
Creating Custom SGML DTDs for Documentation Products

Bradley C. Watson, Keith Shafer

OCLC Online Computer Library Center, Inc.

watsonkjoclc. erg,

Abstract

A case is presented for cost-effectively creating custom

DTDs for an organization by non-SGML experts using

tools that automatically create DTDs from tagged text.

Such tools make it practical and easy to create DTDs

without having to hire consultants or invest heavily to

develop internal SGML expertise. The specific tool focused

on is the SGML Document Grammar Builder, a tool

developed at OCLC Online Computer Library Center, Inc.

Background

The Standard Generalized Markup Language (SGML) is a

meta language for writing Document Type Definitions

(DTD) [2]. A DTD describes how a document conforming

to it should be marked up: the structural tags that may occur

in the document, the ordering of the tags, and a host of other

features. Simply put, a DTD describes a class of tagged

documents in a vendor-independent way.

Many organizations have made, or will soon make, the

commitment to use SGML for their documentation.

Determining to use SGML for all or part of an

organization’s documentation products is only the first of

many decisions that must be made in order to use SGML.

One key decision revolves around the use of Document

Type Definitions: to use or not to use a standard DTDs?

This is not a simple decision for many reasons.

Economically, this decision will impact an organization for

many years, potentially costing or saving a large amount of

money. Functionally, this decision will impact the ability of

an organization to use its text data fully and efficiently.

We believe that custom DTDs are ultimately the superior

Permission to make digital/hard copy of all or part of this work for personal
or classroom use 1s granted without fee prowded that copies are not made or

distributed for profit or commercial advantage, the copyright notice, the title
of the pubhcation and Its date appear, and notice is given that copying 1s by
permission of ACM, Inc. To copy otherwise, to repubhsh, to post on servers

or to redistribute to lists, requmes prior speclflc permission and/or a fee.

DOC 95-10/95 Savannah. Georma. Ll S.A . -<

shafer@oclc.org

approach for most organizations. Therefore this paper

presents a case for custom DTDs and tools to create them

based on the following premises

1)

2)

3)

4)

standard DTDs are not sufficient for all

documentation needs,

custom DTDs can be difficult and costly to develop

manually,

tagging sample documents is sufficient to allow for

the automatic creation of DTDs,

automatically created DTDs reduce the cost of

creating custom DTDs and thus free organizations to

meet their documentation needs using SGML.

SGML and Grammars

In order to understand the nature of the custom DTD

problem and our proposed approach to handling it, one must

have at least a superficial knowledge of SGML and

grammar notation. Specifically, one should know

1) how document structure is marked up in SGML,

2) how tag attributes are specified in SGML,

3) how general entities are used in SGML, and

4) grammar notation for conjunctions, grouping, and

repetition.

The following is provided as a background for the rest of

the paper. Those familiar with these concepts may want to

skip to the next section.

Tagged Document Structure

SGML is used to guide the markup of document structure

with tags that are clearly distinguishable from document

content. Generally speaking, the beginning of a structure in

an SGML document is marked by a start tag and the end of

the structure is marked by an end tag.

A start tag is the character ‘<’, followed by the tag name,

followed by a ‘>’ (e.g., <authors). An end tag is a ‘<’,

followed by a ‘/’, followed by the tag name, followed by a

‘s’ (e.g., </author>). For example, one might see this text

01995 ACM 0-89791 -713-S/95/%10.. $350 159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F223984.224017&domain=pdf&date_stamp=1996-02-01

and markup in a document which means that the structure

author has the content John Smith:

values that are associated with a given element start tag.

For example, the tag author in the following has the

attribute primary with the value of yes.

<author >John Smith< /author>

<author primary =yes>John Smith< /author>

Structures can be nested. For instance, author and title

reside inside of article in the following:

<article>

ztitle>A Short Document C/title>

cauthor>John SmithC/author>

. . .

c/article>

A tree representation of the article looks something like:

article

l\

/’ I \

title author . . .

Stmctural components like author, title, name, extension,

and equation in the above are commonly referred to as

document elements in SGML and this paper. To reduce the

cost of inserting SGML tags in documents, completely

paired SGML tags need not always appear where structure

is clear. That is, a DTD may specifj which tags can be

omitted.

Consider the following markup:

cname >John Smith

<extension >5555</extension>

Could -4zarne> be inserted before <extension>? Probably,

because the semantic idea of a name generally encompasses

a string like John Smith, but not a telephone extension

number. For that reason, it makes sense to omit +zame>,

allowing the +zxtension> start tag to imply the ending of

the name structure. Other times, this would not be so.

For instance, one might have a math equation inside a

paragraph as an inline structure, and also allow an equation

outside of a paragraph as a display structure. If the same

tag, *quation>, is used to mark all equations, one cannot

automatically assume that a paragraph has ended because an

equation has begun. For this reason, and others, it is often

best to fully tag documents with start and end tags.

SGML Attributes

Essentially, SGML tag attributes can be thought of as

This markup shows that John Smith is the primary author.

It does not indicate what an application should do with this

additional information. For instance, an application might

make this name appear first, or extract it for some

abstracting service.

SGML Entities

SGML entities are like textual variables and pointers.

Basically, an SGML entity begins with an ampersand ‘&’

and ends with a semi-colon ‘;’. For instance, a document

could contain the entity reference dijbod; which might be

replaced by the word pizza in the translated text.

Grammar Notation

The structure of a document can be written as a grammar

where each element definition is a grammar rule. In this

paper, we will write element definitions (grammar rules) as:

ELEMENT + DEFINITION

An element definition may include ANDs, ORS, and

parentheses where AND is implied by juxtaposition and OR

is signified by a vertical bar’ \‘. We assume that AND has a

higher precedence than OR and thus will often not place

parentheses around ANDs. For example, if A’s definition is

(B IQNDC)OR(DANDE)

we will write:

A=t. BC I DE

Finally, we will refer to a complex element definition (rule)

as being made up of subrules, structural components

between conjunctions. For example, ‘B C’ and ‘DE’ are

subrules in A’s definition above. Furthermore, ‘B’ and ‘C’

are subrules of ‘B C’ and ‘D’ and ‘E’ are subrules in ‘D E’.

An element definition may use three different repetition

symbols to signify that the structure in question has zero or

one, one or more, or zero or more repetitions: ?, +, and *,

respectively. For instance, assume that an article has a title,

one or more authors, and a body. The structural definition

190

<!DOCTYPE ARTICLE [

<!ELEMENT ARTICLE - - (TITLE, AUTHOR+, BODY)>
< !ELEMENT TITLE - _ (#pCDATA)>
<!ELEMENT AUTHOR . - (#pCDATA)>
<!ELEMENT BODY - (#pCDATA)>

]>

Figure 1- Article DTD

of article can be written as:

article * title author+ body

Asapointofcomparison, aDTDcorresponding tothe

articledefmition above is presented inFigurel. The

documenttype (doctype) describedintheDTD fragments

article. Anarticle contains atitle, oneor more authors,

and a body. The title, author, and body contain text data.

Since a goal of this paper is to get people to think about

document structures in grammar rule terms, we will not

spend much time describing DTD syntax. Generating a

DTD is simply a syntactic change from grammar rule

notation to DTD notation. Those that want to edit DTDs to

incorporate more SGML functionality are assumed to

already understand DTD syntax.

That said, we would like to note that ANDs are represented

by commas in DTDs, and the”- -“ in the above DTD

fragment tells us that the start tags and end tags of the

elements are not optional. That is, they are required.

Finally, #PCDATA is an SGML keyword that basically

means data content.

Document Type Definitions -- Costly, Necessary

Standards committees are producing DTDs for a variety of

text types. Yet many organizations are creating their own

DTDs to fit their specific text products. The goal of the

former activity is to eliminate the latter activity. The

rationale is that, one, DTD construction is a costly and

difficult process and, two, standardization of text data

across organizations is worthwhile.

But this standardization does not appear to be a practical

goal. Standard DTDs are rarely sufficient for local needs,

thus utilization of a standard DTD may lessen an

organization’s ability to fully and effectively use its text

data, which is the primary motivation for most

organizations’ using SGML. However, the cost of custom

DTD creation is not trivial, in time or money.

Traditionally, a DTD is created after a long period of

manual analysis of sample documents to be covered by the

DTD. This is followed by a period in which the actual DTD

is created based on the structural components identified in

the analysis phase. Both processes are best done by people

who understand both the documents and SGML. However,

few organizations have staff with both sets of expertise

when they make the decision to go with SGML. One

solution is to hire consultants to work with in-house staff to

perform the analysis and the DTD creation. The alternative

is to train in-house staff in the details of SGML.

When faced with the prospect of hiring consultants or

ramping up their own expertise in SGML, most

organizations find neither alternative attractive, Three or

more months to create a DTD is not unusual. Consultants

are costly for that kind of time. Add in the senior staff

support time, and the cost quickly goes up. Conversely,

training staff members in DTD construction can be equally

costly, because it will take even more senior staff time away

from the task of producing text, which is their real job.

The trade-off between need and cost is never a simple one to

negotiate. Yet not putting an organization’s documentation

or other text data into a standard, logical markup based on

SGML will also be a costly decision. It appears that the

best tools for creating, storing, distributing, and presenting

text will all be SGML-capable. Even simple word

processing systems will soon be SGML-capable. Not using

these tools will be very expensive in the long run.

DTDs -- The Needs at OCLC and IDI

OCLC Online Computer Library Center, Inc. (OCLC), a

nonprofit computer library service and research

organization, and its for-profit subsidiary, Information

Dimensions, Inc. (IDI) are both committed to using

SGML. However, this commitment is tempered by the

problem of costs related to DTDs.

OCLC -- Its DTD Needs

191

At OCLC, production cost is a very important determinant,

since the members of OCLC are all libraries, which have

traditionally tight budgets. However, libraries have a need

for high quality products, given the expected life-span of

their holdings and the usage needs of their patrons.

OCLC’S mission is to provide libraries a variety of products

and services with the goal of lowering the rate of rise of the

costs incurred by libraries while sustaining or expanding

their capability to serve their patrons’ needs. Electronic

documents are fast becoming a necessary part of every

library’s set of offerings, so OCLC is endeavoring to meet

this need as inexpensively, but with as high a quality, as

possible. SGML has been adopted as part of that strategy.

However, while SGML certainly aids in reaching the quality

goal, it can be expensive.

For example, a large amount of the data that comes to

OCLC for electronic distribution is in some form of tagged

text, but frequently, there are no DTDs associated with the

documents. Thus, the cost of quickly and efficiently

creating DTDs that are correct for each set of documents is

a large consideration. Using a standard DTD is out of the

question, since most of the document collections do not

conform even remotely to one, even if their structure is such

that they could have been marked in accordance to a

standard DTD. OCLC must use the documents as they are,

not as they could have been.

Clearly OCLC needs a way to cost effectively create DTDs

after the tagged text has been created. In other words,

OCLC needs a tool that makes a DTD match a set of tagged

documents.

IDI -- Its DTD Needs

Like OCLC, IDI’s commitment to SGML is a strong one.

First, IDI is a leading vendor of database products and

applications that support SGML documents. Second, IDI

views SGML as a superior approach for delivering its

system documentation in multiple presentation formats.

The latter meant, of course, that a move to SGML for the

IDI documentation department was a top priority.

However, when IDI first made the decision to move their

documentation to SGML, the problem of standard versus

custom DTD was very much in evidence. A standard DTD,

such as 1S0 12083, [3] was tempting. Implementing the

1S0 12083 DTD guarantees compatibility with all other

documents and systems that conform to it. More

importantly, the costly effort of designing and building a

DTD from scratch is saved. However, no matter how much

thought a committee puts into designing a DTD, it cannot be

a perfect fit for every organization’s documents. A standard

DTD is the product of compromise, so important elements

or structures vital to one’s own documents are inevitably not

included. Designing a custom DTD ensures that an

organization’s documentation needs will be met.

Thus, IDI leaned towards implementing SGML via custom

DTDs for their documentation products. However, before

committing to that path, they wanted to do a prototype DTD

to get a feel for the effort involved and the value gained over

using standard DTDs.

As it happened, because of OCLC’S needs as discussed

above, OCLC recently invented a tool that can make DTD

creation reasonable, both in cost and time.

DTDs -- Their Automatic Creation

Motivated by OCLC’S problem of tagged text with missing

DTDs, the OCLC Office of Research has an ongoing effort,

the SG~ Document Grammar Builder project, studying

the manipulation of tagged text [5]. This project has

resulted in the construction of a C++ engine library, the

Grammar Builder Engine (“GB-Engine”), that can be used

to automatically create reduced structural representations of

tagged text (DTDs), translate tagged text, automate

database creation, and automate interface design — all from

sample tagged text.

To automatically create DTDs, the GB-Engine translates

sample document structures into corresponding grammar

rules. These grammar rules are then simplified through a

series of reductions. Basically, these reductions attempt to

decrease the number and complexity of subrules in each

rule, while leaving intact the semantics captured in the more

complex representation. The resulting generalized grammar

is then output in DTD format.

The GB-Engine is embedded in a number of systems, with

Fred currently being the most popular. Fred is an extended

Tcl/Tk interpreter. Tcl is a complete string command

language with variables, strings, and lists, while Tk is an

X-based toolkit [4]. As a result, Fred is a complete

interpreter/shell that has access to the GB-Engine objects

that can be used to easily build X interfaces. It is important

to note that Fred’s basic functionality is actually provided by

the GB-Engine and is not restricted to Fred. For instance,

the GB-Engine has been ported to the PC and there is some

possibility of using Perl [8] and/or Scheme [1] as an

192

alternative to the Tcl portion of Fred. Fred is used for a

number of translation tasks at OCLC [7] and several Fred

services, including automatic DTD creation, are freely

available via the WWW [6].

The desirability of the GB-Engine for OCLC with its large

sets of tagged texts without DTDs is clear. However, such a

tool is not only useful in the situation where tagged text

exists, but even when no tagged or even electronic text

exists as yet, as in the IDI prototype DTD project.

The reason one wants to tag text in SGML is to take

advantage of all the document handling tools that are being

designed to work with SGML-compliant tools, thus

avoiding the costs and inconvenience of building,

maintaining, and using proprietary software systems that

will not work with other such systems. However, to use

those SGML tools, such as databases and viewers,

documents need to be tagged in accordance to a DTD.

Traditionally, a DTD is created for a document collection

before the collection is built. This assumes that some sort of

paper analysis has been performed to first identi~

important structure. As it turns out, however, this is

actually a more expensive, time consuming approach than

doing it the other way.

It is relatively simple for writers and editors to tag their

documents to make information structure apparent using

tags they invent as they go along, such as paragraph and

section and title tags. Thus, given a tool such as the GB-

Engine, the DTD can be extracted from a set of documents

chosen to represent the collection and then tagged. This

allows an organization to construct a custom DTD at much

less cost and difficulty than could be done previously.

These premises were tested by OCLC’S Office of Research

as a result of IDI’s need for a prototype documentation

DTD. In fact, building the IDI prototype DTD turned out

to be one of the earliest uses of the GB-Engine outside of

the Office of Research. A prototype DTD was built for IDI

with the GB-Engine using four sample documents supplied

by the IDI documentation department. The next section

describes the process involved.

Building a Prototype DTD Using the GB-Engine

To create a prototype DTD for IDI, four manuals of varying

focus and style were chosen as the test data. Two manuals

were descriptions of software application programming

interfaces (APIs), one was a systems administration guide,

and the fourth was a software program user guide.

To use the GB-Engine to automatically create a DTD, one

or more document instances must be marked up with a

target set of SGML elements, This set of elements mayor

may not already exist in whole or in part. Usually it makes

sense to use the core elements from a standard DTD, such

as the 1S0 12083, adding new ones only when necessary.

While IDI did not have a core set of standard tags, OCLC

had prepared, some years before, a set of standard tags for

use within OCLC, which served the purpose. This set of

tags included elements for structures such as table of

contents, section headers, paragraphs, and other ve~

common logical structures.

Analyzing the test documents consisted of simply typing in

the appropriate tags from the core set, while creating new

tags to mark those logical structures that were unique to the

IDI documents. Finding and creating tags for such

structures is a large part of any document analysis process.

Before GB-Engine, this was done manually, using such

devices as sticky tabs to mark structures in the hard copy

and note the suggested tags for each. Then one had to distill

the information contained in the sticky tabs and notes into a

semantically and syntactically correct DTD in relation to the

documents. This process is very tedious and error-prone.

The difference when using the GB-Engine approach is that

one simply needs to place tags, both start and end, in one or

more electronic documents in their appropriate positions,

then process the document(s) with the GB-Engine. If the

tagging makes grammatical sense and captures all of the

appropriate structures, a correct DTD will be generated.

Thus, with the GB-Engine approach, one only has to find

structures and tag them wherever they occur in the sample

texts. The GB-Engine will get the logic of the DTD correct.

For example, the IDI software API manuals have a chapter

containing fi.mction descriptions. However, the logical

structures that are used in the descriptions vary from

description to description and from manual to manual.

These variations have to be captured in the logic of the

grammar rules for the DTD. See Figure 2, below, for an

example of such a description, Figure 3, below, for a tagged

example of the text in Figure 2, and Table 1 for a list of the

relevant elements representing each logical structure of the

fmction description.

Looking at Figure 3, one can see that there is a structure

tagged <fret>. Not all fi.mction descriptions contained such

193

Add_SGML_Text_Da ta

Description This function adds SGML text data to the database. This function . . .

Syntax ULONG AddSGMLData(ID, . . .)

Returns STAT_OK No errors

STAT_FAIL Error attempting to add

Parameters (Name) (Type/Usage)

ID CONID Read

Used to maintain process context.

Figure 2-Untagged Function Description Text

<flmctionrid= 1>

<fiitl~<bxpAdd SGML_Text_Data@itl&~@

<fdscr>Descriptio~ This function adds SGMLtext data tothedatabase. This function. . .<fdscr>

<f~>SyntaxULONG AddSGMLData(ID, .)</fsyn>

<frePReturns STAT_OK NoerrorsSTAT_FAIL Error attempting to add</fret>

<fp~~<h 1>Parameters (Name) (Type/Usage)~ 1>

~pm><@nme>ID</@nme><@~e>CONID</@@e><@useag*Read4@useag*

<@dscr>Used to maintain process context ./<@dscr></fpparm></fp arrn*</fhnction>.

Figure 3-Tagged Function Description Text

c!doctype USERDOC [
<!ELEMENT USERDOC - - (DOCTI, FM,TOC,PF,CHP) I (DOCTI, FM, PF, TOC,INTRO,CHP+))>

<jELEMENT

< !ELEMENT

< !ELEMENT

<!ELEMENT

< !ELEMENT

< !EJJJMENT

< !ELEMENT

< !ELEMENT

<!EJJjMENT

<!ELEMIJNT

<!ELEMENT

<!ELEMENT

FUNCREF

FUNCTION

FTITLE
FDSCR
FSYN

FPARMS

FCOMMENT

BXT

FPPARM

FPNAME

FPTYPE

FPUSEAGE

.-

--
--

--

(#pCDATA)>
(FTITLE, FDSCR, FSYN, FPARMS,FCOMMENT) I

(FTITLE,FDSCR, FSYNJFRET,FpARMS))
(BXT) >
(#PCDATA)>

(#PCDATA)>

(#PCDATA,FPPARM+)>
(#PCDATA)>

(#PCDATA)>

(FPNAME,FPTYPE ,#PCDATArFPUSEAGE ,FPDSCR)>

(#PCDATA)>

(#PCDATA)>

(#PCDATA)>

Figure4-USERDOC DTD

194

a structure. On the other hand, the description in Figure 3

does not contain a <Jcomment> tagged structure, while

other descriptions did. Figure 4,above, contains a fragment

of the final prototype DTD created by the GB-Engine.

The definition for the elementjhzctimz shows that there are

two possible combinations of elements that could be used in

the IDI documents to build a fimction description section.
In grammar notation:

FUNCTION +

(FTITLE FDSCR FSYN FPARMS FCOMMENT)

I (FTITLE FDSCR FSYN FRET WARMS))

To determine that these two variations ofJinction exist,

then describe their logical relationship in a DTD is not

simple. To do this over and over through hundreds or even

thousands of pages of text and hundreds or thousands of

different structure combinations is nearly impossible to get

correct, and is tedious, difficult, and time consuming. GB-
Engine removes a great deal of these problems.

Table 1- Function Description Elements

FUNCREF Function Reference

FUNCTION Function Description

Section

FTITLE Function Title

FDSCR Function Description

I
I FSYN I Function Syntax I
I FRET IFunctionReturn value I

FPARMS Function Parameters

FCOMMENT Function Comment

FPPARM Function Parameter

FPNAME Function Parameter Name

I
FPTYPE Function Parameter Type

FPUSEAGE Function Parameter Usage

FPDSCR Function Parameter

Description

All together, the analysis/tagging of the four documents

took one person approximately sixteen hours, or four hours
each. Itshould benoted thatthe person doing the tagging

had never done any document tagging before, in SGML or

any other system, was not familiar with DTD construction

or use, and had no familiarity with the documents or the

systems they described prior to doing this experiment. This

person, did, however, have extensive experience in using,

designing, and building software systems, as well as using

similar documents in relation to software systems.

In other words, using the GB-Engine approach to

constructing a DTD does not require a large amount of

SGML expertise. It does require a basic understanding of

document structure in relation to the use of documents and

how tags in the document can be used to mark such

structures.

The next step after constructing the marked up documents

was to run them through the GB-Engine to construct the

desired prototype DTD. This took less than a minute on a

Sun Unix Server. Figure 4, above, is a sample of the full

DTD relating to the fi.mction description tags listed above.

The DTD built by the GB-Engine is not a final DTD,

generally speaking. It is, however, a sound basis for making

a final DTD. Manual tweaking is sometimes useful. For

instance, the structure that the GB-Engine deduced for the

functionelement was:

FUNCTION =+

(FTITLE FDSCR FSYN FPARIvE I?COMMENT)
/ (FTITLE HXCR I?WN FRET J?PARIvIS))

A reasonable reduction for this might be:

FUNCTION +

(FT177LE m5cR FSYN FRET? FPARMS

FCOMMENT?)

On the other hand, it might be that the two disparate

element groups for ending a function description are

important and must be kept separate. In that case, one
might want to simpli~ the element rule this way:

FUNCTION +

(FTITLE FDSCR FSYN ((FPARMS FCOMMENT)

I (FRET FPARMS)))

This makes the rule shorter, while maintaining two distinct

structural possibilities without allowing any other

alternative structures which the first re-write would have
allowed.

In terms of producing a final prototype DTD for IDI, many

refinements were accomplished automatically by adding and

195

subtracting element tags from the documents, which were

then run through GB-Engine again. Finally, some manual

editing of the DTD was found to be necessary, largely to

account for known grammatical possibilities that the four

documents did not themselves contain. However, it is much

simpler to tweak an existing DTD then to create one from

scratch. The end result was that IDI had a workable DTD

prototype in a very short amount of time, at a minimal cost.

Conclusion

The primtuy benefit of an automated DTD generation

system such as the SGML Document Grammar Builder to

documentation creation is that custom DTDs become very

affordable. Not everyone has a need for custom DTDs, but
for those who do, the cost of creating one manually can

certainly be prohibitive. GB-Engine removes the cost

roadblock to generating customs DTDs, which in turn

allows a documentation organization the flexibility it
requires to get the SGML markup of its documents right for

their specific needs.

In this paper, besides motivating the need for the automatic

creation of DTDs from sample tagged text, we have

introduced the GB-Engine and Fred. We have successfully

used Fred to analyze several tagged sources, fix markup

errors, and translate tagged documents. We expect that

others will find similar uses for Fred, or comparable tools,

as SGML proliferates.

Software Information

The best way to get a feel for automatic DTD creation is to

experiment with examples of your own text. Accordingly,

OCLC makes several Fred-based services freely available to

the community via the World Wide Web at:

http:llwww.oclc. orglfredf

Currently, these services include free automatic DTD

creation, direct grammar reduction, and arbitrmy text
translation. After only five months of availability, the DTD
creation service has already been used to generate over

REFERENCES

[1] Harold Abelson, Gerald Jay Sussman, and Julie

Abelson. Structure and Interpretation of Computer

Programs. The MIT Press, 1985.

[2] Information Processing -- Text and Office Systems --

Standard Generalized Markup Language (SGML).

International Organization for Standardization. Ref. No.

1S0 8879:1986, 1986.

[3] Electronic Manuscript Preparation and Markup.

ANSI/NISO/ISO 12083, 1994.

[4] John K. Ousterhout. Tcl and the Tk Toolkzt.

Addison-Wesley Pubhshing Company, 1994.

[5] Keith Shafer. SGML Grammar Structure. In Annual

Review of O(2LC Research July 1992-June 1993, pages

39-40, 1994.

[6] Keith Shafer. Fred: The SGML Grammar Builder.

Fred’s WWW home page. Accessible at

URL:http://www. oclc.org/fredf, 1994.

[7] Keith Shafer and Roger Thompson. Introduction to

Translating Tagged Text via the SGML Document

Grammar Builder Engine. Accessible at

UU:http://~.oclc. org/freddocs/trmslations/intio.html,

1995.

[8] Larry Wall and Randal L. Schwartz. Programming

Perl. O’Reilly & Associates, Inc., 1992.

2,100 DTDs.

196

