation for an equip-
ment grant. This work was partially supported by an ARPA Fellow-
ship in High Performance Computing administered by the Institute

for Advanced Computer Studies at University of Maryland, a DEC-
WRL summer internship, in part by NSF grant No. ASC-9217394,

and in part by ARPA contract ARMY DABT63-94-C-O029.

References

[1]

[2]

[3]

[4]

[5]

[6]

Brian Bray and M.J. Flynn. Strategies for branch target buffers.

In 24th Annual International Symposium and Workshop on
Microprogramming, pages 42-49. ACM, 1991.

Brad Calder and Dirk Grunwald. Fast& accurate instruction

fetch and branch prediction. In 21stAnnua11nternational Sym-
posium of Computer Architecture, pages 2–11. ACM, April

1994.

Peter Yan-Tek Hsu. Designing the TFP microprocessor. IEEE

Micro, 14(2):23-33, April 1994.

Wen-mei W. Hwu and Pohua P. Chang. Achieving high in-

struction cache performance with an optimizing compiler. In
16th Annual International Symposium on Computer Architec-
ture, pages 242-251. ACM, 1989.

Mike Johnson. Superscalar Microprocessor Design. Inno-

vative Technology. Prentice-Hall. Inc., Englewood Cliffs, NJ,
1991.

David R. Kaeli and Philip G. Emma. Branch history table
prediction of moving target branches due to subroutine re-
turns. In 18th Annual International Symposium of Computer
Architecture, pages 34-42. ACM, May 1991.

[7] Johnny K. F. Lee and Alan Jay Smith. Branch prediction
strategies and branch target buffer design. IEEE Computer,
pages 6-22, January 1984.

[8]

[9]

1o]

11]

Scott McFarling. Program optimization for instruction caches.
In Proceedings of the 3rd Symposium on Architectural Support
for Programming Languages and Operating Systems, pages
183-191. ACM, 1988.

Scott McFarling. Combining branch predictors. TN 36, DEC-
WRL, June 1993.

Scott McFarling and John Hennessy. Reducing the cost of

branches. In 13th Annual International Symposium of Com-

puterArchitecture, pages 396-403. ACM, 1986.

Johannes M. Mulder, Nhon T. Quach, and Michael J. Flynn.

[12]

13]

14]

An area model for on-chip memories and its application. IEEE
Journal of Solid-State Circuits, 26(2):98-105, February 1991.

S.-T. Pan, K. So, and J. T. Rahmeh, Improving the accuracy

of dynamic branch prediction using branch correlation. In
Fijth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 76-

84, Boston, Mass., October 1992. ACM.

Chris Perleberg and Alan Jay Smith. Branch target buffer

design and optimization. IEEE Transactions on Computers,
42(4):396-412, April 1993.

Karl Pettis and Robert C. Hansen. Profile guided code posi-

tioning. In Proceedings of the ACM SIGPLAN ’90 Confer-
ence on Programming Language Design and Implementation,

pages 16-27. ACM, June 1990.

[15] J. E. Smith. A study of branch prediction strategies. In 8th

Annual International Symposium of Computer Architecture,

pages 135-148. ACM, 1981.

[16] S. Peter Song, Marvin Denman, and Joe Chang. The PowerPC

17]

18]

[19]

[20]

[21]

[22]

604 RISC m~croprocessor. IEEE Micro, 14(5):8-17, October
1994.

Amitabh Srivastava and Alan Eustace. ATOM: A system for

building customized program analysis tools. In 1994 Program-
ming Language Design and Implementation, pages 196-205.

ACM, June 1994.

Simon C. Steely and David J. Sager. Next line prediction appa-

ratus for a pipelined computer system. US. Patent #5,283,873,
Feb. 1994.

Steven J. E. Wilton and Norman P. Jouppi. An enhanced access

and cycle time model for on-chip caches. WRL Report 93/5,
DEC Western Research Lab, 1993.

Tse-Yu Yeh and Yale N. Patt. Alternative implementations of
two-level adaptive branch predictions. In 19th Annual hzterna-
tional Symposium of Computer Architecture, pages 124-134,

Gold Coast, Australia, May 1992. ACM.

Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction

fetch mechanismfor a processor supporting speculative execu-
tion. In 25th Annual International Symposium on Microarchi-

tecture, pages 129–1 39, Portland, Or, December 1992. ACM.

Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic

branch predictors that use two levels of branch history. In 20th
Annual International Symposium on Computer Architecture,
pages 257-266, San Diego, CA, May 1993. ACM.

296


