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Abstract

Recent supers calar processors issue four tnstructzons

per cycle. These processors are also powered by

highly-parallel supers calar cores. The potential per-

formance can only be explotted when fed by high in-

struction bandwidth. This task is the responsibility of

the instruction fetch unit. Accurate branch prediction

and low I-cache miss ratios are essential for the e@-

cient operation of the fetch unit. Several studies on

cache design and branch prediction address thas prob-

lem. However, these techniques are not sufficient.

Even in the presence of efictent cache designs and

branch prediction, the fetch unit must continuously

extract multiple, non-sequential instructions from the

instruction cache, realign these in the proper order,

and supply them to the decoder. This paper explores

solutions to this problem and presents several schemes

with varying degrees of performance and cost. The

most-general scheme, the collapsing bufler, achieves

near-perfect performance and consistently altgns in-

structions in excess of 90% of the time, over a wide

range of tssue rates. The performance boost provided

by compiler optimization techniques M also investi-

gated. Results show that compiler optimization can

significantly enhance performance across all schemes.

The collapsing buffer supplemented by compder tech-

niques remains the best-performing mechanism. The

paper closes wtth recommendations and suggestions

for future.
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1 Introduction

The recent MIPS R1OOOO, Sun UltraSPARC and

AMD K5 superscalar processors issue four in-

structions per cycle, with higher issue rates ex-

pected [1], [2], [3]. These processor designs employ

multiple functional units and aggressive hardware

scheduling to extract parallelism in the instruction

stream. Next generation superscalar prcjcessors will

most likely employ multithreading to further enhance

parallelism. These highly parallel execution cores

must be fed by sufficient instruction bandwidth, re-

quiring optimized fetch unit design.

Fetching of instructions is constrained by three ma-

jor factors: instruction cache performance, taken or

indirect branches in the fetch stream, andl instruction

alignment. The design of the instruction cache has

received much attention [4], [5], [6]. This body of work

includes compiler techniques to enhance instruction

cache performance [4], [7], [8]. The combined effect of

this work is to lessen the impact of instruction cache

misses on fetch bandwidth. Branch prediction is the

second factor that constrains fetching. Several re-

cent studies address the accuracy of branch predic-

tion [9], [10], [11]. But branch prediction alone is not

sufficient to deliver high fetch bandwidth. Even when

branches are predicted accurately, the fetch unit must

extract multiple, non-sequent ial instructions from the

instruction cache in one cycle. The layout of instruc-

tions in the cache often frustrates this task. For high

instruction bandwidth at high issue rates, the fetch

unit must realign instructions in the predicted order,

then pass the instructions on to the decc)de and exe-

cution units. Thus the third constraint on instruction

fetch is due to the alignment of instructions in cache

blocks. This problem is just emerging as issue rates

increase beyond two instructions per cycle. This pa-

per develops several solutions to the alignment prob-

lem.

Several approaches to high-bandwidth instruction

333

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223982.224444&domain=pdf&date_stamp=1995-05-01


fetch have been implemented for commercial pro-

cessors. Most decouple the instruction fetch unit

from the execution unit via queues, and allow the

fetch unit to speculate beyond branches [1] ,[12]. This

decoupling reduces the impact of more-complicated

(and higher-latency) instruction fetch hardware. In

addition to this, the six instruction per cycle IBM

POWER2 architecture employs an instruction cache

with eight, independently-addressable banks [13].

This fetch unit can align many instruction sequences,

but is limited by the POWER2’S static branch pre-

diction mechanism, which is known to have lower

performance than dynamic schemes. The recently-

announced AMD superscalar 29K addresses this lim-

itation by embedding prediction and branch target

address information in the cache array to enable a

taken branch to be resolved without penalty [3]. How-

ever, this scheme cannot handle short branches within

a cache block (e. g., hammocks), or multiple branches

in one fetch, both of which are encountered frequently

for integer code.

This paper presents several schemes of increasing

complexity that address the instruction alignment

problem. Implementation details are discussed for

all the schemes. All comparisons are based on simu-

lated results of the IPC for three microarchitectures.

The results show that the most-complex scheme,

the coliapstng buffer, efficiently handles short for-

ward branches and many cases of multiple branches.

It achieves performance near the theoretical upper

bound for a highly-parallel, 12 instruction issue mi-

croarchitecture. The effects of compiler optimiza-

tion on the performance of the schemes is also stud-

ied. The profile-driven code reordering optimization

is found to be highly successful, significantly enhanc-

ing the performance of all schemes. A second opti-

mization, nop insertion for branch target alignment,

produces mixed results, suggesting this optimization

plays only a secondary effect. The data is used to sug-

gest several approaches for instruction fetch design at

high issue rates.

The remainder of this paper is organized into three

sections. The following section presents the machine

model, the experiment al technique, and other related

assumptions employed in this study. This is followed

by a discussion of the lower and upper bounds for in-

struct ion alignment performance. These bounds are

termed sequential and perfect alignment, respectively.

The designs and performance of the proposed hard-

ware schemes are then discussed. The effect of com-

piler optimization is analyzed to find a balance be-

tween hardware and software solutions. The paper

closes with recommendations and suggestions for fu-

ture work in this area.

2 Experimental setup

The results that follow are presented for all six

SPECint92 benchmarks, three additional integer

benchmarks (mpeg-play, bison, and flex), and six

SPECfp92 benchmarks. The benchmarks were com-

piled using GCC with the compiler options “-O

-f schedule -insn.” The latter option invokes a dag-

based local scheduler. Experiments with this option

show that it marginally enhances parallelism. All ex-

periments were run using HP 9000/735-class work-

stations. The instruction set used for pipeline simu-

lation is a simplified version of GCC’S intermediate

code captured after PA-RISC-specific register alloca-

tion but before final code generation. Instructions are

encoded using a fixed, 32-bit format.
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Figure 1: Structure of simulated microarchitecture.

Traces were captured using the spike tracing tool

and then fed into a processor simulation. This simula-

tion assumes a full-Tomasulo, out-of-order execution

microarchitecture, depicted in Figure 1. Three ver-

sions of the microarchitecture are discussed in this pa-

per, and their parameters are summarized in Table 1.

All three versions have a scheduling window that re-

solves dependencies and implements Tomasulo-style

renaming via tags. Entries in this window corre-

spond to generic reservation stations. This window

also serves to decouple the fetch unit from the execu-
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tion unit, allowing the fetch unit to speculate ahead

in the instruction stream. Speculative execution of

more than one predicted conditional branch is sup-

ported via the precise interrupt facility (see below).

The three classes of microarchitectures support dif-

fering degrees of speculation, in proportion to their

issue rates. For example, the P14 microarchitecture

issues four instructions per cycle. Experiments with

the degree of speculation showed that speculative ex-

ecution beyond two branches was required to keep

the pipeline full. Similarly, the P18 architecture sup-

ports speculation beyond four, and the P112 supports

speculation beyond six branches.

Independent instructions are fired from the window

into the execution core, which is composed of fixed-

point units (FXUS), floating-point units (FPUS),

branch units, and the data cache interface. Access

to the data cache is through load units and a store

buffer. Data cache misses are not explicitly modeled

in the simulator. The P14 model has two fixed-point

units (FXU’S), two floating-point units (FPU ‘s), and

two branch units. The P18 model is similar, but

scaled by doubling its resources to create a more par-

allel microarchitecture. The issue rate is increased to

eight instructions per cycle. The P112 model follows

this design pattern, with an issue rate of 12 instruc-

tions per cycle.

Completing instructions are distributed via result

buses. The number of result buses equals the total

number of function units, so that bus contention sel-

dom occurs. Two register files are maintained: the

Messy register file and the Future register file. The

former is used for out-of-order execution. If used

without augmentation, the microarchitecture would

be limited to imprecise interrupts. This is remedied

using a reorder buffer [13]. The chief performance

metric is instructions retired per cycle (IPC), which is

the number of instructions leaving the reorder buffer

(i.e., retiring) per simulated execution cycle.

All three microarchitectures have direct-mapped

instruction caches. The cache block size is calculated

so that a block holds the maximum issue rate of in-

structions. P14 has size 16B, P18 has size 32B, and

P112 has size 64B blocks. The cache sizes are also

scaled with issue rate: 32KB (P14), 64KB (P18), and

128KB (P112).

A branch-target buffer employing a 2-bit counter

predictor is used for this study. The buffer is direct-

mapped and has 1024 entries, comparable to com-

mercial BTB designs (e.g., 512 entries for the Pen-

tium [14], or 256/512 entries for the decoupled Pow-

erPC 604 BTB [15]). Branch target addresses are

also cached in the BTB for each entry. The BTB

is interleaved into multiple banks with an interleave

Table 1: Machine model parameters: P14, P18, and

P112.

P14Machine model

Issue rate I 4 instructions/cycle

-q
8 Machine mode

Issue rate

.,3

8 instructions/cycle
Window queue 24 entries
Instruction cache 64KB, dir. mapped, 32B blocks
Fixed-point unit 4, with latency = 1 cycle
Floating-point unit 4, with latency = z cycles
Branch unit 4, with latency = 1 cycle
Speculation Speculates beyond 4 branches

Pfl?2 Machine mode ~
Issue rate

, .J

12 instructions/cycle

Window queue 32 entries

Instruction cache 128KB, dir. mapped, 64B blocks
Fixed-point unit 6, with latency = 1 cycle
Floating-point unit 6, with latency = 2 cycles
Branch unit 6, with latency = 1 cycle
Speculation Speculates beyond (6 branches

Parameters common to all machtrte models

lnt erlockmg t’ Ull

=

lomasulo, out-o -or er
Branch target buffer 1024-entry buffer, 2-bit counter

factor equal to the number of instructions in a cache

block (e.g., an interleave factor of 4 for P14). BTB.-
interleaving is discussed further below.

3 Hardware Fetch Mechanisms

The lower bound for instruction fetch bimdwidth is

one instruction per cycle in the presence of a cache

hit and a correctly predicted branch. However, few

fetch mechanisms perform so poorly. A more-realistic

lower bound is the performance of a sequential block

fetch scheme. Such a scheme fetches an entire cache

block and then selects multiple instructions from the

block. This removes the normal cache word select

logic and replaces it with masking logic. No hardware

is provided to handle short branches inside the block

(intra-block branches). The only code sequences that

are handled by the technique are sequential instruc-

tions. For this reason, the technique will be called

sequential throughout this paper. The c,peration of

sequential is depicted in Figure 2 for a short program

fragment.

The upper bound of instruction fetch bandwidth

is when the pipeline is never starved due to a lack
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Figure 2: Example operation of sequential for se- P14 P18 P112

quence 1,2,5,8.

of instructions. This bound is referred to as per-

~ecf. Specifically, perfect assumes that theinstruction

memory bandwidth into the scheduling window is un-

limited (in the absence of instruction cache misses).

Figure 3 presents the harmonic mean of the IPC for

sequential and per~ect for the integer and floating-

point benchmarks. The data justifies the need for

better instruction fetching for all machines, with the

possible exception of floating-point code executing

on the P14 architecture. The loop-intensive floating-

point benchmarks exhibit regular access patterns, re-

ducing the need for better fetch mechanisms. The in-

teger benchmarks require more effective mechanisms

for better performance, due to a higher dynamic fre-

quency of branch instructions.

3.1 Interleaved sequential

One enhancement to sequential is to interleave the

instruction cache into two banks and prefetch one se-

quential block in advance. This interleaved sequen-

tial scheme (Figure 4) achieves higher effective issue

rates over plain sequential for accesses that span block

boundaries. Non-sequential accesses are not allowed.

For example, if the sequence were 1, 2, 5, 8, as in

Figure 2, the hardware would not be able to remove

the useless instructions between 2 and 5. As another

example, assume interleaved sequential is fetching in-

Figure 3: Performance of sequential versus perfect for

integer and floating-point benchmarks.

structions in cache blocks A, B, C, D, etc. The cache

is accessed for A and B, then B and C’, then C and

D, etc.

The interleaved sequential scheme must determine

and eliminate any predicted non-sequential instruc-

tions before forwarding to the decoder. This is ac-

complished using a BTB interleaved by the number

of instructions in a cache block [9]. A IBTB query

returns the successor block address and a bit-pattern

predicting which instructions in the fetched block are

valid for decoding. The successor block address is

used to invalidate the sequential prefetch block, The

block address and bit-pattern are found using a chain

of comparators (depicted in Figure 5). Delay through

the chain is proportional to the number of instruc-

tions in a cache block times the comparator propa-

gation delay. (If this is significant, the chain can be

redesigned using generate/propagate logic to reduce

the delay.)

Two additional hardware entities are included to

assist instruction aligning. These are the interchange

switch and the valid select logic. The interchange

switch can reverse the order of the fetch block and

the target block. For example, if the fetch block is

in the right-hand bank in Figure 4 and the target
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(a) Interchange switch

32*(#inst/block) 32*(#inst/block)

, , , , L ,.e. ==t, a...

3 1

parameters:

logic: 64*k tmnynission gates.
mverte,ldrlver

(where k = #,nWtdock]

delay : 2 gate delays

(b) V-lid sekct kldC—
cache block cache block

1 I J

parameters:

Ioglc: 3, k-to—l 32—tit roux, s

3, (k—l)—to- 1 32—bit ,nux, s

3. “2-,0-1 32-bit ,nux, s

<where k = #i”st/block)

delay: 4 gate delays

all I’”e. for “Id, d selec, are .3 Z-h,tx wide

Figure 6: Design details of (a) the interchange switch, and (b) the valid select logic for interleaved sequential

and banked sequential.

block is in the left-hand bank, the two blocks must

be reordered so that instructions fed to the decoder

are sequential. The design of the interchange switch

that performs this task is shown in Figure 6(a). This

design requires 64 x k transmission gates for cache

blocks that hold k, 32-bit instructions per block.

The valid select logic has the responsibility of se-

lecting the valid instructions from the two cache

blocks. For an input of 2 x k instructions, this logic se-

lects the first k sequential, valid instructions as deter-

mined by the BTB prediction information. It requires

an array of 32-bit multiplexer, and has nominal de-

lay. The design of valid select is shown in Figure 6(b)

(the right-most multiplexer is only required for banked

sequential, which is described below).

Interleaved sequential is pipelined into three stages:

BTB, Cache, and Interchange- Valid. There is bypass

logic between the BTB and Cache stages so that the

fetch pipeline latency for a mispredicted branch is two

cycles, rather than threel. Since the typical length of

instruction runs between branches is approximately

four to six instructions, interleaved sequential does

not perform well for high issue rat es. This scheme

1The total misprediction penalty is the sum of the fetch

mispredlction penalty plus the number of cycles between when
the branch is decoded and when it retires from the reorder

buffer. This second component is instruction stream dependent

and is modeled by the simulator.

can be enhanced by hardware that allows fetching to

proceed across a branch.

3.2 Banked sequential

The banked sequential scheme is a modification of

interleaved sequential to allow a limited amount of

across-branch fet thing. The hardware configuration

is very similar to the former scheme (Figure 4). Align-

ment is possible only when the branch and its desti-

nation reside in different memory banks (inter-block

branches). The hardware cannot handle intra-block

branches. For a given fetch address, banked sequential

finds the likely successor address then accesses the

cache simultaneously for both the fetch lblock and its

successor block. The likely successor address is deter-

mined by querying an interleaved BTB, as was done

with the interleaved sequential scheme. Bank inter-

ference can occur if the successor block is in the same

bank as the fetch block. In such a case, the successor

block is not fetched.

Pipelining of banked sequential is similar to inter-

leaved sequential, where the interchange switch and

valid select form one stage of the three-stage pipeline.

The BTB does not need to be queried again for the

successor (prefetch) block. This is because as the

fetch and successor blocks are being looked up in

the cache (the second pipeline stage), the next in-

struction fetch queries the BTB with the successor
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block address (the first stage). The BTB determines

the successor block’s valid bits with this overlapped

cache/BTB access. Hence, the valid bits for the suc-

cessor block are ready for use by valtd select without

two BTB queries.

Performance for banked sequential islimited by its

inability to fetch across intra-block branches. The

percentage of such branches to all taken branches

for the workloads under study are shown in Table 2.

For the P14 machine (16-byte blocks), this percent-

age is small across all benchmarks except compress

(14.58%). Itincreases dramatically asthe block size

increases. Eqntott increases from 6.13% to 29.26%

from P14 to P18 (32-byte blocks). For P112, al-

most half of the taken branches for eqntott (41.4070),

espresso (45.68’%o) and wave5 (41.73?10) have their

targets in the same block as the branch. This sug-

gests the need for a mechanism to handle intra-block

branches at high issue rates.

Table2: Percentage oftaken branches with target in

Figure 4: The interleaved sequential and banked se-

quential schemes.

—

the same block ( zntra-block branches).

!,WW address
fetch addre,,+4

\,
rclch ad<!ms+a fetch WMress+12

predscuon br!s bank O

t,tcl, ,uldre.w

w,d,d ummcumb,t,

Figure 5: The interleaved BTB design (shown for

P14).

Class

Int.

FP

Benchmark

bison

compress
eqntott
espresso
flex
gcc
li

mpeg.play
Sc

doduc

mdljdp2

nasa7

ora

t omcatv

wave5

P14

-

14.58%

6.13%

1.40%

1.29%

4.98%

0.00%

0.70%

0.17%

-miK

0.26%

0.03%

0.01%

0.08%

2.71%

P18

ZiZT%-

14.59%

29.26%

14.86%

3.88%

14.08%

5.74%

7.66%

11.02%

im’mr

24.37%

0.06%

19.01%

0.17%

35.21%

P112

Xi%i%-

34.63%

41.40%

45.68%

24.79%

24.73%

19.07%

11.96%

21.59%

XXiT%--

66.10%

0.08%

23.16%

13.97%

41.73%

3.3 Collapsing buffer

The collapsing buffer scheme removes the useless in-

structions between an intra-block branch and it’s tar-

get. It is an implementation designed to achieve

rnergtng [16], so that the target instruction follows

the branch instruction in the decoder. This results

in better decoder utilization and may also result in

higher IPC.

The collapsing buffer scheme is shown in Figure 7.

The BTB and cache are accessed in the same fashion

as the previous two schemes. An additional buffer is
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of the crossbar takes one cycle, the fetch mispredic-

tion penalty is two cycles. The shifter implementa-

tion will have a much higher misprediction penalty.

Experiments with a penalty of three or more cycles

produced little performance advantage for co//aps-

ing buffer over banked sequential, arguing against the

shifter implementation (this is demonstrated below).

3.4 Performance of hardware schemes

The simulation results for sequential, interleaved se-

quential, banked sequential, and the collapsing bufler

are shown in Figure 9(a) (integer benchmarks) and

Figure 9(b) (floating-point benchmarks). Interleav-

ing sequential provides a slight performance increase

for both classes of benchmarks. Added fetch ca-

pabilities of the banked sequential and the collaps-

ing buffer schemes provide distinct perfc)rmance im-

provements, especially for integer benchmarks at

higher issue rates. The floating-point benchmarks

before

collapsin

after

collapsing 1 2 5 8

l’vtl’
1258

to decode

Figure7: The collapsing buffer scheme.

added that collapses the gaps between valid instruc-

tions caused by intra-block branches. (Because of the

capabilities of this buffer, the valid select logic of the

previous two schemes has been removed.) Figure 8

details two possible implementations for the collaps-

ing buffer. The first is a shifter-based implementa-

tion, and the second is a bus-based crossbar. The

two implementations are open to tradeoffs based on

area, speed and interconnect density. The crossbar

implementation has the added advantage of being ca-

pable of handling backward branches, although this

behavior was not supported by the controller modeled

here.

Collapsing buffer is pipelined in a fashion similar

to banked sequential. The crossbar implementation

of the buffer removes the need for the inter-change

swztch in addition to valid select logic. If traversal

ha;e well-behaved branches. Co&~quently, the per-

formance of all the schemes for these benchmarks

is relatively close for the P14 machine. The need

for more-sophisticated fetch mechanisms for floating-

point code is more evident for the P18 and P112 ma-

chines, whose higher issue rates place a greater strain

on the fetch unit.

The eollapstng bujfer is the most successful

alignment mechanism across all processor designs.

Floating-point benchmarks achieve almost perfect

performance using this technique. Integer perfor-

mance is also high, with IPCS very close to perfect.

The justification for this scheme is provided by the

difference in performance when compared to banked

sequential for the P112 machine. Here the gap in per-

formance between the collapsing bufler and the other

schemes is readily apparent.

Effective issue rate (EIR) is the rate at which in-

structions are successfully supplied to the decoders.

For perfect, EIR is less than the ideal clue to cache

misses. For sequential, interleaved sequential, banked

sequential, and the collapsing bufler, EIR. is less than

EIR(perfect) due to alignment failures. The ratio

EIR/EIR(perfect ) captures the ability of each of the

schemes to align data. This metric is presented for

each of the four schemes in Figure 10(a) (integer) and

Figure 10(b) (floating-point). The collapsing bufler

is the most-consistent scheme for delivering high EIR

compared with EIR(perfect). It retains high perfor-

mance in spite of increased issue rates from P14 to

P112. The other schemes decrease in relative effi-

ciency with approximately the same behavior from

P14 to P112. (This is true for both integer and

floating-point benchmarks.) This demonstrates that
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(a) Shifter-implemented collapsing buffer

#inst/bIock #inst/block

~~

~)

T “-b’”

parameters:

logic: 64*k, 1 –bit registers

(64*k–32) transmission gates

(where k = #inst./block)

delay mput-dependene
best case: 1 latch delay
worst case: (Ig(k)–1 )*(latch delay)

(e.g., Z*(latch delay) for P14)

(b) Bus-based crossbar-implemented collapsing buffer
parameter

logic: 2*k, l_~O_k 32_~~ de~ux>s

(where k = #inst./block)

delay: I gatedelay+ bus
propagation delays

all lines 32-bits wide

Hi+

Figure 8: Design details of the collapsing buffer implemented (a) as a shifter, and (b) as a bus-based crossbar.

the collapsing bufler is a scalable alignment scheme,

capable of delivering a high number of useful instruc-

tions in the presence of high issue rates.

In Section 3.3 it was mentioned that the shifter

implementation of collapsing bufler does not pro-

vide much performance advantage over banked se-

quential. Figure 11 quantifies this observation. This

figure is similar to Figure 9(a), except the collaps-

ing bufler was simulated with a fetch mispredic-

tion penalty of three cycles. (This is perhaps the

best-case performance for the shifter implementa-

tion.) Banked sequential actually performs slightly

better than the collapsing bu#er/shifler for P14, and

only slightly worse for P112. This suggests that

a Iow-misprediction-penalty implementation such as

the crossbar is required to benefit from alignment us-

ing collapsing buffe; .

4 The Effects of Compiler Optimizations

The hardware schemes presented above are limited

by their ability to fetch across taken branches. Re-

duction of the number of non-sequential instruction

accesses can lessen the impact of this limitation. The

dynamic occurrence of taken branches can be reduced

via compiler optimizations such as trace or superblock

scheduling [17], [18]. These techniques reorder the

code at compile time to form groupings of basic blocks

ZThiS Observation is a function of the accuracy Of the branch

predictor.

that tend to execute sequentially. These larger group-

ings can be used to improve instruction cache per-

formance, expand the scope of code scheduling, and

enhance traditional optimizations [4] ,[7] ,[8] ,[19].

The effect of code reordering on the performance

of the schemes was measured via simulation. Code

reordering waa performed on the benchmarks using

trace selection and trace layout [7]. Six runs were

performed for each integer benchmark. Each of the

first five runs used a unique program input per run to

generate profile statistics. These profiling inputs were

taken from the input sets supplied by SPEC (or in the

case of /i, from student LISP assignments). An addi-

tional test input, not a member of the first five, was

then used for the processor simulations. (SPECfp92

benchmarks were excluded since their code sequences

are already highly-sequential in nature. )

The results of the simulations are presented in Fig-

ure 12. The figure also includes the performance of se-

quential and perfect without reordering (i.e., from the

previous section), labeled as sequential(unordered)

and perfect(unordered) in the figure. In general, code

reordering significantly enhances performance. The

success of code reordering can be attributed to a sig-

nificant reduction in the number of taken branches.

The percent reduction is shown in Table 3. The taken

branches for a majority of the benchmarks are re-

duced by at least 20%, and range from 15.72% for /i

to dd.g~o for compress.

A detailed analysis of the data (Figure 12) reveals

several interesting conclusions. Sequential(reordered)
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for (a) integer, and (b) floating-point benchmarks.
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Figure 12: Performance of hardware schemes after

Figure 11: Performance of comparison of collaps-

ing buffer assuming a three-cycle fetch misprediction

penalty for integer benchmarks (all other schemes are

shown with two-cycle penalties).

Table 3: Percent reduction in taken branches due to

code reordering.

Benchmark Yo Reduction

bison 25.26%

compress 44.20%

eqntott 24.52%

espresso 22.42%
flex %5.17~o

gcc 37.20%

li 15.72%

mpeg.play 25.26%

Sc 28.84%

code reordering.

achieves nearly the performance of perfect (unordered)

for P14. When reordered, the less-complicated in-

terleaved sequential achieves comparable performance

to perfect (unordered) across all three machine mod-

els. Hence, reordering can enhance the performance

of interleaved sequential to match the performance

of the hardware-only collapsing buffer scheme. How-

ever, when collapsing bufler is used with reordering,

it nearly matches the performance of perfect (reorderd)

from P14 to P112. This demonstrates that sophisti-

cated compiler optimizations and sophisticated hard-

ware combine to produce the highest performance for

high issue rates.

4.1 Enhancing sequential

Reordering clearly enhances all hardware schemes. A

compiler optimization to specifically enhance sequen-

tial is to align the traces by padding the end of each

trace with nops to force the following trace to begin

at a cache block boundary [8] ,[20]. This scheme is

termed pad-trace. Pad-trace can increase the number

of useful instructions in each fetched block. In addi-

tion, Fisher’s trace selection algorithm places likely-

taken branches at the end of traces. Since these

branches transition to the beginning of other traces,
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the inserted nops are seldom executed.

The disadvantage of both code reordering and pad-

trace is that they require profile information, which

is often hard to gather and requires additional steps

when compiling code. (Hardware-based profiling

techniques can remove many of these disadvantages,

although their use was not studied in this paper.

See [21].) An alternative to pad-trace is to pad all

blocks without regard for trace membership. Pad-

trace introduces significantly less nops than pad-all,

as can be seen from Table 4.

Table 4: Degree of nops inserted for pad-all and pad-

tr-ace (expressed as percentage of nops vs. original

code size).

block size 16B

Benchmark pad-all pad-trace
bison 28.45% 2.22%

compress

eqnt ot t

espresso

flex

gcc

li

29.53% 0.08%

40.15% 7.17%

28.85% 5.60%

27.75% 5.27%

32.31% 5.94%

33.20% 8.68%

mpeg.play II 16.07~o 3.45%

Benchmark

bison

compress

eqntott

espresso

flex

gee!

li

mpeg-play

Sc

bloc

Benchmark

bison

compress

eqnt ot t

espresso

flex

gcc

li

mpeg-play

Sc

Sc - 37.89% 3.44%

block size 32B

pad-ail pad-trace

74.74% 5.35%

74.98% 1.85%

98.95% 16.77%

74.05% 12.93%

67.65% 13.47%

80.33% 14.23%

80.33% 19.20%

43.11% 8.87%

190.8%

254.9%

196.2~o

173.6~o

214.0%

225.1%

105.0%

237.8%

4.06%

41.37%

30.50%

33.01%

34.49%

41.85%

21.18%

20.18%

The performance of sequential when augmented us-

ing pad-all and pad-trace is shown in Figure 13. Of

the two, pad-trace achieves marginally higher per-

formance improvement over its counterpart, sequen-

tia!(reordered), than pad-all achieves over sequen-

tial(unordered) for P14. Pad-all achieves gains only

■ Perfect (unordered~

P14 P18 P112

Figure 13: Performance of pad-all and pad-trace for

sequential.

for P14, and experiences poor performance for pro-

cessors using a larger cache size. This is due to the

reduction in cache locality caused by excessive nop

insertion. In general, pad-all appears to be unjusti-

fied even for P14, since its benefit is more than offset

by code expansion (Table 4). The code expansion

for pad-trace is minor, justifying it as a refinement of

code reordering.

5 Concluding Remarks

The results presented in this paper demonstrate the

need for efficient instruction alignment in order to

support highly-parallel microarchitectures, such as

P18 and P112. It appears that some fetch mechanisms

such as interleaved sequential or banked sequential are

also required for P14 (which is similar in structure to

several next-generation processors). The most robust

scheme across all architectures studied was the COL

lapsing bufler. The evidence for this is presented in

the EIR/EIR(perfect) data of Figure 10. The COL

lapsing buffer consistently aligns instructions at least

90% of the time.

The frequency of short branches within the same

block motivated the design of the collapsing buffer.

343



Compiler-based techniques such as trace layout (re-

ordering) can reduce this phenomenon by eliminat-

ing many taken branches. The data shows that these

techniques can significantly enhance all schemes. For

example, code reordering can enhance the perfor-

mance of interleaved sequential to nearly match that

of a hardware-only collapsing bufler approach for

P112. This also suggests that these techniques are

applicable to existing machines. Padding with nops,

either used with reordering or used separately, pro-

duced only marginal improvements for sequential (the

remainder of the hardware schemes were not signifi-

cantly enhanced by padding). The best overall solu-

tion is to combine the highest-performance hardware

scheme (collapsing bufler) with code reordering.

It remains to be seen what effect branch pre-

diction accuracy has on the misprediction penalty

when designing a pipelined collapsing buffer. Other,

more sophisticated predictors do exist that have

been designed for machines with high misprediction

penalty [9]. Depending on the complexity of this

branch prediction hardware, a shifter-based imple-

mentation of collapsing bufler may be viable.
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