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This paper challenges the myth that Lisp programs are slow, and C pro- 
grams are fast, by comparing two 2,000 line programs. The two programs 
are popular machine learning programs, Fahlman's Cascade Correlation pro- 
gram, CASCOR.1, and John Koza's Genetic Programming program, referred 
to here as GP. CASCOR1 is floating point intensive, while GP is floating 
point and structure manipulation intensive. 

These programs not only provide medium sized interlanguage bench- 
marks, but also provide an opportunity to study performance tuning. One 
man-day of tuning was done on each of the Lisp versions of the programs, 
using commonly available tools such as compiler advice and profilers. Much 
less than 10% of the code was changed. 

The performance of CASCOP~I (already highly optimized) was improved 
by almost 40%, comparable to or slightly faster than the C version. The 
main difference between Lisp and C is the quality of compiling a dot product 
loop. 

GP (not optimized, but well written pedagogical software) was improved 
by a factor of 30, and is over twice as fast as the C version which was 
advertised as "highly optimized". Lisp's advantages are due, at least in 
part, to automatic garbage collection and dynamic typing. 

In real programs, performance has more to do with choice of algorithm, 
and quality of compiler than on choice of language. 

1 Per formance  M y t h s  Persist  

It is a persistent myth that low level languages, such as C, are faster than 
higher level languages, such as Lisp or Smalltalk. The argument is basically 
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that  C is really just a cleverly disguised, easy-to-use, assembly language. 
You have plenty of low level access to the machine when you need it. You 
can almost count the machine instructions just  by looking at the code. 

Actually, this is much less true with the current I~ISC hardware than it 
was, for example, with PDP-11's.  Today's hardware can make efficiency is- 
sues difficult to expose. For example, [BKV] points out that  experts (people 
who write compilers and operating systems) can differ by a factor of 5 on 
their performance estimates of C constructs. 

This myth  has two unstated premises. One is that  you can easily con- 
struct any additional support  you might need, that  the language doesn' t  
provide, either by gett ing a library, or writing software yourself. This re- 
mains to be seen. While there may be many libraries, they may not all be 
compatible. Also, creating a good library is almost as hard as creating a 
new language [BS]. 

Another  premise is that  higher level features conspire in a way that  tends 
to make programs slower. This need not be the case. Current Common Lisp 
has performance that  is as good as C [G91], [F91], or Fortran [FBWP~]. 

Modern generational garbage collectors are quite fast, and can even be 
used in real t ime applications [AEL] [B78]. If enough memory is available, 
garbage collection becomes almost free [AWA]. Automatic  garbage collection 
is even quite competitive with hand tailored application specific collectors, 
and can even be faster[Zorn]. 

Language features can combine in ways to provide unexpected perfor- 
mance advantages. For example, in Lisp one can declare numbers to be a 
certain type and in certain ranges, such as ( s i n g l e - f l o a . c  0 .0  *),  a single 
floating point number greater than or equal to zero. In C, one can only 
declare a number  to be a certain type, such as in'c, or f l o a t .  Finer grained 
declarations can allow a compiler to generate more efficient code, such as 
using a hardware s q r t  function without a check for a possible complex re- 
sult. 

Such small advantages might not seem important ,  but they can add up. 
For example, Pare and Lee [PL94] report that  replacing a single recursion 
with i teration improved the performance of a C program by 7% (10% in 
the final system). Such optimization is provided automatically by compilers 
that  t reat  tail recursive calls as iteration. 
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2 G o o d  in ter language  B e n c h m a r k s  are Hard to 
Find 

To quantify the effects that various language features have on performance 
of real programs, one needs a set of high quality comparable benchmarks in 
each language. Such benchmarks have been extremely hard to come by. 

Most benchmarks, such as the Gabriel benchmarks [G85], are relatively 
short which makes them relatively easy to port and to analyze. However, 
they have been criticized for not being representative of real programs, es- 
pecially when they suggest a flaw in a particular language implementation. 

Benchmarks may not always represent current programming practice. 
For example, several of the Gabriel benchmarks have been rewritten and 
made many times faster [B92A] [B92B] [B92C], [B94] [F91]. Presumably, 
such improvements would be made to real production quality software as 
well. Such vast speed improvements make the new versions useless as bench- 
marks. 

The act of translating a program from one language to another can have 
profound effects on its performance. For example, when porting a program 
to a multiprocessor, sometimes the uniprocessor version of the program be- 
comes faster because of insights gained in the port. Since C requires detailed 
type information while Lisp doesn't, a straightforward translation from Lisp 
to C could make the C program faster. For example, Aletan reports a 10 
to 100 time speed up when porting 3 programs from Lisp to C [A89]. In a 
more even-handed port the two languages perform equally well [P94]. 

Library routines, such as a sort routine, might be a good source of bench- 
mark material since these are available in most languages, and are build- 
ing blocks of real programs. However, care must be taken to ensure that 
two implementations of the library routine are comparable. For example, 
quicksor ' t  is a widely used sorting algorithm. Bentley IBM] has shown that 
several improvements to the basic algorithm are possible, and that a widely 
used Berkeley 4.2 BSD implementation has O(n 2) behavior when sorting 
sequences containing only a few distinct values (such as alternating O's and 
l 's) r.ather than the expected O(n*Iog(n)) behavior. Sort routines provided 
by some Lisp implementations have this problem while others do not. In 
fact, in some cases sorting a list can be faster than sorting a vector because 
the list sorting algorithm avoids this problem, while the array version does 
not. 

Two programs have been identified that seem to meet the minimum 
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requirements for a C/Lisp benchmark suite. They are medium sized bench- 
marks (2,000 lines of Lisp) though still quite small by programming stan- 
dards. However, they are typical of components of larger programs, and 
make a reasonably wide use of the underlying language. The remainder of 
this paper presents a performance analysis of these programs. 

3 Both  Benchmarks  are Machine Learning Algo- 
r i thms  

The performance of Lisp and C implementations of two programs, CAS- 
COR1 and GP was analyzed on a Sun Sparc 10/30 with 190 Mbytes of 
memory, running the Sun 0S 4.1.3 operating system. The Lisp and C im- 
plementations of each will be referred to as CASCOR1-LISP, CASCOR1-C, 
and GP-LISP and GP-C, respectively. The original versions of the software 
used in these study can be FTP'ed from the Internet as follows. 

CASCOR1-LISP 

Author: Scott Fahlman 

FTP: pt.cs.cmu.edu:afs/cs/project/connect/code/cascorl.lisp 

CASCORI-C 

Author: R. Scott Crowder, III 

FTP: pt.cs.cmu.edu:afs/cs/project/connect/code/cascor-vl.O.3.shar 

GP-LISP 

Author: John Koza 

FTP: ftp.aic.nrl.navy.mil:pub/galist/src/ga/koza.gp 

GP-C 

Author: Walter Alden Tackett and Aviram Carmi 

FTP : ftp. aic. nrl. navy. mil : pub/galist/src/ga/sgpc I. 01. Ear. Z 

The following subsections describe each program. 

3.1 Cascade  C o r r e l a t i o n  C o n s t r u c t s  N e u r a l  N e t w o r k s  

CASCOI~I is an implementation of Scott Fahlman's Cascade Correlation 
method for constructing a neural network [Fg0]. A neural network is a 
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function that maps 8, vector of inputs to a vector of outputs. This function 
is constructed out of 8, simple computational unit called a "neuron". 

A neuron is a function that takes a vector of inputs 8,nd produces an 
output value. For example, the output of a neuron might be computed as 
(first in Lisp, and then in C): 

;;; Lisp: 
(defun activation(sum) 

(- (/ 1.0 (+ 1.0 (exp (- sum)))) 0.5)) 

(defun output (input weight) 
(activation (dot input weight))) 

/* C */ 
double activation (double sum) 
{return 1.0/(1.0 + exp(-sum)) - 0.5;} 

double output (double * input, double *.weight) 
{return activation(dot(input, weight));} 

Where input iS 8. vector of input values, weight is the neuron's weight 
vector, dot  is the vector dot product, and a c t i v a t i o n  is the neuron's acti- 
vation function. Here, 8, nonlinear activation function is used, as is typically 
done when a neural network is applied to a classification task. 

Given a set of training data, consisting of input/output examples, the 
CASCOK algorithm constructs a neural network by adding one neuron at a 
time. The first neuron is connected to all the input variables and 8, constant 
1.0, used as a bias term. Each additional neuron is connected to all the 
input variables and to the output of the previous neurons. 

The weights of the added neuron is chosen to maximize the magnitude 
of the correlation between the new neuron's output and the residual error 
in the output of the current network. To compute these weights, several 
candidate neurons are trained in parallel, using gradient ascent, and the 
best candidate is added to the network. 

Each step of gradient ascent is referred to as an "epoch". During es,ch 
epoch, a pass over each example is made to compute the gradient for each 
candidate neuron. For each example/candids,te pair one computes 8, dot 

15 



product (of length equal to the number of previous neurons), and the deriva- 
tive of the activation is computed using a c t i v a ' t i o n .  This epoch loop ac- 
counts for about 85% of the computation. 

The Lisp and C programs are very similar. A neuron is represented 
as a floating point array of its weights. The type of Lisp array used is 
( s i m p l e - a r r a y  s i n g l e - f l o a t  (*))  which is like the f l o a t  [] declaration 
in C. These arrays allow floating point numbers to be read or written to 
them without floating point consing. They are essentially the same size as 
C arrays created with c a l l o c .  

The main difference between the programs is that  the Lisp version in- 
lines five functions ( a c t i v a ' t i o n ,  a c ' t i v a t i o n - p r i m e ,  o u ' t p u t - f u n c t i o n ,  
ou ' tpu~-pr ime,  q u i c k p r o p - u p d a t e )  to reduce floating point number  consing 
across function call boundaries. Lisp compilers can avoid consing floating 
point number  internal to computations.  However, a function that  returns a 
floating point number must  cons that  number,  even if it is used as a tempo- 
rary value 1 Inlining these function allows the compiler to "see" that  they 
are temporary and not cons them. 

3 .2  G e n e t i c  P r o g r a m m i n g  B r e e d s  S o f t w a r e  

The GP benchmark programs are based on software provided in John Koza's 
book, "Genetic Programming"[Koza]. Genetic programming is a genetic 
algorithm with s-expressions representing the genetic material. 

The basic idea of genetic programming is to evolve a program that  ac- 
complishes a task. One starts with an initial set of randomly generated pro- 
grams (s-expressions) called a "population". A task-specific fitness function 
measures how well a specific program performs the task. The population is 
allowed to evolve over many generations as follows: The population mem- 
bers of the next generation are computed from the current population using 
genetic operators such as mutat ion and crossover. The mutat ion operator 
takes a program and randomly removes a program fragment and replaces 
it with a randomly generated program fragment. As it makes a relatively 
small local change to a program, it acts like a random walk through the 
solution space. The crossover operator operates on two programs, referred 
to as "parents" to produce two new programs. Each parent is split into two 
random pieces. Each new program is constructed from one piece of each 

1Allegro Common Lisp 4.2 provides a facility to declare functions in such a way that  
float consing can be avoided 
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parent. The goal of crossover is for good features of two parents to combine 
to produce a higher performing individual. 

Individuals are chosen for mutation and crossover based on their fitness, 
so that programs of higher fitness are more likely to be involved in producing 
offspring for the next generation. Thus the average fitness of the population 
tends to improve over time. 

Since Lisp programs are represented as trees, they are a natural repre- 
sentation for these programs. The mutation and crossover operations are 
simply operations on these trees. 

To make genetic programming problems more tractable, a problem- 
specific subset of Lisp is used. For example, our benchmark uses Koza's REG- 
RESSION problem. In this problem, one is given a set of x,y data pairs and 
the objective is to compute a program that computes a value for y given a 
value of x. The data comes from a quadratic function so only the binary 
operators +, -, *, a n d / ,  the symbol x, and random floating point numbers 
are required to construct trim programs. 

The main differences between the Lisp and C versions are in the rep- 
resentation and evaluation of programs in the population. GP-LISP rep- 
resents programs as s-expressions - a list of symbols, numbers, or other 
s-expressions. This is a natural representation of programs in Lisp. The s- 
expressions are generated using cons. The built-in function eva1 is used to 
evaluate the s-expression in an environment where its free variable symbols 
are bound globally. 

In GP-C, the program is also represented as trees, but tree nodes are 6 
word s t ruc~s .  There are two types of tree nodes. Terminal nodes repre- 
sent random floating point numbers and symbols. Function nodes represent 
function applications. Function nodes take two additional arrays, one to 
hold the expression representing each argument, and one to hold the value 
of each argument during evaluation. 

4 Lisp Source Code is Compact  

Figure 1 shows some statistics measured from the text of the four programs. 
To ta l  Lines is the number of newline characters. Lines of Code is 

To'Ca1 Lines with comments and blank lines removed. Lines with single 
non-blank characters were also removed. In both languages, roughly half 
the software is comments. 

The number of functions, macros, and global variables is provided to 

17 



CASCORI GP 

Lisp C Lisp C 
Total Lines 1467 3290 2029 5147 
Lines of Code 799 1827 1335 2456 
Functions 32 74 87 113 
Macros 11 42 7 70 
Globals 65 90 24 6 

Lines/function 24.9 24.7 15.3 21.7 

Figure 1: Software Statistics 

give some sense of the complexity of the programs. Macros tend to be 
used for shghtly different purposes in C than in Lisp. The C programs 
use macros (#define's) mostly to define consta.nts. CASCORi-C does not 
use macros to inline functions, while GP-C does. CASCOR.1-LISP uses 
macros to inline functions as well as to provide declarations for numerical 
operations. This reflects an older programming style that is unnecessary in 
modern Lisps[F94]. GP-LISP makes almost no use of macros. 

Both languages have roughly the sa~ne number of lines of code per func- 
tion. The GP programs have slightly fewer lines of code per function on 
average than the CASCORi programs. This is at least in part because re- 
cursion (on lists) is more commonly used in GP than in CASC0111 where 
iteration (on vectors) dominates. 

The Lisp version of the programs are considerably smaller than the C 
programs, both in terms of the number of lines of code and number of 
functions. The C programs require about twice as many lines of code and 
30 to 100% more functions. This is because C functions must have their 
arguments redundantly declared, while Lisp functions don't. Also the C 
programs must provide more support for input/output and other facilities 
which are provided by Lisp as part of the language (such as a command 
loop and garbage collection). This ratio may go down somewhat as a pro- 
gram becomes larger, but this difference in program size suggests that Lisp 
programs may be easier to develop and maint~n than their C counterparts. 
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5 Profiling Can Improve Performance 

Profiling is an important activity for fine tuning the performance of an exist- 
ing program. This is particularly true in Lisp because the performance im- 
plications of certain language features are not always obvious. For example, 
Lisp provides many functions for operating on elements of a sequence, such 
as map, member, p o s i t i o n ,  and f ind ,  which take several optional keyword 
arguments. While these functions may be inlined when given appropriate 
arguments, it isn't always clear when they are. Thus performance can vary 
based on which sequence function is used. 

Benchmacking provides a n  important opportunity to study profiling. 
The reason for this is that,  as Gabriel has pointed out [G85], one should not 
quote benchmark measurements without also analyzing what one is measur- 
ing. Profiling is a perfect tool to aid this analysis. 

In the process of studying the benchmark programs, one man-day of 
profile based optimizations were applied to each Lisp program. A backtrace 
profiler was used. Such a profiler periodically records the state of the execu- 
tion stack (or a portion of it) during the execution of the program. It then 
produces a report on the fraction of the time spent in each function in each 
particular execution context. 

Advice generated, by the compiler was also used to indicate where a 
change, such as adding a declaration or rewriting some software, might be 
advantageous. Such advice is commonly provided by Lisp compilers. The 
CMU Common Lisp compiler even provides a relative estimate of the cost 
of not following its advice. 

The following subsections describe this process. 

5.1 C A S C O R 1  T r i e s  T o o  H a r d  t o  b e  Fas t  

The benchmark problem used for the CASCOI~i programs is the classic "two 
spiral problem" that is provided with both the Lisp and C versions. In this 
problem, one is given two sets of 2-D points representing two classes of data. 
The points of each class are laid out in interlocking spirals. CASCOR1 must 
construct a neural network that  assigns any 2-D point to the appropriate 
class. This is a relatively hard problem, but CASCOR.1 solves it easily less 
than 20 neurons. 

CASCOR.1-Lisp was already highly optimized, so it was expected that 
profiling would reveal relatively few additional opportunities for optimiza- 
tion. 
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Figure 2: Time Performance Improvement for CASCOR.1-LISP 

Figure 2 shows the results of a series of optimizations suggested by profil- 
ing. To make this graph, the optimizations were applied sequentially to the 
software, and the resulting performance was measured. The figure shows the 
resulting performance factor, defined as the ratio of the time of the original 
benchmark time to the time of the optimized benchmark. 

To see the effect of the inlined functions, the first two changes removed 
the i n l i n e  declaration from first one, and then both of the functions ac'c- 
i v a t i o n - p r i m e  (essentially a subtraction and a multiplication), and a c t -  
i v a t i o n .  These two changes are plotted to the left of 0 on the x axis to 
better reflect the order in which they might be made in the course of normal 
optimization. 

Not inlining each function resulted in a huge increase in floating point 
consing (75 and 122 megabytes respectively). Each change lead to about 
a 17% drop in performance, thus these inline decarations are extremely 
valuable. 

The first small rise in performance (changes 1 to 3) is due to replacing 
d e f v a r  declarations with d e f c o n s t a n t  declarations. The major  effect of 
this is to allow Lisp to eliminate several tests in the inner loop and the 
corresponding dead code. 

To some extent, CASCOR.1-Lisp tried too hard to be fast. Several inner 
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loops reference global variables. Each global variable reference takes two 
load instructions. Pulling these references out of the loop made them ac- 
cessible as registers and lead to almost a 20% improvement (changes 4 to 
8). 

The final change was to replace the call to the foreign function exp in 
the function a c t i v a c ± o n  with a call to a Lisp version of exp. This led to 
a final cumulative improvement of 37%. Execution time went from 37.88 
seconds to 27.74 seconds. 

The original software was declared with the highest optimization set- 
tings, ( op t im ize  ( speed  3) ( s a f e t y  0))  this has the effect of removing 
function argument counting overhead (typically two instructions) for each 
function call. Since crucial inner loop functions were already inlined, this 
optimization accounts for only a 0.6% (less than 1% in the final version) 
improvement in performance, and thus is not very important .  

Unfortunately the Lisp and C programs are not directly comparable 
because different random number generators are used to set the initial set of 
weights. Thus each program would take a different number of epochs each 
time the network is grown by one neuron, and might produce a different 
number of neurons. However, the amount of time per epoch in the function 
t r a i n - i n p u t s  is comparable. This function accounts for 85% of the time of 
the benchmark. 

Figure 3 shows the t ime per training epoch versus the number of neurons 
currently in the network 2. The area under each curve is essentially the total 
runtime, so a lower curve and shallower slope indicate higher performance. 

The sohd fines are for gcc,  the GNU C compiler, for highest and lowest 
optimizations settings. The dashed and dotted fines are for 3 Lisps (Allegro 
4.2, Lucid 4.1, and CMU 17c). For each Lisp, two lines are plotted. The 
thicker one corresponds to the original CASCOi~i-LISP software, and the 
thinner one corresponds to the optimized version described above. 

Two of the original Lisp lines, Lucid and CMU, fall between the unop- 
timized and optimized gcc curves, while the Allegro falls mainly above the 
unoptimized one. The reason for this is that  Allegro Common Lisp does 
not honor i n l i n e  declarations, and thus is impacted by the floating point 
consing described earlier. 

After the optimizations described above, the performance for the 3 Lisp 
implementations are similar to the optimized C curve. The corresponding 
intercepts and slopes for the lines are show in Figure 4. The slope is con- 

2Each point in each curve is a median of 3 runs. 
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trolled by the time of two dot product loops, and thus influenced by the 
quality of the compiled code. The number of instructions in the dot prod- 
uct loop is shown in the third column, labeled "NDOT" in the figure. All 
the Lisps do a bit worse than  the optimized C indicating one or more opti- 
mization are not being applied in  this case. This does not reflect the quality 
of the compiler in genera:l, only the optimization of this particular loop. 

5 .2  G P - L I S P  H a s  V a s t  P e r f o r m a n c e  P o t e n t i a l  

The benchmark used for the GP program was the REGRESSION benchmark 

provided by both the Lisp and C versions of the program. This benchmark 

starts with i0 x,y pairs from the equation y = x2/2 and evolves a program 

that best matches this equation in the least squares sense. The benchmark 

was modified to terminate after a fixed number of generations, rather than 

terminate early if a perfect solution was found. 

It is generally a good idea to use a suite of benchmark parameter settings 

or input data that stress different parts of a program differently [BM]. Thus 

two versions of this benchmark were used. One ran for 20 generations with 

a population size of I00 individuals, while the other ran for 40 generations 

with a population size of 50. Both of these versions did roughly the same 
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Intercept Slope NDOT 
(msec) (msec/unit) 
38.70 1.170 Allegro Original 
13.30 2.750 26 gcc 
13.60 1.660 Lucid original 
12.60 1.230 CMU original 
9.06 0.795 7 gcc -03 
7.64 1.380 14 Lucid optimized 
6.74 0.909 10 A11egro optimized 
6.53 0.803 9 CMU Optimized 

Figure 4: t r a i n - i n p u t s  Line fit, intercepts and slopes 

amount of work, but distributed the load between inner and outer loops 
differently. 

GP-LISP was written to accompany Koza's book. It was written for 
clarity and portability, not for performance. Thus it was expected that 
profiling could provide substantial benefit. In fact, GP-C, was written in 
part to overcome the" performance problems in GP-Lisp. It is advertised as 
being 20 to 50 times faster than the Lisp version. 

The space and time performance results from profiling are shown in 
Figures 5 and 6. 

Since evaluating programs is at the core of the algorithm, the speed of 
eva l  is crucial. While it is convenient to use Lisp's eval ,  Koza provides a 
faster specialized version. This version improved performance by a factor of 
three. 

A~ter that,  profiling uncovered several surprises. It turned out the input 
data points were rational numbers. Replacing them with floats, produced 
an additional 25% improvement. Also random number generation was very 
slow and consful. In fact, a specialized version was provided for Lucid Com- 
mon Lisp, which made performance even worse. A better random number 
generator improved performance by an additional factor of two. 

Optimizations in the central part of the figure (changes 6 to 22) were 
suggested by inspecting the profiling results for potential optimization can- 
didates. For example, if a routine spent a lot of time in a r e f ,  then a dec- 
laration might help. Declarations were only added to routines for which 
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profiling suggested a benefit. This led to a series of experiments which led 
to general improvements with occasional setbacks. In all, only about 15 
functions were changed, but no inlining was done. 

The final major improvement came when the application specific eva1 
was rewritten. Unrolling the evaluation loop allowed a dramatic reduction 
in the amount  of floating point number consing 3 

The final result was a factor of 30 improvement.  Execution time went 
from 138.73 seconds, to 4.57 seconds. As execution time is now dominated 
by things like printing, its usefulness as a benchmark has been destroyed. 
Other improvements are possible but would require changing the structure 
of the software. At least another factor of two improvement seems likely. 

As with the CASCOR1 benchmark, the Lisp and C are not directly com- 
parable because different random number generators were used. However, 
taking the median of five runs of GP-C with different random number seeds 
we can get a reasonable estimate of relative performance. These medians 
are plotted as points in the figures: The performance improvement over the 
original GP-Lisp is a factor of 6 for the 40 generation case, and a factor of 14 
for the 20 generation case, a factor of two slower than the final Lisp version. 

One difference between GC-C and GC-LISP is the evaluation strategy. 
GC-C does more function calling but no number consing, while the final 
GC-LISP is more inlined but does some number consing. 

Another  factor is storage management.  GP-C uses more space to repre- 
sent its programs than GP-LISP does. For example to represent the program 
fragment 

(+ (* x 3 .0)  2 .0)  

GP-LISP requires 6 two-word cons cells, and two four-word s i n g l e - f l o a t ' s .  
for a total of 20 words. The space for the symbols used to represent functions 
and variables is shared among all programs so it can be ignored. 

GP-C, on the other hand, requires five six-word structures and four two- 
word arrays for a total of 38 words, about twice as much as required by 
GP-LISP 4. 

However, this is only part  of the story, since both programs use different 
storage management  strategies. GP-C explicitly allocates and deallocates 
memory using C's ma l loc  and f r e e .  GC-LISP on the other hand uses 
Lisp's automatic garbage collector. The m a l l o c / f r e e  approach requires 

3Alternatively, using a floating point stack w~ equally successful. 
4There may be other storage overhead added by malloc 
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C Lisp 
EVAL 34.8 46.8 
MALLOC/CONS 5.8 4.0 
FREE/GC 25.4 9.7 
OTHER 34.0 39.5 

Figure 7: Percentage of execution time for GP 

effort proportional to the number  of objects created, while the GC approach 
requires effort proportional to only the number of live objects. Since few 
objects survive from one generation to the next, the automatic  GC approach 
can be quite effective. 

Since GC-C takes about twice as long and uses twice as much storage 
as GC-LISP, the percentage of time spent in different program phases is 
roughly comparable s as shown in Figure 7. The malloc/cons times are 
comparable, but since Lisp spends only 10% of its time in CC compared to 
C's 25% in free, Lisp can use the 15% difference to do useful work. 

6 Things  We've Learned 

We have shown that  Lisp and C programs can go head to head on perfor- 
mance. Well written Lisp programs are more compact than C programs, 
and can be just as fast, even faster. Performance of real programs has more 
to do with choice of algorithm than with choice of language. 

We have also seen an important  point about benchmarking. Often, a 
suite of benchmark programs is used, but only a single number is quoted 
for each program in the suite. This could led to false impressions. For 
example, from Figure 3 we see that  several lines cross, such as with the 
original Allegro and unoptimized C data. In such cases, one language would 
seem faster than the other for certain sized problems and not for others. 

The slope of these curves is controlled by two dot products,  about 10 
lines of code. Thus, if one concluded that  one language was faster than the 
other, one would be condemning the language based on only 10 lines of code. 
The difference is in the abilities of the compilers, not the languages. 

Sin GC-C, a special version of malloc was used that allocates large blocks of storage 
at once and then quickly allocates smaller objects from it. 
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Lisp programs can be slow, otherwise one would not be able to speed 
them up by a factor of 30. One of the powers of using Lisp is that one can 
just focus on programming, and let Lisp worry about the details. However, 
one should be prepared to pay for this convenience in increased execution 
time and space. 

Luckily, commonly available tools, such as compiler advice and profilers 
can help. A small amount of profiling can go a long way. We have shown that 
as little effort as a man day of profiling, and minor adjustments to less than 
20% of the code can provide substantial improvements. This is not specific 
to Lisp. The significant optimizations uncovered during the profiling above 
can be applied in either language. 

However, profiling can never make up for an inadequate design. For 
example, while it is possible to write GP-LISP or GP-C to do only a fixed 
amount of consing, since programs have a fixed maximum size, it would 
require a major rewrite of both programs. 

Using a profiling tool requires some expertise. However, it is not unrea- 
sonable to imagine an optimizing expert system that could suggest decla- 
rations or small code changes based on a combination of software analysis 
(such as done by current advising compilers) guided by profiling. It could 
even suggest replacing something like the ac ' c iva t ion  function by a faster 
one generated by a machine learning algorithm such as the ones studied 
here. 
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