
Courage in Profiles

Kenne th R. Anderson"

July 28, 1994

This paper challenges the myth that Lisp programs are slow, and C pro-
grams are fast, by comparing two 2,000 line programs. The two programs
are popular machine learning programs, Fahlman's Cascade Correlation pro-
gram, CASCOR.1, and John Koza's Genetic Programming program, referred
to here as GP. CASCOR1 is floating point intensive, while GP is floating
point and structure manipulation intensive.

These programs not only provide medium sized interlanguage bench-
marks, but also provide an opportunity to study performance tuning. One
man-day of tuning was done on each of the Lisp versions of the programs,
using commonly available tools such as compiler advice and profilers. Much
less than 10% of the code was changed.

The performance of CASCOP~I (already highly optimized) was improved
by almost 40%, comparable to or slightly faster than the C version. The
main difference between Lisp and C is the quality of compiling a dot product
loop.

GP (not optimized, but well written pedagogical software) was improved
by a factor of 30, and is over twice as fast as the C version which was
advertised as "highly optimized". Lisp's advantages are due, at least in
part, to automatic garbage collection and dynamic typing.

In real programs, performance has more to do with choice of algorithm,
and quality of compiler than on choice of language.

1 Per formance M y t h s Persist

It is a persistent myth that low level languages, such as C, are faster than
higher level languages, such as Lisp or Smalltalk. The argument is basically

"KAnderson@BBN.com, BBN STC, 10 Moulton St., Mail Stop 6/4c, Cambridge, MA,
02138

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F224139.1379846&domain=pdf&date_stamp=1994-08-01

that C is really just a cleverly disguised, easy-to-use, assembly language.
You have plenty of low level access to the machine when you need it. You
can almost count the machine instructions just by looking at the code.

Actually, this is much less true with the current I~ISC hardware than it
was, for example, with PDP-11's. Today's hardware can make efficiency is-
sues difficult to expose. For example, [BKV] points out that experts (people
who write compilers and operating systems) can differ by a factor of 5 on
their performance estimates of C constructs.

This myth has two unstated premises. One is that you can easily con-
struct any additional support you might need, that the language doesn' t
provide, either by gett ing a library, or writing software yourself. This re-
mains to be seen. While there may be many libraries, they may not all be
compatible. Also, creating a good library is almost as hard as creating a
new language [BS].

Another premise is that higher level features conspire in a way that tends
to make programs slower. This need not be the case. Current Common Lisp
has performance that is as good as C [G91], [F91], or Fortran [FBWP~].

Modern generational garbage collectors are quite fast, and can even be
used in real t ime applications [AEL] [B78]. If enough memory is available,
garbage collection becomes almost free [AWA]. Automatic garbage collection
is even quite competitive with hand tailored application specific collectors,
and can even be faster[Zorn].

Language features can combine in ways to provide unexpected perfor-
mance advantages. For example, in Lisp one can declare numbers to be a
certain type and in certain ranges, such as (s i n g l e - f l o a . c 0 .0 *), a single
floating point number greater than or equal to zero. In C, one can only
declare a number to be a certain type, such as in'c, or f l o a t . Finer grained
declarations can allow a compiler to generate more efficient code, such as
using a hardware s q r t function without a check for a possible complex re-
sult.

Such small advantages might not seem important , but they can add up.
For example, Pare and Lee [PL94] report that replacing a single recursion
with i teration improved the performance of a C program by 7% (10% in
the final system). Such optimization is provided automatically by compilers
that t reat tail recursive calls as iteration.

12

2 G o o d in ter language B e n c h m a r k s are Hard to
Find

To quantify the effects that various language features have on performance
of real programs, one needs a set of high quality comparable benchmarks in
each language. Such benchmarks have been extremely hard to come by.

Most benchmarks, such as the Gabriel benchmarks [G85], are relatively
short which makes them relatively easy to port and to analyze. However,
they have been criticized for not being representative of real programs, es-
pecially when they suggest a flaw in a particular language implementation.

Benchmarks may not always represent current programming practice.
For example, several of the Gabriel benchmarks have been rewritten and
made many times faster [B92A] [B92B] [B92C], [B94] [F91]. Presumably,
such improvements would be made to real production quality software as
well. Such vast speed improvements make the new versions useless as bench-
marks.

The act of translating a program from one language to another can have
profound effects on its performance. For example, when porting a program
to a multiprocessor, sometimes the uniprocessor version of the program be-
comes faster because of insights gained in the port. Since C requires detailed
type information while Lisp doesn't, a straightforward translation from Lisp
to C could make the C program faster. For example, Aletan reports a 10
to 100 time speed up when porting 3 programs from Lisp to C [A89]. In a
more even-handed port the two languages perform equally well [P94].

Library routines, such as a sort routine, might be a good source of bench-
mark material since these are available in most languages, and are build-
ing blocks of real programs. However, care must be taken to ensure that
two implementations of the library routine are comparable. For example,
quicksor ' t is a widely used sorting algorithm. Bentley IBM] has shown that
several improvements to the basic algorithm are possible, and that a widely
used Berkeley 4.2 BSD implementation has O(n 2) behavior when sorting
sequences containing only a few distinct values (such as alternating O's and
l 's) r.ather than the expected O(n*Iog(n)) behavior. Sort routines provided
by some Lisp implementations have this problem while others do not. In
fact, in some cases sorting a list can be faster than sorting a vector because
the list sorting algorithm avoids this problem, while the array version does
not.

Two programs have been identified that seem to meet the minimum

13

requirements for a C/Lisp benchmark suite. They are medium sized bench-
marks (2,000 lines of Lisp) though still quite small by programming stan-
dards. However, they are typical of components of larger programs, and
make a reasonably wide use of the underlying language. The remainder of
this paper presents a performance analysis of these programs.

3 Both Benchmarks are Machine Learning Algo-
r i thms

The performance of Lisp and C implementations of two programs, CAS-
COR1 and GP was analyzed on a Sun Sparc 10/30 with 190 Mbytes of
memory, running the Sun 0S 4.1.3 operating system. The Lisp and C im-
plementations of each will be referred to as CASCOR1-LISP, CASCOR1-C,
and GP-LISP and GP-C, respectively. The original versions of the software
used in these study can be FTP'ed from the Internet as follows.

CASCOR1-LISP

Author: Scott Fahlman

FTP: pt.cs.cmu.edu:afs/cs/project/connect/code/cascorl.lisp

CASCORI-C

Author: R. Scott Crowder, III

FTP: pt.cs.cmu.edu:afs/cs/project/connect/code/cascor-vl.O.3.shar

GP-LISP

Author: John Koza

FTP: ftp.aic.nrl.navy.mil:pub/galist/src/ga/koza.gp

GP-C

Author: Walter Alden Tackett and Aviram Carmi

FTP : ftp. aic. nrl. navy. mil : pub/galist/src/ga/sgpc I. 01. Ear. Z

The following subsections describe each program.

3.1 Cascade C o r r e l a t i o n C o n s t r u c t s N e u r a l N e t w o r k s

CASCOI~I is an implementation of Scott Fahlman's Cascade Correlation
method for constructing a neural network [Fg0]. A neural network is a

14

function that maps 8, vector of inputs to a vector of outputs. This function
is constructed out of 8, simple computational unit called a "neuron".

A neuron is a function that takes a vector of inputs 8,nd produces an
output value. For example, the output of a neuron might be computed as
(first in Lisp, and then in C):

;;; Lisp:
(defun activation(sum)

(- (/ 1.0 (+ 1.0 (exp (- sum)))) 0.5))

(defun output (input weight)
(activation (dot input weight)))

/* C */
double activation (double sum)
{return 1.0/(1.0 + exp(-sum)) - 0.5;}

double output (double * input, double *.weight)
{return activation(dot(input, weight));}

Where input iS 8. vector of input values, weight is the neuron's weight
vector, dot is the vector dot product, and a c t i v a t i o n is the neuron's acti-
vation function. Here, 8, nonlinear activation function is used, as is typically
done when a neural network is applied to a classification task.

Given a set of training data, consisting of input/output examples, the
CASCOK algorithm constructs a neural network by adding one neuron at a
time. The first neuron is connected to all the input variables and 8, constant
1.0, used as a bias term. Each additional neuron is connected to all the
input variables and to the output of the previous neurons.

The weights of the added neuron is chosen to maximize the magnitude
of the correlation between the new neuron's output and the residual error
in the output of the current network. To compute these weights, several
candidate neurons are trained in parallel, using gradient ascent, and the
best candidate is added to the network.

Each step of gradient ascent is referred to as an "epoch". During es,ch
epoch, a pass over each example is made to compute the gradient for each
candidate neuron. For each example/candids,te pair one computes 8, dot

15

product (of length equal to the number of previous neurons), and the deriva-
tive of the activation is computed using a c t i v a ' t i o n . This epoch loop ac-
counts for about 85% of the computation.

The Lisp and C programs are very similar. A neuron is represented
as a floating point array of its weights. The type of Lisp array used is
(s i m p l e - a r r a y s i n g l e - f l o a t (*)) which is like the f l o a t [] declaration
in C. These arrays allow floating point numbers to be read or written to
them without floating point consing. They are essentially the same size as
C arrays created with c a l l o c .

The main difference between the programs is that the Lisp version in-
lines five functions (a c t i v a ' t i o n , a c ' t i v a t i o n - p r i m e , o u ' t p u t - f u n c t i o n ,
ou ' tpu~-pr ime, q u i c k p r o p - u p d a t e) to reduce floating point number consing
across function call boundaries. Lisp compilers can avoid consing floating
point number internal to computations. However, a function that returns a
floating point number must cons that number, even if it is used as a tempo-
rary value 1 Inlining these function allows the compiler to "see" that they
are temporary and not cons them.

3 .2 G e n e t i c P r o g r a m m i n g B r e e d s S o f t w a r e

The GP benchmark programs are based on software provided in John Koza's
book, "Genetic Programming"[Koza]. Genetic programming is a genetic
algorithm with s-expressions representing the genetic material.

The basic idea of genetic programming is to evolve a program that ac-
complishes a task. One starts with an initial set of randomly generated pro-
grams (s-expressions) called a "population". A task-specific fitness function
measures how well a specific program performs the task. The population is
allowed to evolve over many generations as follows: The population mem-
bers of the next generation are computed from the current population using
genetic operators such as mutat ion and crossover. The mutat ion operator
takes a program and randomly removes a program fragment and replaces
it with a randomly generated program fragment. As it makes a relatively
small local change to a program, it acts like a random walk through the
solution space. The crossover operator operates on two programs, referred
to as "parents" to produce two new programs. Each parent is split into two
random pieces. Each new program is constructed from one piece of each

1Allegro Common Lisp 4.2 provides a facility to declare functions in such a way that
float consing can be avoided

16

parent. The goal of crossover is for good features of two parents to combine
to produce a higher performing individual.

Individuals are chosen for mutation and crossover based on their fitness,
so that programs of higher fitness are more likely to be involved in producing
offspring for the next generation. Thus the average fitness of the population
tends to improve over time.

Since Lisp programs are represented as trees, they are a natural repre-
sentation for these programs. The mutation and crossover operations are
simply operations on these trees.

To make genetic programming problems more tractable, a problem-
specific subset of Lisp is used. For example, our benchmark uses Koza's REG-
RESSION problem. In this problem, one is given a set of x,y data pairs and
the objective is to compute a program that computes a value for y given a
value of x. The data comes from a quadratic function so only the binary
operators +, -, *, a n d / , the symbol x, and random floating point numbers
are required to construct trim programs.

The main differences between the Lisp and C versions are in the rep-
resentation and evaluation of programs in the population. GP-LISP rep-
resents programs as s-expressions - a list of symbols, numbers, or other
s-expressions. This is a natural representation of programs in Lisp. The s-
expressions are generated using cons. The built-in function eva1 is used to
evaluate the s-expression in an environment where its free variable symbols
are bound globally.

In GP-C, the program is also represented as trees, but tree nodes are 6
word s t ruc~s . There are two types of tree nodes. Terminal nodes repre-
sent random floating point numbers and symbols. Function nodes represent
function applications. Function nodes take two additional arrays, one to
hold the expression representing each argument, and one to hold the value
of each argument during evaluation.

4 Lisp Source Code is Compact

Figure 1 shows some statistics measured from the text of the four programs.
To ta l Lines is the number of newline characters. Lines of Code is

To'Ca1 Lines with comments and blank lines removed. Lines with single
non-blank characters were also removed. In both languages, roughly half
the software is comments.

The number of functions, macros, and global variables is provided to

17

CASCORI GP

Lisp C Lisp C
Total Lines 1467 3290 2029 5147
Lines of Code 799 1827 1335 2456
Functions 32 74 87 113
Macros 11 42 7 70
Globals 65 90 24 6

Lines/function 24.9 24.7 15.3 21.7

Figure 1: Software Statistics

give some sense of the complexity of the programs. Macros tend to be
used for shghtly different purposes in C than in Lisp. The C programs
use macros (#define's) mostly to define consta.nts. CASCORi-C does not
use macros to inline functions, while GP-C does. CASCOR.1-LISP uses
macros to inline functions as well as to provide declarations for numerical
operations. This reflects an older programming style that is unnecessary in
modern Lisps[F94]. GP-LISP makes almost no use of macros.

Both languages have roughly the sa~ne number of lines of code per func-
tion. The GP programs have slightly fewer lines of code per function on
average than the CASCORi programs. This is at least in part because re-
cursion (on lists) is more commonly used in GP than in CASC0111 where
iteration (on vectors) dominates.

The Lisp version of the programs are considerably smaller than the C
programs, both in terms of the number of lines of code and number of
functions. The C programs require about twice as many lines of code and
30 to 100% more functions. This is because C functions must have their
arguments redundantly declared, while Lisp functions don't. Also the C
programs must provide more support for input/output and other facilities
which are provided by Lisp as part of the language (such as a command
loop and garbage collection). This ratio may go down somewhat as a pro-
gram becomes larger, but this difference in program size suggests that Lisp
programs may be easier to develop and maint~n than their C counterparts.

18

5 Profiling Can Improve Performance

Profiling is an important activity for fine tuning the performance of an exist-
ing program. This is particularly true in Lisp because the performance im-
plications of certain language features are not always obvious. For example,
Lisp provides many functions for operating on elements of a sequence, such
as map, member, p o s i t i o n , and f ind , which take several optional keyword
arguments. While these functions may be inlined when given appropriate
arguments, it isn't always clear when they are. Thus performance can vary
based on which sequence function is used.

Benchmacking provides a n important opportunity to study profiling.
The reason for this is that, as Gabriel has pointed out [G85], one should not
quote benchmark measurements without also analyzing what one is measur-
ing. Profiling is a perfect tool to aid this analysis.

In the process of studying the benchmark programs, one man-day of
profile based optimizations were applied to each Lisp program. A backtrace
profiler was used. Such a profiler periodically records the state of the execu-
tion stack (or a portion of it) during the execution of the program. It then
produces a report on the fraction of the time spent in each function in each
particular execution context.

Advice generated, by the compiler was also used to indicate where a
change, such as adding a declaration or rewriting some software, might be
advantageous. Such advice is commonly provided by Lisp compilers. The
CMU Common Lisp compiler even provides a relative estimate of the cost
of not following its advice.

The following subsections describe this process.

5.1 C A S C O R 1 T r i e s T o o H a r d t o b e Fas t

The benchmark problem used for the CASCOI~i programs is the classic "two
spiral problem" that is provided with both the Lisp and C versions. In this
problem, one is given two sets of 2-D points representing two classes of data.
The points of each class are laid out in interlocking spirals. CASCOR1 must
construct a neural network that assigns any 2-D point to the appropriate
class. This is a relatively hard problem, but CASCOR.1 solves it easily less
than 20 neurons.

CASCOR.1-Lisp was already highly optimized, so it was expected that
profiling would reveal relatively few additional opportunities for optimiza-
tion.

19

8 ,
e~

1.2

1.0

0 . 8 ¸

I I I I I
-2 0 2 4 5 8

Number of code changes

Figure 2: Time Performance Improvement for CASCOR.1-LISP

Figure 2 shows the results of a series of optimizations suggested by profil-
ing. To make this graph, the optimizations were applied sequentially to the
software, and the resulting performance was measured. The figure shows the
resulting performance factor, defined as the ratio of the time of the original
benchmark time to the time of the optimized benchmark.

To see the effect of the inlined functions, the first two changes removed
the i n l i n e declaration from first one, and then both of the functions ac'c-
i v a t i o n - p r i m e (essentially a subtraction and a multiplication), and a c t -
i v a t i o n . These two changes are plotted to the left of 0 on the x axis to
better reflect the order in which they might be made in the course of normal
optimization.

Not inlining each function resulted in a huge increase in floating point
consing (75 and 122 megabytes respectively). Each change lead to about
a 17% drop in performance, thus these inline decarations are extremely
valuable.

The first small rise in performance (changes 1 to 3) is due to replacing
d e f v a r declarations with d e f c o n s t a n t declarations. The major effect of
this is to allow Lisp to eliminate several tests in the inner loop and the
corresponding dead code.

To some extent, CASCOR.1-Lisp tried too hard to be fast. Several inner

20

loops reference global variables. Each global variable reference takes two
load instructions. Pulling these references out of the loop made them ac-
cessible as registers and lead to almost a 20% improvement (changes 4 to
8).

The final change was to replace the call to the foreign function exp in
the function a c t i v a c ± o n with a call to a Lisp version of exp. This led to
a final cumulative improvement of 37%. Execution time went from 37.88
seconds to 27.74 seconds.

The original software was declared with the highest optimization set-
tings, (op t im ize (speed 3) (s a f e t y 0)) this has the effect of removing
function argument counting overhead (typically two instructions) for each
function call. Since crucial inner loop functions were already inlined, this
optimization accounts for only a 0.6% (less than 1% in the final version)
improvement in performance, and thus is not very important .

Unfortunately the Lisp and C programs are not directly comparable
because different random number generators are used to set the initial set of
weights. Thus each program would take a different number of epochs each
time the network is grown by one neuron, and might produce a different
number of neurons. However, the amount of time per epoch in the function
t r a i n - i n p u t s is comparable. This function accounts for 85% of the time of
the benchmark.

Figure 3 shows the t ime per training epoch versus the number of neurons
currently in the network 2. The area under each curve is essentially the total
runtime, so a lower curve and shallower slope indicate higher performance.

The sohd fines are for gcc, the GNU C compiler, for highest and lowest
optimizations settings. The dashed and dotted fines are for 3 Lisps (Allegro
4.2, Lucid 4.1, and CMU 17c). For each Lisp, two lines are plotted. The
thicker one corresponds to the original CASCOi~i-LISP software, and the
thinner one corresponds to the optimized version described above.

Two of the original Lisp lines, Lucid and CMU, fall between the unop-
timized and optimized gcc curves, while the Allegro falls mainly above the
unoptimized one. The reason for this is that Allegro Common Lisp does
not honor i n l i n e declarations, and thus is impacted by the floating point
consing described earlier.

After the optimizations described above, the performance for the 3 Lisp
implementations are similar to the optimized C curve. The corresponding
intercepts and slopes for the lines are show in Figure 4. The slope is con-

2Each point in each curve is a median of 3 runs.

21

0.06-

0 . 0 4 -

g

E
o.o2-

0.00
0

J /- /
/ _...----" . . .

/ _.- '- _ . . s : " "

. . . . - -----'-

. 1 . - - Allegro Original
gcc

...... Lucid Original

.... CMU Ori~al

. Lucid Final
gcc -03

- - - Anegro Final
. . . . CMU Final

. . . . I I I I '

5 10 15 2 0

N u m b e r o f neurons

Figure 3 :CASCOK1 Benchmark

trolled by the time of two dot product loops, and thus influenced by the
quality of the compiled code. The number of instructions in the dot prod-
uct loop is shown in the third column, labeled "NDOT" in the figure. All
the Lisps do a bit worse than the optimized C indicating one or more opti-
mization are not being applied in this case. This does not reflect the quality
of the compiler in genera:l, only the optimization of this particular loop.

5 .2 G P - L I S P H a s V a s t P e r f o r m a n c e P o t e n t i a l

The benchmark used for the GP program was the REGRESSION benchmark

provided by both the Lisp and C versions of the program. This benchmark

starts with i0 x,y pairs from the equation y = x2/2 and evolves a program

that best matches this equation in the least squares sense. The benchmark

was modified to terminate after a fixed number of generations, rather than

terminate early if a perfect solution was found.

It is generally a good idea to use a suite of benchmark parameter settings

or input data that stress different parts of a program differently [BM]. Thus

two versions of this benchmark were used. One ran for 20 generations with

a population size of I00 individuals, while the other ran for 40 generations

with a population size of 50. Both of these versions did roughly the same

22

Intercept Slope NDOT
(msec) (msec/unit)
38.70 1.170 Allegro Original
13.30 2.750 26 gcc
13.60 1.660 Lucid original
12.60 1.230 CMU original
9.06 0.795 7 gcc -03
7.64 1.380 14 Lucid optimized
6.74 0.909 10 A11egro optimized
6.53 0.803 9 CMU Optimized

Figure 4: t r a i n - i n p u t s Line fit, intercepts and slopes

amount of work, but distributed the load between inner and outer loops
differently.

GP-LISP was written to accompany Koza's book. It was written for
clarity and portability, not for performance. Thus it was expected that
profiling could provide substantial benefit. In fact, GP-C, was written in
part to overcome the" performance problems in GP-Lisp. It is advertised as
being 20 to 50 times faster than the Lisp version.

The space and time performance results from profiling are shown in
Figures 5 and 6.

Since evaluating programs is at the core of the algorithm, the speed of
eva l is crucial. While it is convenient to use Lisp's eval , Koza provides a
faster specialized version. This version improved performance by a factor of
three.

A~ter that, profiling uncovered several surprises. It turned out the input
data points were rational numbers. Replacing them with floats, produced
an additional 25% improvement. Also random number generation was very
slow and consful. In fact, a specialized version was provided for Lucid Com-
mon Lisp, which made performance even worse. A better random number
generator improved performance by an additional factor of two.

Optimizations in the central part of the figure (changes 6 to 22) were
suggested by inspecting the profiling results for potential optimization can-
didates. For example, if a routine spent a lot of time in a r e f , then a dec-
laration might help. Declarations were only added to routines for which

23

30-"

¢~ 2 0 -

+ / . _ 1

. . . . I I I I I ' '
0 5 10 15 20 25

Number of changed functions

- - Lisp 20 Generations, Pop. Size 100
Lisp 40 Generations, Pop. Size 50
C: 20 Generations, Pop. Size 100
C 40 Generations, Pop. Size 50

Figure 5: Time Performance Improvement of GP-LISP

40

30

N 2o
I N I

° ~

r~ lo

0

I

/

I
j - -

s"
~ s

. . . . I I J I I ' '

5 10 15 20 2 5

Number of changed functions

L i s p 2 0 Generations, Pop. Size 100
- - - Lisp 40 Generations, Pop. Size 50

Figure 6: Space Performance Improvement of GP-LISP

24

profiling suggested a benefit. This led to a series of experiments which led
to general improvements with occasional setbacks. In all, only about 15
functions were changed, but no inlining was done.

The final major improvement came when the application specific eva1
was rewritten. Unrolling the evaluation loop allowed a dramatic reduction
in the amount of floating point number consing 3

The final result was a factor of 30 improvement. Execution time went
from 138.73 seconds, to 4.57 seconds. As execution time is now dominated
by things like printing, its usefulness as a benchmark has been destroyed.
Other improvements are possible but would require changing the structure
of the software. At least another factor of two improvement seems likely.

As with the CASCOR1 benchmark, the Lisp and C are not directly com-
parable because different random number generators were used. However,
taking the median of five runs of GP-C with different random number seeds
we can get a reasonable estimate of relative performance. These medians
are plotted as points in the figures: The performance improvement over the
original GP-Lisp is a factor of 6 for the 40 generation case, and a factor of 14
for the 20 generation case, a factor of two slower than the final Lisp version.

One difference between GC-C and GC-LISP is the evaluation strategy.
GC-C does more function calling but no number consing, while the final
GC-LISP is more inlined but does some number consing.

Another factor is storage management. GP-C uses more space to repre-
sent its programs than GP-LISP does. For example to represent the program
fragment

(+ (* x 3 .0) 2 .0)

GP-LISP requires 6 two-word cons cells, and two four-word s i n g l e - f l o a t ' s .
for a total of 20 words. The space for the symbols used to represent functions
and variables is shared among all programs so it can be ignored.

GP-C, on the other hand, requires five six-word structures and four two-
word arrays for a total of 38 words, about twice as much as required by
GP-LISP 4.

However, this is only part of the story, since both programs use different
storage management strategies. GP-C explicitly allocates and deallocates
memory using C's ma l loc and f r e e . GC-LISP on the other hand uses
Lisp's automatic garbage collector. The m a l l o c / f r e e approach requires

3Alternatively, using a floating point stack w~ equally successful.
4There may be other storage overhead added by malloc

25

C Lisp
EVAL 34.8 46.8
MALLOC/CONS 5.8 4.0
FREE/GC 25.4 9.7
OTHER 34.0 39.5

Figure 7: Percentage of execution time for GP

effort proportional to the number of objects created, while the GC approach
requires effort proportional to only the number of live objects. Since few
objects survive from one generation to the next, the automatic GC approach
can be quite effective.

Since GC-C takes about twice as long and uses twice as much storage
as GC-LISP, the percentage of time spent in different program phases is
roughly comparable s as shown in Figure 7. The malloc/cons times are
comparable, but since Lisp spends only 10% of its time in CC compared to
C's 25% in free, Lisp can use the 15% difference to do useful work.

6 Things We've Learned

We have shown that Lisp and C programs can go head to head on perfor-
mance. Well written Lisp programs are more compact than C programs,
and can be just as fast, even faster. Performance of real programs has more
to do with choice of algorithm than with choice of language.

We have also seen an important point about benchmarking. Often, a
suite of benchmark programs is used, but only a single number is quoted
for each program in the suite. This could led to false impressions. For
example, from Figure 3 we see that several lines cross, such as with the
original Allegro and unoptimized C data. In such cases, one language would
seem faster than the other for certain sized problems and not for others.

The slope of these curves is controlled by two dot products, about 10
lines of code. Thus, if one concluded that one language was faster than the
other, one would be condemning the language based on only 10 lines of code.
The difference is in the abilities of the compilers, not the languages.

Sin GC-C, a special version of malloc was used that allocates large blocks of storage
at once and then quickly allocates smaller objects from it.

26

Lisp programs can be slow, otherwise one would not be able to speed
them up by a factor of 30. One of the powers of using Lisp is that one can
just focus on programming, and let Lisp worry about the details. However,
one should be prepared to pay for this convenience in increased execution
time and space.

Luckily, commonly available tools, such as compiler advice and profilers
can help. A small amount of profiling can go a long way. We have shown that
as little effort as a man day of profiling, and minor adjustments to less than
20% of the code can provide substantial improvements. This is not specific
to Lisp. The significant optimizations uncovered during the profiling above
can be applied in either language.

However, profiling can never make up for an inadequate design. For
example, while it is possible to write GP-LISP or GP-C to do only a fixed
amount of consing, since programs have a fixed maximum size, it would
require a major rewrite of both programs.

Using a profiling tool requires some expertise. However, it is not unrea-
sonable to imagine an optimizing expert system that could suggest decla-
rations or small code changes based on a combination of software analysis
(such as done by current advising compilers) guided by profiling. It could
even suggest replacing something like the ac ' c iva t ion function by a faster
one generated by a machine learning algorithm such as the ones studied
here.

7 R e f e r e n c e s

R e f e r e n c e s

[A89] Samuel Aletan, "Current and Future Trends in Artificial Intelli-
gence Architectures and Programming Languages", IEEE Inter-
national Workshop on Tools for Artificial Intelligence: Architec-
tures, Languages, and Algorithms, Fairfax, VA, Oct 23-25, 1989,
p. 215-221.

[AEL] Appel, A.W., Ell.is, J.l~., and Li, K. "Real-time concurrent
garbage collection on stock multiprocessors", SIGPLAN PLDI,
June, 1988.

[AWA] Andrew W. Appel, Garbage collection can be faster than stack
allocation, Information Letters, 25 (1987) 275-279.

27

[B78]

[B92A]

[B92B]

[B92C]

[B94]

[BKV]

IBM]

[BS]

[Fg01

[F94]

[F91]

[FBWR]

[G85]

Baker, H.G. "Lisp processing in real time on a serial computer",
CACM, 21,4, (April 1978), 280-294.

Baker, H.G., "The Gabriel 'Triangle' Benchmark at Warp Speed",
ACM Lisp Pointer, V, 3, (July-Sept, 1992), 15-17

Baker, H.G., "Seeding up the 'Puzzle' Benchmark a 'Bit"', ACM
Lisp Pointer, V, 3, (July-Sept, 1992), 18-21

Baker, H.G., "A tachy 'TAK"', ACM Lisp Pointer, V, 3, (July-
Sept, 1992), 22-23.

Baker, H.G. A 'Linear Logic' Quicksort. ACM Sigplan Notices
29,2 (Feb 1994), 13-18.

Bentley, Kernighan, and VanWyk, "An Elementary C cost
model", Unix Review, Vol. 9, No. 2, p. 38-48.

J.L. Bentley, and M.D. McI]roy, "Engineering a sort function",
Software- Practice and Experience", Vol. 23(11), 1249-1265 (Nov.
1993).

Bjarne Stroustrup, "Library design using C++", C+-t- Report,
June, 1993, p. 14-22.

Fahlman, Scott, "The Cascade-Correlation Learning Archi-
tecture" Carnegie Mellon University Computer Science Tech-
nical Report CMU-CS-90-100, ftp: archive.cis.ohio-state.edu
/pub/neuroprose fahlman.cascor-tr.ps.Z

Fahlman, Scott E., Email to comp.lang.clos from
sef÷@cs.cmu.edu, 1994.

R.J. Fateman, "Endpaper: FRPOLY: A benchmark revisited",
Lisp and Symbolic Computation, 4, 155-164, 1991.

R_J. Fateman, K.A. Broughan, D.K. Willcock, and Duane l~et-
tig, "Fast floating-point processing in Common Lisp", ftp from
peoplesparc.berkeley.edu ftp/pub/papers/fastlisp.ps.Z

R.P. Gabriel, "Performance and Evaluation of Lisp Systems",
MIT Press, Cambridge, MA, 1985.

28

[G91]

[Koza]

[P94]

[PL94]

[Zorn]

R.P. Gabriel, "Lisp: good news, bad news, how to win big",
AI Expert, June, 1991, p. 31-39. Also ftp from cs.utexas.edu
pub/garbage worse.ps.

John R. Koza, "Genetic Programming, On the Programming of
Computers by Means of Natural Selection", The MIT Press, Cam-
bridge, MA, 1992.

Poeck, Karsten, Personal Email from poeck@informatik.uni-
wuerzburg.de, June, 1994.

Dave Pare and Jonathan Lee, "Speed Generator", Unix Review,
March 1994.

Benjamin Zorn, "The Measured Cost of Conservative Garbage
Collection", Technical Report CU-CS-573-92, Department of
Computer Science, University of Colorado, Boulder, Colorado,
April 1992, revised August 1992, Available PRocessingby anony-
mous FTP and e-mail from ftp.cs.colorado.edu in the file
pub/cs/techreports/zorn/CU- CS-573-92.ps. Z

29

