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Abstract
Most recent MPP systems employ a fast microprocessor

surrounded by a shell of communication and synchroniza-
tion logic. The CRAY-T3Dl provides an elaborate shell to

support global-memory access, prefetch, atomic operations,
barriers, and block transfers. We provide a detailed empir-
ical performance characterization of these primitives using

micro-benchmarks and evaluate their utility in compiling
for a parallel language. We have found that the raw perfor-
mance of the machine is quite impressive and the most effec-
tive forms of communication are prefetch and write. Other

shell provisions, such as the bulk transfer engine and the

external Annex register set, are cumbersome and of little

use. By evaluating the system in the context of a language

implement ation, we shed light on important trade-offs and

pitfalls in the machine architecture.

1 Introduction

In 1991 and 1992 a wave of large-scale parallel machines were

announced that followed the “shell” approach [25], including

the Thinking Machines CM-5 [15], Intel Paragon [8], Meiko

CS-2 [1], and CRAY-T3D [11]. In this approach the core of

each node is realized by a state-of-the-art commercial micro-

processor and its memory system, surrounded by a shell of

additional logic to support global operations, such as com-

munication and synchronization. Based on the announced

designs, a simple parallel extension to the C language was

designed with the goal of extracting the full performance

capability out of this wave of machines[6]. The basic ap-

proach was to provide a full C on each node operating out

of the local memory, augmented with a rich set of assignment

operations on the collective global address space. As the an-

nouncements were followed by delivery of the machines, the

experiment of implementing the language on the machine
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and assessing its performance was conducted. For numer-

ous reasons, the T3D provides a very interesting case study:

the shell is extremely elaborate, the semantics of the hard-

ware primitives for global operations are at essentially the

same level as the language primitives, and many distinct

mechanisms exist to perform the same function.

The difficulty this “architecturally interesting” design

presents for language implementation is two-fold. First, we

need to map language primitives onto the hardware within

the compilation framework. Second, to choose the best

primitives, we need to establish their performance, which

may be a result of complex interactions between the micro-

processor and the shell. Thus, our language implement ation

approach begins by establishing the actual performance of
the machine and then tries to minimize the additional costs.

To do this, we follow a “gray-box” methodology, where de-

sign documents are used to establish the functional charac-

teristics of the hardware and a set of micro-benchmarks are

used to characterize its performance empirically. Together

these dictate the code-generation strategy.

In this paper we document the results of a “gray-box”

language-implementation study on the CRAY-T3D. The lan-

guage is Split-C, constructed as an extension of gee, but the

study would apply to many languages with similar goals,

such as CC++ [4] and HPF [9].

In the remainder of this section we outline the language

and the basic machine architecture. In Section 2 we explain

our micro-benchmarking methodology and characterize the

data access performance of the individual node, including

a comparison with a standard workstation using the same

microprocessor (DEC Alpha 21064). In Section 3 we explain

how the language concept of a global address is mapped to

the analogous hardware concept and identify performance

concerns that arise. We extend our micro-benchmarking to

characterize reads and writes to the global address space in

Section 4, and identify semantic problems attributable either

to the Alpha or T3D shell. In Section 5 we consider memory

operations that overlap communication with computation,

and in Section 6 we investigate mechanisms for bulk transfer.

We examine a family of synchronization issues in Section 7,

and finally come to a close in Section 8, where we illustrate

final program performance using a scalable application ker-

nel. In each of the sections, we outline the requirements of

the language model as well as the structure, constraints, or

performance characteristics of the machine that dictate how

the language is implemented.
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1.1 Language overview

Split-C is a simple parallel extension to C for program-

ming distributed memory machines using a global address
space abstraction[6]. It has been implemented on the CM-

5, Paragon, SP-1, and a variety of networks of worksta-

tions, using Active Messages to implement the global ad-

dress space[17, 26, 19]. The language has the following

salient features:

Q A program is comprised of a thread of control on each

processor from a single code image.

● Threads interact through reads and writes on shared

data, referenced by global pointers or spread arrays.

The type system ensures that the compiler can distin-

guish local accesses from global accesses, although a

global access may be to an address on the local pro-

cessor. Threads may also synchronize through global

barriers.

● To allow the long latency of remote access to be masked,

split-phase (or non-blocking) variants of read and write,

called get and put, are provided. For example, given

global pointer P and local variable x, x : = *P initiates

a get to the global address P, whereas *P : = x initi-

ates a put. The left-hand side is undefined until a sync

statement is issued; sync then waits for completion of

all pending gets and puts.

● Bulk transfer within the global address space can be

specified in either blocklng or non-blocking forms.

● A form of write, called store, is provided to expose

the efficiency of one-way communication in those algo-

rithms where the communication pattern is known in

advance. Threads can synchronize on the completion

of a phase of stores, as in data-parallel programs, or

the recipient of stored values may wait for a specified

amount of data, as in message-driven programs.

Given the one-to-one nature of threads of control and

processors, we often refer to either as the processor without

confusion.

1.2 The CRAY-T3D

The CRAY-T3D is a massively parallel processor, consisting

of up to 2,048 Alpha nodes with 16 to 64 MB of memory each

and a “shell” of support circuitry to provide global memory

access and synchronization as part of the interface to the

network. Here we discuss the key features of the design; see

[II] or [12] for an overview and [5] for a complete functional
description.

The DEC Alpha 21064[24] is a 64-bit, dual-issue, sec-

ond generation RISC processor, clocked at 150 MHz (6.67

ns cycle), with 8 KB instruction and data caches, each with

32-byte lines. The Alpha operates on 64-bit data values,

whether integer or floating point, and has only word (32-

bit) and long word (64-bit) memory operations. Accesses to

smaller data types use powerful byte manipulation instruc-

tions. Stores are non-blocking and loads and stores may

be reordered, so a memory barrier instruction is required

to serialize memory references. The 21064 supports a 43-bit

virtual address space, but can only address 4 GB of physical
memory.

Cray Research has designed a shell around the micro-

processor, and the shell provides several features to support

globaJ operation under a primarily shared-memory paradigm;

the simplest of these lets a processor access any memory

location in the machine through a standard load or store

instruction. However, since the physical address space is

small, the remote processor number is obtained from one

of 32 external registers, called the DTB Annex, indexed

by five bits of the physical address. Additional fields in

each Annex entry cent rol the mode of remet e operation.

The Alpha load-locked and store-conditional instructions

are used to read and write the Annex registers. The shell

also supports an atomic-swap between a shell register and

memory and two fetch&increment registers per processor,

as well as global-OR and global-AND barriers. The Alpha

fetch hint instruction is interpreted by the shell as a binding

prefetch into a prefetch FIFO, which is popped by the pro-

cessor through loads from a memory-mapped address. The

Alpha memory barrier instruction ensures that writes and

prefetches have been delivered to the shell; an additional

status bit indicates whether any remote accesses are out-

standing. The shell provides a system-level block transfer

engine, which can D MA-transfer large blc)cks of cent igu-

ous or strided data to or from remote melmories. Finally,

the shell provides a user-level message send FIFO; arrival of

a message at the receiver either places the message into a

user-level message queue or invokes a specific user t bread.

Processors are grouped in pairs, share a network interface

and block-transfer engine, and all 2-processc,r nodes are con-

nected via a three-dimensional torus networlc with 300 MB/s

links. The network uses dimension-order routing and incurs

a very small latency per hop. These math ine features will

be discussed in more detail in later sections.

2 Local-Node Performance

In this section we introduce our micro-benchmarking method-

ology and use it to examine the structure ;and costs of the

local memory system. The results prove critical to under-

standing the costs and consistency issues {of global opera-

tions because the memory system is the primary gateway to

the shell.

2.1 Micro-benchmarking

Benchmarking massively parallel processors usually refers to

measuring the execution time of a set of applications (such

as Park Bench [20] or Perfect Club [3]) designed to represent

a meaningful workload. This measures the performance of

the system as a whole, including the processor, the mem-

ory system, and the compiler, which is appropriate if one

is taking all of these as fixed. However, thle results tell us

little about the performance of the individual components

of the system, which is important if we are d~eveloping a new

compiler or, in many cases, optimizing applications.

In this paper we take a different path toward perfor-

mance evaluation inspired by Saavedra’s micro-benchmarks

[22, 21]. We treat the system as a “gray box” - admitting

that we have some a priori knowledge of the system, but

that it is both incomplete and unverified. Simple probes

are used to determine the parameters and characteristics of

the machine. We work from the bottom-u~p, analyzing the

simplest primitives first so the results can be used to help

understand increasingly more complex mechanisms. Our

probes are written in assembly language so that measure-

ments reflect actual hardware costs, not overhead inflicted

by the compiler or message passing library.
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Figure 1: Local Memory Hierarchy Comparison. Average read latency for CRAY-T3D and DEC Alpha.

Local Read Latency

Our first experiment characterizes the latency of a local read.
The idea is to generate a controlled stream of addresses to

the memory system, i.e., a stimulus, and to observe the re-

sponse in terms of the average latency per memory access.

By varying the parameters that define the address stream,

i.e., by varying the stimulus, and observing the variations in

the response we can infer specific properties of the memory

system. The probe, derived from [22] with slight modifica-

tions, simply steps through an array of a given size with a

given stride. By increasing the size of the array, we increase

the range of addresses within the stream. By increasing the

stride, we increase the frequency at which the address varies

from low to high. The stimulus is a sawtooth wave, and can

be described with the pseudo-code:

for (arraySize = 4 KB; arraySize < 8 MB; arraySize *= 2)

for (stride = 1 ; stride <= array Size/2; stride *= 2)

for (i = O; i < array Size; i += stride)
IfEMORY OPERATION OIi A [i] ;

We surround the innermost loop with an additional loop

that repeats the experiment to mitigate timer granularity

and obtain a suitable confidence level. All loop and address

calculation overhead is subtracted out so that the reported

time reflects only the time of the requisite memory oper-

ation. We use two separate probes: reads from memory

location A[i], and writes to memory location A[i]. Note that

A~] is an 8-byte word. In each case we plot the average la-

tency curve as a function of stride for a range of array sizes.

The results for the read experiment are shown in the left

portion of Figure 1.

The graph shows that reads take an average of 6.67

nanoseconds for array sizes up to 8 KB, matching the cycle

time (150 MHz) of the microprocessor and the published size

of the on-chip first-level data cache, respectively. (Note that

while a read issues in one cycle, the result is not accessible

for two more cycles.) When the size of the array exceeds the

size of the data cache, the reads begin to generate misses.

The average access time is now the weighted sum of the hit

time and miss time, so an inflection point occurs when every

read generates a miss. This point reveals the cache-line size

of 32 bytes and the full memory access time of roughly 145

ns (22 cycles). We can tell that the cache is direct mapped

because the access time does not drop to the cache-hit time

for large strides. If the cache had an aesociativity of two, for

example, there would have been a drop when the stride was

half of the array size since the two addresses being accessed

would fit in a single set.

As the array size and stride continue to increase we eee

another rise in latency. This effect is due to the internals

of DRAM: strides of 16 K B or greater result in off-page

DRAM accesses with each subsequent load. The net reeult
is an additional 60 ns (9 cycles) of lat ency. At 64 K B stridee,
the effect is slightly worse, again due to the organization of
the memory system. Since there are 4 memory banks, every

access wit h a stride of 64 K B accesses the came bank, thus

exposing the full memory-cycle time. This brings the total

worst-case memory access to 264 ns (40 cycles).

In most systems, this secondary increase in latency is

indicative of the translation look-aside buffer (TLB), which

caches a limited number of virtual to physical translations.

However, on the T3D the rise occurs at too small an array

size (32 KB) for it to be caused by TLB costs, as this would

imply a 2-entry TLB with the smallest possible page size of

8 KB. The absence of a rise in latency attributable to the

TLB indicates that the T3D designers have chosen to use

very large page sizes, possibly reflecting their heritage of

not supporting virtual memory. This resolves a potentially

difficult code-generation issue regarding global pointers, and

will be discussed in Section 3.

The graph also shows that there ie no second-level (L2)

cache on the T3D; an L2 cache would reveal itself as an

intermediary latency between the L 1 cache cost and the full

memory access time. For comparison, Figure 1 also shows

the read latency profile of a DEC Alpha workstation, which

contains the same microprocessor (DEC 21064) as the T3D

but a different memory system. This graph shows three

distinct sets of curves, corresponding to the 8-KB L1 cache,

the 512-KB L2 cache, and main memory. The inflection
point at a stride of 8 KB is due to TLB misses and indicates

the page size used by this workstation.

Notice that a main memory access require 300 ns (45 cy-

cles) on the workstation, but only 145 ns (22 cycles) on the

T3D. This supports the vendors’ claim that eliminating the

L2 cache allows for higher memory bandwidth when stream-

ing through very large data sets, as is typical of vector-style

scientific codes[12]. The T3D can deliver roughly 22o MB/s

from memory into the processor and the workstation only

about half that amount.
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2.3 Local Writes

Our second probe, which updates the array in the inner loop,
produces the write latency profile shown in Figure 2. The

difference between the read and write profiles is dramatic,

but not surprising. Much of the difference is due to the write

buffer hidi;g the-latency of writes to memory.
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Figure 2: Local Write Cost.

The Alpha 21064 has a write-through, read-allocate data

cache. We observe the preeence of the write buffer by noting

that every write to the cache does not incur the full memory

latency. Note that the inflection point at a stride of 16 KB

occurs because each successive store to the array causes an

off-page DRAM access in the memory controller.

For very small strides, the average access time is about

20 nanoseconds (3 cycles), but at a stride of 32 bytes (the

block size of the cache), the average access time goes up to

35 nanoseconds. We can draw two conclusions from theee

measurements. First, at very small strides, successive writes

to the same line are written to the same entry in the write

buffer. This is a feature known as write-merging [24]. Sec-

ond, since main memory access time is roughly 145 nanosec-
onds, dividing this by 35 nanoseconds gives an estimated
write buffer size of 4. This is corroborated by the Alpha
21064 Reference Manual[7].

This section has provided a detailed examination of the
local memory system. We determined that the cost of an

off-chip memory access is 23 cycles, that the large page size

essentially eliminates TLB costs, and that the write buffer
contains four entries and supports write-merging. Later sec-
tions will discuss how these costs and mechanisms affect the
language implementation.

3 Global Pointers

In this section we turn to the first of our code-generation

challenges: the representation of pointers into the global ad-

dress space and the operations on these pointers. This issue

involves a complex aspect of the T3D shell, which provides

a level of physical address translation and interacts with the

TLB.

3.1 Language Storage Model Requirements

In Split-C, any processor may access any location in the
global address space and each processor owns a specific re-

gion of the global space, its local region. The local region

contains the stack for automatic variables, static or exter-

nal variablee, and a portion of the heap. Global pointers

reference the entire address space, while standard pointers

reference only the portion local to the accessing processor.

The following operations are supported on global pointers.

b

●

●

●

●

3.2

Dereference: The location referenced by the pointer is

read or written.

Transfer: The pointer may be passed as a parameter

or stored in an object.

Arithmetic; The reference may be manipulated by per-

forming address arithmetic of two fc)rms. Local ad-

dressing treats the global address space as eegmented

among processors and acts on a global pointer as the

corresponding addressing operations would act on a

standard pointer, i.e., an incremented pointer refers

to the next location on the same processor. Global ad-

dressing treats the global address space as linear with

the processor component varying faetest. Addresses

wrap around from the last processor to the next offset

on the first processor.

E2ztr-action and construction; The glc)bal pointer can

be taken apart to obtain its processor number and lo-

cal addrees components. A global pointer can also be

constructed from these components.

Null test: A global pointer can be tested for null just

as a standard pointer, i.e., by equality with O.

T3D Design Constraints

The 21064 implementation of the Alpha architecture eup-

ports 43-bit virtual addresses and 32-bit physical addresses

(two additional high bits support memory mapped devices).

This has a significant impact on how the mlachine supports

shared memory. Many shared-memory machines map all

memory accessible to a procese into the virtual address epace

and a virtual address is translated into a global physical ad-

dress [2, 16, 10, 13, 14]. The memory eystem extracts the

node number and physical location from the global physi-

cal address and performs either a local memory access or a

message transaction with a remote memory controller. For

a fully configured T3D, thie would require at least 37 bits of

physical address. Since there not that man y bits available,

the T3D shell performs an additional level of address trans-

lation using a set of 32 segment registers known as the DTB

annex (Figure 3). Each Annex register specifies a processor

number and function code. Annex registers are updated at

user level with the revised store-conditional instruction at a

measured cost typical of off-chip access, 23 cycles. Annex

register O always refers to the local processor.

The page tables are constructed to provide ehared stack

and heap segments containing 32 regions c)f 128 MB each,

one per Annex register. The virtual-to-physical translation
performed in the Alpha carries the Annex register index

through and translates the remainder of the addrees to a 27-
bit physical address, which must be valid on all processors.

Thus, one must view a virtual address as a i!ernporary global

address; its meaning is dependent on the configuration of

the Annex. 2

2 An alternative would have been to provide truly global virtual
addresses and have the operating system manage the Annex trans-

parently Tbe page tables would associate addresses for tbe currently

mapped remote processors with tbe appropriate Annex indexes and

a fault would occur on reference to an un-mapped remote processor.
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and keep a runtime table of their entries, with a table lookup

added to each global access. This could be combined with

Figure 3: The DTB Annex. A 43-bit Virtual Address (VA)

is translated to a 34-bit Physical Address (PA), followed by

the index into the Annex. Each of 32 Annex entries specifies

a function code (FC) and a remote processor (PE). The two

mm bits are used to support memory-mapped devices.

A remote access involves storing the destination node

number into one of the Annex entries, and then accessing

the desired offset in the corresponding segment of the virtual

address space. Thus, the Annex presents a new set of reg-

isters that the compiler must manage and a short sequence

of instructions is required to perform a remote access.

3.3 Global Pointer Representation and Operations

A natural choice for the global pointer representation is a 64-

bit entity with the local address stored in the lower 48 bits

and the processor number stored in the upper 16 bits. This

is the same size as a local address, so transfer is efficient. The

Alpha has powerful byte manipulation instructions, so ex-

tracting the components of a global pointer and performing

arithmetic are also fast. In fact, with the particular virtual

memory mapping in the T3D, the 42nd bit of any virtual

address is zero. Thusj local address arithmetic is performed

on global pointers exactly as it is on local pointers; the re-

sult should never overflow into the processor portion of the

address. The meaning of a global pointer is independent

of the processor that dereferences it, so they can be freely

placed in shared data structures.

On dereference, the processor number is extracted and

stored in an Annex register, and the annex entry number

is inserted in the appropriate bit-field to generate a valid

virtual address for use in a load or store instruction. Lo-

cal arithmetic can be performed on this “internal” global

pointer and multiple references can be made without incur-

ring the cost of annex setup.

3.4 Annex Register Management

A key question underlying the use of global pointers is how

the compiler manages the Annex registers. The simplest ap-

proach is to use only one Annex register and update it on

each global access, skipping the Annex update if the com-

piler can determine that successive accesses are to the same

processor. An alternative is to use several Annex registers

compiler analysis to eliminate the table lookup when there

is sufficient static information about the pointers.

On the surface, using multiple Annex registers appears

to be the better alternative, but it leads to subtle seman-

tic problems and in the end there is no clear performance

advantage. The semantic problem occurs if two Annex reg-

isters specify the same processor. Because the Annex per-

forms address translation on physical addresses, this allows

synonyms: two physical addresses that differ only in their

Annex index may map to the same location. Both the cache

and write buffer use physical addresses to determine when

two accesses are to the same location, so synonyms po-

tentially lead to inconsistent copies. Inconsistencies from

caching do not arise on the T3D because the annex entry

appears in the high order bits of the address and the cache is
direct-mapped, so two synonyms always map onto the same

cache line. Unfortunately, the write buffer does admit in-

consistencies, since reads can bypass writes. If a write is fol-

lowed by a read to a synonym, the read may see a stale value

from memory while the write is caught in the write buffer.

We have produced probes that exhibit this unpleasant phe-

nomenon. Thus, in order to use multiple Annex registers,

the compiler must recognize aliases between global pointers

or it must generate runtime checks to prevent synonyms.

If a runtime table of Annex entries is kept, the Annex

register will need to be selected by hashing the processor

portion of the global pointer. Even a simple table lookup

requires a memory read and a branch, so the savings relative

to a 23-cvcle Annex uDdate are small.

A fin~l considerati& in using multiple Annex registers is

whether this interacts poorly with other aspects of the mem-

ory system. Since the Annex register number appears in the

high order bits of the virtual address, remote accesses will

consume TLB entries. Our concerns on this point where al-

layed when we determined that the processor was configured

to use huge pages and therefore few TLB entries.

3.5 Summary

Global pointers are easily represented on the T3D in a form

almost identical to that of local pointers and address arith-

metic on global pointers is extremely fast. This capabil-

ity is due to the 64-bit architecture of the Alpha as well

as its powerful byte manipulation instructions. However,

the small physical address space of the 21064 presents a

serious problem for large shared memory multiprocessors,

even when the compiler explicitly manages the global ad-

dress space. The use of external segment registers to extend

the effective physical addressing interacts poorly with the

memory system and complicates code generation. The pro-

vision of many external segment registers appears to be of

small value.

4 Remote Reads and Writes

The shell of the T3D provides a large set of mechanisms

for reading and writing to the global address space, each

with its own semantics and costs. The compiler writer must

determine which of these mechanisms can be used to imple-

ment a language primitive and then choose the fastest. This

section describes the implementation of the simplest Split-

C remote access primitives, read and write. We define the

semantics required by Split-C, characterize the performance

of similar T3 D mechanisms, and then describe our resulting
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Figure4: Remote Read Latency. Uncached and Cached Read Latency.

implementation. We end with a discussion of two semantic

mismatches – discrepancies between the behavior defined by
the language and that implemented by the machine – that

required awkward workarounds.

4.1 Split-C Global Memory Access

An assignment statement with a global pointer on the right-

hand side causes a remote read, and one with a global pointer

on the left-hand side causes a remote write. Reads and

writes are blocking operations; a read waits for the requested

value to arrive from the remote processor, and a write waits

for an acknowledgement that the write is complete. There-

fore, these operations appear sequentially consistent to the

programmer.

4.2 T3D Remote Reads

The T3D provides two types of remote reads: cached and

uncached. Both use the standard Alpha load instruction on

a global address, but a function code in the DTB Annex

entry specifies the type of read. A cached read updates

the requested line (32 bytee) in the the cache and places

the requested word into the specified register. An uncached

read fetches only the requested word and does not modify

the cache.

We determine the latency of remote reads by modifying

the local micro-benchmark so that it strides through remote

memory. The results are shown in Figure 4. An uncached

read costs roughly 610 ns (91 cycles) while a cached read

costs 765 ns (114 cycles). As we saw with local-memory

operations, strides of 16 KB or greater cause an off-page

DRAM access (this time in the remote node’s memory con-

troller) which increases the average accees time by about

100 ns (15 cycles). The cost of cached reads depends on the

contents of the local cache. In our micro-benchmark, array

sizes that fit in the cache result in local-cache memory-accees

times since the first time through the array brings the data

local for all successive iterations. Cached reads also perform

slightly differently for strides of 8 and 16 bytes. By bringing

over entire cache lines, cached reads essentially prefetch the

next 1 or 3 accesses. Note that all of our measurements are

to an adjacent node, with only one processor active; mea-

suring the additional latency through the network reveals

roughly a 13 to 20 ns (2-3 cycle) coet per hop.

To put these costs in perspective, remember that a re-

mote uncached read is only three to four tiimee slower than

a read from local memory. In fact, the latency to remote

memory on the T3D is only 80 ns higher than a main mem-

ory access (including TLB miss) on the DEC workstation.

This also is significantly faster than similar MPPs: the cost

of a read to a remote node on the DASH multiprocessor is

roughly 3 ps, and is about 7.5 ps on the KSR [23].

4.3 T3D Remote Writes

The next primitive we examine is the remote write. Just

as the remote read is an extension of the load inet ruction,

remote writes use the Alpha etore instruction on a global

address.

Because etores are handled by the write-buffer, and are

therefore non-blocklng, we must explicitly poll for the re-

mote acknowledgement in order to match the eemantics of

the language. The acknowledgement is automatically sent

by the T3D hardware and causes a bit in a local ehell sta-

tus register to be cleared. Figure 5 shows the write-latency

profile, with blocking remote writes completing in roughly

88o nanoseconds (130 cycles).

One subtlety arose while implementing tlhe blocking write

that illustrates the unwanted interactions that can occur

between the custom shell and the commc)dity core. The

remote-write status bit is set when there are writes that have

left the processor and not returned, but it is clear if there are

pending remote writes in the write buffer. Therefore, to poll

on this bit, one must first guarantee that the corresponding

write(s) have left the buffer. This can be done by iesuing a

memory barrier instruction or a sufficient number of writes,

which effectively increases the cost of the operation.

4.4 Compiler Implications

It was not immediately obvious which mechanism should

be used to implement the Split-C read primitive. Cached

reads offer a higher bandwidth, but are diflicult to use be-

cause the machine doee not guarantee coherence of cached

values. If the processor that owns the cache line updates

it, the change is not reflected on remote processors that

are caching the same line. Reads to the cache line would

then obtain stale data. Therefore, if cached reads were used

for reading remote values, the cache line would have to be
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into the network and get an acknowledgement.

flushed after the read. This restriction makes cached reads

less advantageous since a cache-line flush costs an extra23

cycles (equivalent to accessing main memory). Languages

such as HPF might be able to perform some type of global

analysis to determine when data-sharing occurs (and thus

when to flush), but this is not possible in a C-like language.

Therefore, the Split-C implementation uses uncached reads.

Figure 4 shows the total latency as seen by the programmer,

which is about 850 ns (128 cycles). The majority of this is

attributed to the remote read and Annex set-up time.

The Split-C write primitive uses the write mechanism

followed by polling and requires a total latency of 981 ns

(147 cycles), as seen in Figure 5. However, the operation

has a subtle associated cost. When a processor initiates a

remote write, the object being written to might be cached

by the remote processor that owns the object. In order to

maintain coherence, the T3D allows the caches to be op-

erated in a cache-invalidate mode. When a remote write

request is received, the corresponding cache line is flushed

even if that particular cache line isn’t currently cached. In

other words, we are forced to operate in this mode in the ab-

sence of higher-level information, and doing so may generate

spurious cache flushes in order to preserve coherence.

4.5 Semantic Mismatches

There are two idiosyncrasies of reads and writes on the T3D,

caused by tension between the machine’s shell and core, that

led to serious semantic mismatches between the machine and

the language:

Byte Writes: The Alpha does not support byte store

operations. The designers chose to simplify the memory in-

terface by not supporting byte read fwrite operations, but

instead provided a family of byte manipulation instructions
that operate on register values [24]. A byte store opera-

tion could therefore be implemented as a read-modify-write

sequence. However, on a multiprocessor like the T3D, we

cannot guarantee correct execution of a byte-store opera-

tion when multiple processors are updating the same word.

If two processors attempt to update a byte at the same time,

one update will clobber the other. Note that a solution us-

ing the load-locked and store-conditional instructions is no

longer possible, since these instructions were consumed by

annex manipulation. Section 7 looks at an alternative way

to support byte updates.

Global-Local Consistency Issues: Writes through global

pointers wait for the operation to complete irrespective of

whether the location being accessed is local or remote. How-

ever, writes through normal local pointers, which appear

as standard Alpha store operations, are buffered in a write

buffer. This could result in access order violations since the

global address space is also accessible through standard lo-

cal pointers. A read through a local pointer could overtake

a write operation issued earlier also through a local pointer

but to a different location. In such a situation, another pro-

cessor could observe this reordering of accesses, resulting in

a violation of sequential consistency semantics. To avoid

consistency violations, we could either ensure that writes

through local pointers are not caught in the write buffer by

using the memory barrier instruction or by explicitly pri-

vatizing the global address space. We currently choose the

latter, and require the programmer to insert explicit calls

around any region where shared global data may be accessed

through local pointers.

5 Split-Phase Accesses

5.1 Split-C Get and Put Operations

The Spiit-C get and put primitives are split-phase, non-

blocking operations that can be used to overlap communica-

tion and computation. A get operation initiates a prefetch

from a remote address to a local address, while a put opera-

tion initiates a non-blocking write to a remote location. The

sync operation waits for all outstanding split-phase accesses

to complete. The get and put operations lead to weak consis-

tency semantics because the accesses initiated between two

sgncs can no longer be ordered.

5.2 T3D Binding Prefetch

The T3D’s prefetch mechanism uses the Alpha fetch instruc-

tion to provide non-blocking reads of remote addresses. The

fetch instruction informs the sutmort circuitrv to fetch a. .
word from a remote node while the processor co~tinues com-

put ation. The fetch request is placed in the write buffer and

event nally sent to the specified remote processor. When the

processor actually needs the reqnested data it must pop the

word(s) from the 16-ent ry memory-mapped prefetch queue

bv issuirw a load instruction.

To ex~mine the performance of the prefetch mechanism

we used a simple benchmark that measures the average la-

tency of prefetching one or more words. The benchmark

groups n remote read requests into a series of prefetch in-

structions and then pops the results from the prefetch queue

and stores them to local memory. The results indicate the

extent to which the prefetch mechanism can overlap remote

access costs (Figure 6).

One (pref’etcl, pop from queue, store) sequence is slower

than a blocking read by abont 15 cycles, but issuing four

prefetches, popping the queue four times, and storing all

the results to local memory is significantly faster than four

blocking reads. The prefetch essentially allows the network

to be pipelined, thereby masking most of its latency. An

important conclusion we can draw from Figure 6 is that the

remote latency is almost entirely hidden as the size of the

group approaches 16. Therefore, the choice of 16 for the

size of the prefetch queue seems to be a reasonable one.

Note that when less than 4 prefetches are issued, a memory

barrier must be inserted before the pop from queue. This

guarantees that the prefetch has left the processor.
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Further instrumentation of the prefetch mechanism re-

veals the following cost breakdown:

Prefetch Issue: 4 cycles
Memory barrier: 4 cycles
Round Trip: 80 cycles
Prefetch pop: 23 cycles

This breakdown shows that the prefetch mechanism al-

lows about 75% of the cost of a remote fetch operation to

be overlapped with other useful work. When prefetches are

issued in groups of 16, we spend 31 cycles per prefetch/pop

operation. Subtracting the 23 cycles required for the pop

and the 4 cycles required for the prefetch issue leaves only

4 cycles of network latency and address manipulation over-

head.

5.3 T3D Non-blocking Writes

The Alpha store instruction is a non-blocking write opera-

tion; the processor simply issues a store to the write-buffer

and continues computation. Figure 7 shows the results of

the familiar micro-benchmark modified to write to a remote

processor. Writes with a stride of less than 32 bytes reveal

the write-merging behavior of the Alpha (similar to Figure

2). Larger strides show an average cost of 115 nanoseconds

(17 cycles) per write. At 16K, we once again see the sensi-

tivity to remote-memory DRAM page misses.

5.4 Compiler Implications

We can implement the Split-C getoperation with the prefetch

mechanism. However, some additional work is required since

the get operation also specifies a local address that serves as

the target for the fetched value. The target address needs

to be stashed away when the fetch is issued. This can be

accomplished if the compiler has sufficient information to

match the prefetches and the corresponding sgncs, which

might not be possible in the presence of unstructured con-

trol constructs. In the general case, we maintain a table for

storing these local addresses. The target address is stored

in this table at prefetch initiation time. When a sync op-

eration is encountered, or when the number of outstanding

fetch operations reaches 16, a memory barrier is issued, and

Non-blccking Remote Write Latency
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Figure 7: Non-blocking Write Latency. The average time to

write to a remote processor (no acknowledgement).

the values in the prefetch queue are dequeued and stored in

the appropriate target addreseee obtained from the table.

The Split-C implementation introduces two additional

pieces of overhead over the raw hardware prefetch mecha-

nism: the table update and the store into the locaf address

when the prefetch ie complete. The cost of the table update

and lookup operation is 10 cycles, and the cost of the locaf

store operation is 3 cycles. Figure 6 reveals tlhe final Split-C

get cost, which includes annex set-up time, table manage-

ment, and all other overheads.

The implementation of put is straight-forward from the

non-blocking write, and requiree the annex setup as well as

a few additional checks. The performance of the Split-C

primitive is shown in Figure 7. From this we see that put
average latency is about 300 ns (45 cycles).

6 Bulk Operations

6.1 Language Provisions

Bulk transfers occur in Split-C in two different flavors: im-

plicitly when an entire remote structure is accessed by a

read, write, get, or put in a single assignment and explicitly

through calls to brdk.read, bulk-write, bulk_get, and bulk-put
for copying contiguous regions of global memlory. The com-

piler transforms structure assignment operations into the

explicit bulk operations.

6.2 T3D: Block Transfer Engine

The block-transfer engine (BLT) is essentially a DMA de-

vice: given a remote processor number, a pointer to a buffer,

and a length argument, the engine initiatee a tranefer be-

tween the two processor’ memories. The operation epec-

ified can be either a read or a write. The BLT is also

capable of performing strided-array accesses. One would

think that this would be the natural match for the Split-C

bulk routines. However, unlike the hardware primitives we

have tested so far, this mechanism for remote memory ac-

cees is only available through an operating eystem invocation

with high software overheads. As language implementors,

we need to compare the BLT with the other remote access
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mechanisms that the T3D shell provides and answer the ob-

vious question of which mechanism to use in implementing

the bulk transfer routines.

To compare the different mechanisms for implementing

bulk transfers, the appropriate metric is the bandwidth at-

tained by the mechanisms for large reads. Using each of

mechanisms described before (uncached reads, cached reads,

the prefetch queue, and the bulk-transfer engine), we imple-

mented and micro-benchmarked four bulk read operations.

The left side of Figure 8 compares the resultant bandwidths

of each implement at ion.

As the figure indicates, for very large reads (i.e. greater

than 16 KB in size), the bulk-transfer engine achieves the

highest transfer rate, peaking at roughly 140 MB/s. For

reads between 128 bytes and 16 KB, the prefetch queue at-

tains the maximum bandwidth. At this point, the over-

head incurred by the BLT overcomes its superior maximum

transfer rate. Though cached reads bring over four words

at a time (whereas prefetches can only bring over one), the

latency-hiding ability of the prefetch mechanism makes it

strictly better than the cached reads, except in the case of

32 and 64 bytes3. At these points, the cached read can bring

over either one whole cache line or two, and thereby achieye

the best performance. Lastly, for very small transfers (8

bytes), the uncached read is optimal.

For bulk writes, we have two mechanisms available: the

non-blocking store instruction and the BLT. Figure 8 shows

the net difference between the two. Whether the local data

to be written is in cache or not, the performance of non-

blocking writes is superior to initiating the bulk-transfer en-

gine. The bandwidth for writes from local memory to remote

memory (i.e. not in the local cache) peaks at 90 MB/s, and

is apparently bus limited.

6.3 Compiler Implications

The implementation of the Split-C btdk.read and bulk-write

routines is an obvious progression from the micro-benchmarks.

The key cross-over point occurs at a transfer size of about

16 KB. At this size, the bulk transfer engine should be used

instead of the prefetch queue. For simplicity, the prefetch

queue is used even for 32 and 64 byte transfers; switching

this to cached reads would increase performance. Figure 8

shows the Split-C performance attained.

To implement the bulk get and put operations, we need

to compare the initiation time of the various mechanisms.

If we use the BLT for implementing a bulk get, we need to

wait only for the duration of initiating a BLT operation, and

we could overlap the actual transfer with local computation.

However, if we use the Drefetch mechanism for imrJement-

ing a bulk get, we find that removing the restriction of com-

pletion is not especially beneficial. This follows from the

fact that the prefetch queue can only have a maximum of

16 outstanding requests. Unfortunately, since BLT invoca-

tion overhead is egregiously high, we must use the prefetch

mechanism for implementing bulk gets of certain transfer

sizes. The cost of initiatin~ a bulk tran=fer ufiing the BLT

is 180 flsec. The prefetch mechanism can read about 7,900

bytes during that time interval. Therefore, the Split-C bulk

get uses the prefetch mechanism for all transfer sizes less

than 7,9oo bytes and the BLT for larger transfers. By sim-

ilar reasoning, the implementation of bulk put uses the Al-

3The performance of bulk transfers using cached reads hss an in-
flection point at 8K, This occurs because the cache line flushes (re-
quired to mamtain coherence) can now be batched mto an entire cache
flush operation, which is less expensive

pha non-blocking stores for all transfer sizes less than 16,900

bytes and the BLT for larger transfers.

6.4 Summary

We have now seen most of the T3D’s shell: cached and

uncached reads, writes, prefetching, and bulk transfer. Of

these, the prefetch and write are most useful. Prefetch would

be the ideal read mechanism if a larger pay-load could be

brought over. Since prefetch is so efficient, both cached and

uncached reads are of little use. Cached reads are especially

difficult to utilize due to the lack of hardware coherence. The

block transfer engine is cumbersome, and would be greatly

improved if access were from user level. Lastly, writes are

the simplest and most efficient data movement mechanism,

achieving both low-latency and high-bandwidth data trans-

fer.

7 Bulk-synchronous and Message-driven Computation

In this section we investigate optimizations that are available

for applications with structured communication and syn-

chronization patterns. Typically, this structure arises where

there is a well-understood global view of the computation al-

lowing information to be pushed to where it is needed next.

For example, in stencil calculations where the boundary re-

gions must be exchanged between steps, the communica-

tion patterns are predefine. In a “bulk synchronous” style,

the program proceeds as a phase of purely local computa-

tion followed by a phase in which all processors store data

into the boundary regions of their logical neighbors. Global

barriers between phases enforce all necessary dependence

without requiring fine-grain completion of individual stores.

In a “message driven” style, a node can proceed with the

next phase of computation as soon as it has received its new

boundary data. The language provides a means of express-

ing the lenient synchronization requirements of structured

applications, potentially enabling the use of various opti-

mization at the machine level.

7.1 Language Support: Signaling Stores

Split-C allows the programmer to reason at the global level

by specifying clearly how the global address space is parti-

tioned over the processors, as discussed in Section 3. What

is remote to one processor is local to another. The :- assign-

ment operator, called store, stores a value into a global lo-

cation, but the issuing processor is not necessarily informed

of its completion. The extremely weak completion seman-

tics of store mean that only one-way communication is re-

quired (i. e., no acknowledgements) and stores can be heav-

ily pipelined. There are two ways of detecting completion of

stores. A form of global barrier, all-store-sync, returns when

all stores issued before the barrier have completed. This is

sufficient to support bulk-synchronous execution. Alterna-

tively, completion can be detected locally using store-sync,
which returns when a specified amount of data haa been

stored into the region of the address space owned by the

local processor. This supports message-driven execution. In

many Split- C implementations, signaling stores are t he most

efficient form of communication when applicable.

7.2 T3D Design Constraints

The T3D offers no store mechanism that avoids acknowl-

edgement upon completion. In this view, the completion
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semantics provided by the machine are stronger than those

specified by the language. There still is a potential perfor-

mance gain on signaling stores (now essentially puts), since

waiting for completion can be deferred and many stores can

potentially be issued before waiting.

The key problem with remote reade and writes performed

directly in hardware is that the recipient of the data is not

informed that the data is in fact present, as required for

message-driven programs. This is in contrast to many other

Split-C implementations where the global memory opera-

tions are constructed upon Active Messages and a etore han-

dler can, for example, increment a counter. On the T3D, we

must construct essentially the equivalent of Active Messages

to provide notification to the recipient, apart from the ac-

tual data transfer. This brings three other significant com-

ponents of the T3D shell into the picture: explicit messages,

fetch&increment registers, and fuzzy barriers.

7.3 User-level Message Queue

The T3D provides direct access to the network via a mes-

sage queue. The mechanism is straight-forward: a four word

message is composed and a PAL call is issued to atomically

put the message into a cache-line sized transfer to the spec-

ified destination. PAL code is provided by the Alpha as an

architected interface to microcode functions. We measure

thetime to inject a message into thenetwork as813ns (122

cycles), comparable to the time to perform a remote read.

Unfortunately, the send cost is the fast part in themes-

sage transfer. Upon message reception, the processor is in-

terrupted, the message is placed in a user-level queue, and

one of the following two actions take place: control is either

returned to the original thread or transferred to a specific

message handler. The measured cost of the interrupt is 25

microseconds (37oo cycles), and the switch to a message

handler adds another 33 microseconds (5OOO cycles) on top

of this.

7.4 Fetch&Increment Registers

Given the high cost of message receipt due to operating sys-
tem intervention, we are led to consider ways of constructing

message transfers out of the fast shared memory primitives.

One approach is to have each node provide a dedicated in-

put queue for every other node. In this ca:se send is again

eimple (check availability in remote queue, store data, store

flag), but determining that a meeeage has arrived requires

searching all the queues. What really is required is an N-to-l

queue to bring all the incoming messages or notifications to-

gether (which is, of course, what the phyeical network does).

The T3D provides a set of fetch&increment registers to aI-

low such multi-access data structures to be constructed ef-

ficiently. The fetch&increment operation is essentially the

cost of a remote read, i.e., about 1 microsecond. To de-

posit a message of four data words and one control word

into a remote queue (essentially equivalent to a CMAM Ac-

tive Message call[26]), takes 2.9 pe, whereas dispatching on

the receiving end and accessing the message takes 1.5 ,US.

As this provides the full power of poll-based Active Mes-

sages, it provides a basis for supporting the message-driven

store-s~nc as well as the ability to execute a, function atom-

ically on a remote processor. We can also provide a correct

implement ation of byte-write using this mechanism, as dis-

cussed in Section 4.

7.5 Fuzzy Barriers

Bulk-synchronous execution can be supported, as well, but

issuing the store is slower than a put. The global barrier

waits for outstanding stores to complete, performs the start-

barrier instruction, and then polls the message queue until

all other processors have reached the start-barrier before

completing the barrier. This “fuzzy” barrier gives us the

ability to place code between the start-barrier, which noti-

fies other processors that the synchronization point has been

reached, and the end-barrier, which resets thle global-OR bit

so the barrier can be used again, and allows the fast hard-

ware barrier to be used while supporting remote memory

access and user-level message passing. On many other plat-

forms, the Split-C implementation was unable to use the

fast native barriers because they did not compose well with

other operations.

8 A Case Study: EM3D

In this section we bring together the various components of

the language implementation on the T3D in a performance
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Figure 9: EM5’D Performance. Performance obtained on

several versions of EM3D using a synthetic kernel graph with

16,000 nodes of degree 20 on 32 T3D processors.

study of a scalable Split-C application, EM3D, that models

the propagation of electro-magnetic waves through objects

in three dimensions [18]. A preprocessing step casts this

problem into a simple computation on an irregular bipar-

tite graph containing nodes representing electric and mag-

netic field values. The computation consists of a series of

“leapfrog” integration steps: on alternate half time steps,

changes in the electric field are calculated as a linear func-

tion of the neighboring magnetic field values and vice versa.

Specifically, the vrdue of each E node is updated by a weighted

sum of neighboring H nodes, and then H nodes are similarly

updated using the E nodes. Thue, the dependencies between

E and H nodes form a bipartite graph. In the parallel ver-

sion of EM3D this graph is represented directly using global

pointers, and is spread across all of the processors.

We have develoDed six versions of the armlication with. .
varying degrees of optimizations using the capabilities of-

fered in Split-C. We consider a collection of synthetic graphs

with 500 vertices on each processor with each vertex having

a degree of 20, the same inputs seen in [6]. The communi-

cation requirements of the problem are scaled by adjusting

the fraction of edges in the graph that cross processors in a

synthetic graph. The useful performance metric when scal-

ing both problem and machine size is the average time per

edge, as shown in Figure 9 for the T3D. This corresponds

to reading the value of a neighboring E or H node and a

floating-point multiply-add. In the figure, the horizontal

axis is the percentage of remote edges.

In the simplest version (Simple) the value associated with

an edge is simply read, i.e., a blocking memory read is is-

sued to fetch the possibly remote value. The same value is

fetched multiple times if it is required more than once during

a single time-step. The other versions rectify this problem

by introducing local “ghost nodes” that serve as temporary

cache-sit es for non-local values. The comput at ion is divided

into two phases: the first phase fetches the remote values

into the local ghost nodes, and the second phase performs

the weighted sum computation based on the ghost node val-

ues. With this change, Bundle benefits from reuse of cached

values and from better code generation since the communi-

cation and compute phases are separated. Next, we optimize

the compute phase of the program by loop unrolling and

soft ware pipelining. In version Get, we pipeline the remet e

reads that fill the ghost node values using Split-C gets. In

Put, we move the responsibility of filhng a ghost node from

the local processor that maintains the ghost node to the re-

mote processor that maintains the actual value, using put
operations to update them. The last optimization gathers

all the values that need to be sent from one processor to

another processor into a single buffer and uses a bulk-put
transfer to fill the ghost node values.

By introducing ghost nodes and optimizing the local

computation, we reduce the cost of processing an edge to

0.37,usec when all the edges are local. This corresponds to a

floating point performance of 5.5 MFlops per processor since

there are two floating point operations involved in process-

ing an edge. The other versions do not affect this local node

performance; they primarily focus on decreasing the commu-

nication costs. As expected, we decrease the communication

costs by pipelining the reads in the Get version. The Put

version performs better than the Get version because puts
have less overhead than gets. Finally, the Bulk version has

the best performance since it avoids repeated Annex set-up

operations.

9 Analysis and Conclusions

The goal of this study was to derive an efficient implemen-

tation of a parallel language, Split-C, on a novel large-scale

multiprocessor, the CRAY-T3D, using a systematic micro-

benchmarklng methodology. Thie approach is warranted be-

cause the T3D provides an elaborate shell around a sophis-

ticated microprocessor, the DEC Alpha, to support global

operations which are critical to a parallel language. The

performance of the many shell operations was not previ-

ously documented and the interactions between them were

potentially non-trivial.

In particular, the shell provides loads and stores of re-

mote addresses, but requires manipulation of external seg-

ment registers to expand the physical address into one con-

taining a full processor number. The external registers are

managed by the compiler, and the usage strategy potentially

interacts with the use of the TLB. The Alpha takes an ex-

treme position on the weak ordering of memory operations,

so writes are only known to have been committed after an

explicit memory barrier instruction and reads can bypass in-

dependent writes. The shell provides additional operations

to detect completion of remote operations. Various forms of

cache-ability are supported, but caching of remote memory

is not coherent. The Alpha provides prefetch “hints,” which

the T3D shell interprets as a binding load into an off-chip

prefetch queue. The shell provides a powerful block transfer

engine, which can move data to or from remote memory,

but requires operating system intervention on start-up. It

also supports explicit messaging through a user-level output

FIFO, although the receive requires operating syetem inter-

vention to handle the interrupt. The shell also provides an

extremely fast global “fuzzy” barrier and special registers to

support fetch&increment operations on remote nodes.

The large menu of primitives meant that there were po-

tentially many different ways to realize the same language

primitive on the machine. Careful assessment of the perfor-

mance trade-offs was required to select between them. In

making this selection, we have provided a thorough empir-

ical characterization of the performance of the many prim-

itives supported in the machine. The raw performance of

the remote memory operations is very impressive and sig-

nificantly faster in absolute terms than any previous large
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scale design. Remote access is performed in less than 1 ,us,

only three to four times the latency of a local cache miss,

depending on whether the local DRAM access is off-page

or not. However, the fast clock-rate of the Alpha means

that this is still roughly 100 cycles. The prefetch support is

very effective and capable of reducing the effective remote

latency to 250 ns, where the remaining time is filled with

useful work or used to issue additional prefetches.

In many cases we found that either the performance char-

acteristics or subtle interactions between the language and

hardware eliminated many of the potential options. Fur-

ther, architectural oversights in both the shell and the mi-

croprocessor were limiting factors. For example, the po-

tential hazards arising from physical synonyms in the write

buffer prevent the compiler from using many external seg-

ment registers, except in special situations. The potential

degradation of TLB efficiency leads to the same conclusion.

Updating the configuration of the external registers is fast

enough (roughly 23 cycles), that explicit checks can out-

weigh the cost of simply reloading it. In light of this, a

single Annex entry for remote access could have sufficed.

The lack of partial word stores make the use of shared data

structure with data types that are less than a word, e.g.,

character arrays, very cumbersome, even when there is no

actual interaction on the individual elements. The prefetch

mechanism is so fast that there is little performance advan-

tage to providing the load, except that tracking the implicit

hardware management of the prefetch queue can be costly.

The start-rip cost of the block-transfer engine is large, so

prefetches and non-blocklng writes are the best way to per-

form bulk transfer, except for very large transfers, in excess

of 16 KB. Finally, the cost of message receipt is large, so that

it is generally better to construct a remote message queue

using the shared memory primitives and the fast synchro-

nization support.
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