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ABSTRACT 

The use of APL as a language for system design 
and prototyping is discussed. Benefits of APL over 
traditional design techniques are shown to include 
higher productivity, improved code reliability, 
superior maintainability and performance, and 
executable documentation. 

Hierarchical and hybrid approaches to modelling 
systems of various degrees of complexity are 
presented, with examples chosen from the author’s 
experience. 

INTRODUCTION 

The creation of any system is simplified if the 
system is understood before implementation begins. 
In the design of complex computer applications, 
such as interpreters, compilers, and session 
managers, executable models or prototypes of the 
application are an aid to understanding. They also 
provide other benefits, such as improved code 
reliability, higher programmer productivity, 
superior maintainability and performance, and 
executable documentation. The following presents 
the why and how of using APL for prototyping, 
with practical examples. 

WHAT ,IS A PROTOTYPE? 

A prototype or model is an executable program 
which simulates part or all of a system. Some major 
functions of prototypes are: 

0 to assist in the design of algorithms 
0 to assist in the design of data structures 
0 to estimate performance 
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0 to validate systern integration 
0 to serve as a debugging tool 
0 to help the user understand the system 

EXECUTABLE PROTOTYPES 

Non-executable techniques, such as “pseudocode” 
or flowcharts, are inferior to an executable model. 
The subjective “execution” of pseudocode by a 
human may mask serious design errors, whereas the 
execution of a working model by a computer will 
turn up errors which ever-optimistic programmers 
consistently miss. The importance of this objective, 
unbiased nature of computer program execution in 
analysis and design cannot be overemphasized. 
Consider an expression such as: 

Paris in the 
the springtime 

Anyone who read the above as “Paris in the 
springtime” needs executable prototypes. This may 
seem obvious, but programmers and mathematicians 
exude a Panglossian attitude which persists in spite 
of working in environments where much of their 
time is spent in correcting the relation between 
reality and their conception of reality. This time is 
referred to as “debugging time” or “research” -- 
by programmers and mathematicians, respectively. 

BENEFITS OF PROTOTYPING 

Prototyping has a number of benefits over other 
design techniques. One of the most important 
occurs in system integration. It keeps you from 
getting that sinking feeling two-thirds of the way 
through a project, when it becomes obvious that 
two major pieces of it do not, and cannot, be made 
to fit together. If a prototype is built first, the 
pieces have already been integrated, and a 
potentially expensive redesign has been avoided. 

Another advantage appears in the context of 
“doing it” versus “doing it right”. In the course of 
constructing a large system, it usually becomes 
clear that certain algorithms, interfaces, or data 
structures could benefit from partial or total 
redesign [Wy13]. 
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If these discoveries are made during the 
modelling process, it is often possible to perform 
the redesign immediately, with significantly less 
effort than during the actual implementation phase. 

Performance measurement is simplified by use of 
prototypes. One of the virtues of an executable 
model, particularly a model which permits human 
interaction, is that it is easy to build 
instrumentation and monitoring functions into the 
model on a permanent or ad hoc basis. With proper 
measuring tools, it is possible to quickly answer 
questions such as: 

0 Which facilities are used most often? 
0 Which data structures are accessed most 

frequently? In what way? 
0 Will a linear search suffice, or is an index 

required? 
0 How does this data structure behave under 

different stimuli? 
6 How well will a given facility perform under 

light load? Under heavy load? Under 
overload? 

0 What sorts of errors are being made by the 
users? 

Instrumentation may be analytical (producing 
tables, plots, h istog rams, counters), visual 
(displaying the parse tree generated by the syntax 
analyzer) or any other kind. The only rule is: If it 
helps the design process, use it. The use of a 
powerful, interactive language, such as APL, al1ow.s 
rapid ad hoc data collection and analysis, with 
minimal effort. For example, functions may be 
written to assist with topological analysis or to 
perform time computations during model execution. 

Models provide excellent documentation for a 
system because they can combine the specifications, 
structure, and algorithms into a single, compact 
document. For this reason, proposed extensions to 
a system are easily analyzed at the model level. 

Often, in the course of system maintenance, one 
encounters code which is apparently useless or 
incorrect. Having a model of the system available 
often helps to show why such code is either 
necessary or nugatory. 

Models offer an opportunity to optimize at a high 
level, early in the design phase. A concise model 
often highlights areas where significant time or 
space improvements may be achieved, whereas the 
actual implementation may be complicated enough to 
hide these same areas. 

WHY PROTOTYPE IN APL? 

Prototypes may be written in any language, but the 
use of APL offers significant advantages over more 
primitive languages such as PASCAL or PL/I. APL 
possesses certain important characteristics which 
speed development and assist thought. 
Executability is important, but so are human 
interaction, powerful functions and operators, 
sub-second response time, and rapid creation and 
modification of functions. 
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Algorithmic analysis and design are assisted by 
the functions and operators in APL. Human minds 
can only deal with about 7 to 9 “chunks” of 
information at once, due to short-term memory 
limitations (I had the bibliographic reference for 
this in my head a minute ago, but forgot it while I 
was typing this line). The density of concepts 
embedded in an APL expression allows the mind to 
grasp at once a larger portion of the problem than 
is possible in other languages. 

The functions and operators in APL are tools of 
thought. They hide the details and allow 
concentration on the problem at hand. The rapidity 
of development in APL allows study and comparison 
of alternate algorithms in a short period of time. 

The interactive nature of the language speeds 
debugging efforts, even by such simple facilities as 
being able to display the value of an array in 
human readable form by entering its name, rather 
than by having to stare at a hexadecimal storage 
dump. The ability to generate test scripts with ease 
under program control makes vetting of the design 
faster. 

The executability of the model speeds fault 
location in the actual implementation. If the model 
works, but the implementation fails, the error lies 
in the transcription of the model to the 
implementation, and the model may be used in 
conjunction with the implementation to isolate the 
fault. If the model also fails, a design error exists, 
and the model may be used by itself to isolate the 
fault interactively. 

The rapid response time of APL systems 
(typically less than 0.1 second on most commercially 
available systems) increases human productivity 
and reduces frustration. 

HIERARCHICAL PROTOTYPING 

Just as the reasons for writing prototypes vary, 
depending on perceived needs, so do the 
approaches taken to writing them. A prototype 
designed to prove the feasibility of an algorithm 
may differ significantly in structure and detail from 
one written to analyze data structure performance. 

The completeness and level of detail of a 
prototype will also vary depending on the problems 
to be solved by the prototype. A new, 
ill-understood project, such as a language compiler, 
will benefit from a relatively complete model. On the 
other hand, a small, well-specified problem, such 
as replacing the symbol table search functions for 
the same compiler, may be successfully modelled 
without requiring a model of the entire compiler. 

One technique the author has used for creating 
prototypes is hierarchical prototyping, also called 
levels of abstraction [Di68]. This has worked well 
for simple, as well as complex systems. The basic 
idea is to begin by writing a model which helps the 
designer and the end user to understand the 
problem and its solution, without too much concern 
being given to actual details of implementation. 
Once this is completed, successively more detailed 
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models are written, which converge on the actual 
implementation, by mimicking actual code and data 
structures of the target system. In the author’s 
experience, 3 levels of models have sufficed: 
Concise, intermediate, and detailed models, each 
with different objectives. 

The intermediate model should actually work and 
produce results. It is prudent to write a driver 
function to exercise the intermediate model against 
the concise model, to ensure that they are in fact 
both solving the same problem. 

The Concise Model 

The concise model or conceptual model has as its 
major objective the comprehension of the problem 
and proposed solutions to the problem. It serves as 
a basis for exploring ideas and various algorithms. 
Minimal consideration is given to the actual 
implementation, since this distracts from the 
important goal at this point, which is understanding 
the problem and its solution. The language used is 
pure APL. Anything goes, as long as it helps the 
designer’s thought processes. This is not the time 
to be thinking much about details of representation 
(data structures). For example, a symbol table 
might be represented as a vector of enclosed 
arrays, and be searched by the indexof function, 
even though the final implementation might be very 
different. 

The intermediate model is often the first concrete 
model of the entire system, but it is not unusual to 
have a model which mixes concise model and 
iptermediate model components, for reasons of 

1 efficiency or convenience. For example, if a group 
of programmers are writing a compiler using a 
concise model as their paradigm, each may use the 
concise model as a driver for their components, 
replacing specific concise model functions with 
intermediate model equivalents. This allows each 
developer to proceed independently of the others. 

Because validation of data structures and 
program structures is the goat, the actual APL code 
used in the model remains of lesser importance than 
verifying that the system can be built and will work 
as planned. 

The Detailed Model 

The concise model is used to establish feasibility, 
and to develop algorithms. The conceptual freedom 
obtained from abstraction of data and program 
structures is invaluable at this point, as is the 
flexibility of that abstraction, if changes prove 
necessary. 

For example, in the course of modelling the 
inner-product operator compiler for SHARP APL in 
1978, the algorithms were redesigned several times 
in order to take advantage of new concepts which 
arose during the modelling process. Significant 
gains in performance resulted, and new applications 
became practical to solve in APL. The cost of 
applications such as cross-tabulations and 
transitive closure dropped dramatically, due to a 
thousand-fold speedup in the performance of 
Boolean inner products, such as QV.AW. Application 
of the same technique to more traditional inner 
products produced code which ran about twice as 
fast as FORTRAN. 

When the intermediate model is functional, work 
begins on a low-level, detailed model. This model 
should reflect, as directly as possible, the 
implementation language which will be the final 
product. The major objective of the detailed model 
is to make the production of implementation 
language code a transcription process. The detailed 
model is created by “primitiviting” the intermediate 
model. Primitivizing is the process of replacing APL 
constructs with functionally equivalent constructs 
which can be directly translated into known 
constructs in the implementation language. 
(Originally, the term “simplified” was used, but 
since the expressions resulting from the action were 
in fact usually more complicated, the term 
“primitivizing” was adopted.) A vector reversal 
might be primitivized in this way (All examples in 
this paper assume index origin 0): 

The Intermediate Model 

Once the problem and solution are understood, the 
task has been reduced to a programming exercise. 
At this point, modelling is used more as a 
programming aid and less as a tool of thought. 

It is not necessary to primitivize all expressions, 
if the transformation is obvious. In the above 
example, scalar-oriented languages cannot generate 
the vector resulting from IPW, but it is obvious 
how to write a loop to achieve the same result. Even 
though the example does have an obvious 
expansion, it is safer to take the process a step 
further, to precisely reflect the implementation 
language: 

The major objectives of the intermediate model 
are to introduce the data structures of the actual 
implementation, and to create program structures 
which reflect those which will be used in the 
implementation. For example, a recursive function 
in the concise model might be replaced by an 
iterative function in the intermediate model, and the 
indexof function used to search a symbol table in 
the concise model might be replaced by a 
sophisticated binary tree search. The intermediate 
model may bear little or no physicaf resemblance to 
the concise model. 

yam--l A yet another counter 
10: +((Pw)lyac+yac+l)Plz 

zCyacl+wC-l+(Pw)-yacl 
+10 

lz: 

The reason for this is apparent: An auxiliary 
variable and control structures have appeared. 
Since the author somehow always manages to code 
conditional branches and end conditions backwards, 
and gets counters initialized wrong, this technique 
is one of self-defense, to ensure that the errors 
appear at the modelling stage, not in the 
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implementation. In addition, bugs such as index 
errors, which are detected in APL, but not in many 
other !anguages, are caught here. 

The detailed model should be run against the 
intermediate model (and the concise model if 
appropriate) to verify that they match. A 
discrepancy indicates an error in one of the models. 

TRANSCRIPTION 

Once the detailed model operates correctly, 
production of implementation language code should 
be little more than a transcription process. For 
example, the expression i+i+l, for i a scalar, 
might be transcribed into IBM S/370 assembler code 
as: 

1 la rO,l 
i+l a rO,i 
i+i+l st rO,i 

Vetting of the implementation is performed by 
comparing the result of running it against the 
models, with identical arguments supplied to both 
systems. 

If a suitably restricted dialect of APL is used for 
the detailed model, a compiler may be used for this 
phase. Since early 1983, the node computers used 
in I PSANET, I.P. Sharp’s proprietary packet 
switching network, have been programmed in a 
subset of APL [Cr83], using a compiler (itself 
written in APL) developed by Steven Crouch, of 
the I. P. Sharp Network Development Department. 

The time required to isolate faults can often be 
reduced by comparing intermediate results of the 
implementation against those of the model. The 
ability to step through an APL function in such 
cases, examining intermediate results, is 
exceptionally useful. 

OPTIMIZATION AND COMPLEXITY ANALYSIS 

APL models lend themselves to all sorts of 
optimization efforts. In the reversal example given 
previously, some simple optimization improves the 
inner loop: 

yac+-Pw 
k+yac-1 

lO:+(O>yac+yac-1)pIz 
zCyacl+w[k-yacl 
+10 

lz: 

The changes here include removal of some 
inner-loop arithmetic, and limit testing against 
zero, which is faster on certain machines than 
comparing two numbers. Similar techniques may be 
used to replace multiplication by addition, take 
advantage of hardware parallelism, move the limit 
test to the end to reduce inner-loop branches, etc. 

More complex optimizations, visible at the concise 
model level, are often masked by code volume at 

lower levels. Consider a model of a loom for weaving 
cloth, which is a function of 3 arguments: 

thread - A one-row integer matrix, specifying 
which harness a given thread is 
connected to. 

treadle - An integer vector, specifying the 
treadling pattern used. 

tieup - An integer matrix, specifying which 
harnesses are connected to which 
treadle. 

The original model, approximately as presented 
to the author bv a weaver TPo821. follows. To 
simplify the presentation, tieup' is a global 
variable: 

zfa weave0 w;n 
z+( (Pa > .PW )PW 
n+O 

Il:zCn;l+wetieupCaCnl;l 
n+n+l 
+(n<pa)/ll 

A bit of analysis showed that this could be 
expressed as an inner product and some array 
indexing: 

weavel: t ktCtieupEa;lv.=wl 

tieup+ 2PO 3 2 3 1 2 0 1 

(lOp(l4),@14) weave1 2Op14 
* ** ** ** ** * 

** ** *-k. ** *x 
*x ** ** ** ** 

** ** ** ** A-* 
** ** ** ** ** 

** ** ** ** ** 
** ** ** ** A-* 

* ** ** x-k x-k * 
* ** ** ** ** * 

** xx ** ** ** 

Computation of a 100 by 100 weave, using 
weavel, takes about 70 seconds on SHARP 
APL/PC. A similar function, written in BASIC, took 
several minutes, and required two and one half 
pages of code [He82]. Complexity analysis at this 
point is desirable and enlightening. tieup is 
typically small, of shape 8 8 or smaller, whereas 
treadle and thread are usually several hundred 
elements each. The function consists of two index 
operations, which are approximately linear with 
respect to result size, and an inner product which 
is nonlinear and of order n*3, where n is the 
approximate shape of treadle and thread. Since 
the arguments to the inner product are large in 
shape, a reduction in their size will likely reduce 
processor time by much more than optimization 
efforts directed at the index expressions. 

Since (ptreadle)>l+ptieup, the left argument 
to the inner product (tieupCa;l) must contain 
duplicate rows. This implies redundant computation 
in the expensive inner product. If we instead 
compute all possible treadling results once, and 
then index those results with the actual treadling 
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pattern used, the time spent in the inner product is 
significantly reduced. This version takes 14 
seconds on SHARP APL/PC: 

weave2: I *lC(tieupv.=w)Ca;ll 

The next candidate for optimization is the 
characterCboolean1 indexing operation. weave2 
indexes the character vector t *I with a Boolean 
matrix which contains many duplicate rows. If the 
indexing is factored out and performed once, the 
processor time required drops to 7 seconds, a 
factor of 10 improvement over weavel, and much 
faster than the BASIC version: 

weave3: (1 *l[tieupv.=wl)Ca;l 

These sorts of optimizations may be obvious at 
the concise model level, but require significant 
amounts of careful analysis, measurement, and 
study at the detailed model or implementation level, 
simply because the great amount of detailed code 
masks the process being performed. Furthermore, 
attempts to optimize at the detailed model or 
implementation level are inevitably error-prone, 
again because of the code volumes involved at those 
levels. 

HYBRID MODELS 

Frequently, a prototype written strictly in APL is 
inadequate to model the solution to a problem. For 
example, the APL model of the semantic analyzer for 
a PL/I compiler might accept as input an 
intermediate file created by an existing parser, 
written in a language such as PASCAL. A terminal 
session manager which is intended to drive a 
real-world device may require extensive 
experimentation to make it work at all. 

AUXP is a very simple auxiliary processor. It 
drives the device in the simplest possible way. It 
accepts a datastream from the APL model via a 
shared variable, and passes that directly to VTAM. 
It waits for the VTAM response, and passes that 
response back to the APL model. AUXP is 
effectively transparent, and acts only as the 
interface between the model (written in APL), and 
VTAM. 

In such cases, a hybrid model, which might use 
shared variables to communicate with a simple 
auxiliary processor, may be of value. The structure 
of such a model is easily understood by looking at 
an actual example. 

The model is a collection of functions to perform 
both session handling and terminal driver duties, 
communicating with AUXP on one side, and with the 
APL system on the other side (via APl). 

SHARP APL session managers communicate with 
APL via a shared-variable interface (APl) to the 
interpreter, and communicate with the terminals 
they are managing via interfaces such as VTAM, 
provided by the operating system. 

During development, it is convenient to have two 
terminals side by side. One terminal runs the APL 
model, and the other is the device being managed. 
Aside from response time, a user of the device 
being managed is unable to tell if the session 
manager is being run in APL or in some other 
language. All the facilities of the terminal are 
available. 

When Eric lverson wrote SAPV [Bu81], an early If an abnormality occurs during use, such as 
IBM 3270 terminal session manager, he viewed the incorrect scrolling, all the power of APL is available 
session manager in this way: to isolate the problem, including: 

3270 - VTAM - TD - SH - APl - APL 

The device (a 3270 terminal) communicates with 
VTAM, a terminal access method provided by the 
operating system. The session manager is. divided 
into two parts: The first part is a terminal driver 
(TD) which is concerned with the details of actually 
driving a particular device, such as datastream 
generation and decomposition, session establishment 
with the operating system, and so on. The terminal 
driver communicates with VTAM on one side at a 
very primitive level and with the session handler 
(SH) on the other side, at a relatively high level. 

0 ability to trace and stop function execution 
0 display of variables in the model, such as 

datastreams 
0 ability to alter the model functions or data at 

any point 
0 ability of the model to halt itself when an 

error occurs 

The device may be driven interactively by 
sending it a datastream and examining the result. 
The ability to generate and decode datastreams with 
ease using APL functions greatly simplifies the 
development process. 
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The second part is a session handler, which 
performs logical functions that are independent of 
device peculiarities such as scrolling, windowing, 
generic support of function keys, and so on. Most 
of the visible functionality of a session manager lies 
in the session handler. 

In a classical programming environment, a 
programmer would write the entire session manager, 
then sit down and debug it via such time-honored 
techniques as instruction step and core dumps to 
examine datastreams and operating system return 
codes. This is a slow, hard way to determine the 
answers to questions like: Why did the screen scroll 
too far? Why does it ignore PF keys? Why doesn’t 
reverse video work correctly? 

The terminal driver frequently requires a lot of 
iterative, tedious work to understand what’s really 
going on with the device. Core dumps are not the 
most user-friendly debugging mechanism ever 
invented, nor the fastest. If coding, recompilation, 
and relinking are required between successive 
tests, the speed of development will suffer. 

A hybrid model to assist in the development of 
such an application might look like this: 

3270 - VTAM - AUXP - MODEL - APl - APL 
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Once the model runs in a satisfactory manner, 
the methods described previously may be used to 
generate the implementation code, which should 
work as modelled. 

COMPATIBLE MODELS 

The shared-variable part of the auxiliary processor 
may either be replaced by the implementation code, 
or it may be retained to provide a compatible model 
including such facilities as: 

oA switch to allow choosing between 
implementation code and model code, perhaps 
on a demand basis, for one particular device 
only. This allows “splicing” into a session, to 
chase a particular problem, and also supports 
continued development work on a running 
session manager, without affecting other 
users of that session manager. 

OOptional monitoring of datastreams by a 
shared-variable partner, while the session 
continues to be managed by the 
implementation code. This comes in handy 
when examining hard-to-reproduce failures 
which arise in the course of running real 
applications. 

These facilities, combined with a model which is 
kept current with the actual implementation, are 
also useful in supporting new device features, such 
as graphics, as they become available. 

CODE RELIABILITY AND STRUCTURE 

Code produced via the modelling process has 
proven to be more bug-free, and more 
“structured”, than that produced via other 
mechanisms. One reason for this is that APL 
encourages a functional, rather than subroutine, 
view of the world. This in turn encourages clean, 
simple interfaces, and functions with well-specified 
arguments and results, and no side effects. This 
has a fingering effect, since such code is usually 
quite amenable to modification, enhancement, or 
complete. replacement in the future, by someone 
other than the original author. The tendency in 
APL to write straight-line code also makes vetting 
of code easier. The minimization of complicated code 
paths simplifies the application of techniques such 
as code coverage to ensure that all instructions 
paths are executed, and enhances the value of such 
techniques. 

In the implementation of high performance 
versions of the SHARP APL functions rotate and 
reversal in 1979, hierarchical modelling paid off in 
two ways: The new functions ran more than ten 
times faster than their predecessors, and only one 
bug has ever been reported. The bug was in an 
area which had not been modelled, because the 
model was not a complete model of APL, and the 
system integration was performed incorrectly. 
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LIMITATIONS OF PROTOTYPING 

In practice, the picture isn’t always quite as rosy 
as it’s been painted here. There are a number of 
things which are impractical or impossible to model, 
and problems which are not detectable by 
modelling. 

Race conditions in a TCMP (Tightly-Coupled 
Multi-Processor) environment are not caught by a 
naive prototype. This is an area where further 
research into prototyping may be of significant 
value. 

tntegration of partial prototypes into an existing 
system may not be trouble-free, as the author 
observed in 1979 with rotate. System integration 
remains a serious problem with partial models. 

Concise models, more so than detailed models, 
may suffer from problems such as workspace full, 
when presented with actual data. Programmers, 
using hybrid and hierarchical prototyping to model 
the semantic analyzer for a PL/I compiler, 
encountered a hard workspace full in a concise 
model when it was used to compile a lO,OOO-line 
PL/I program. 

The cost of converting a partial prototype to a 
full-feature prototype may outweigh any savings 
gained by doing so; particularly if the final 
implementation language is APL. 

Unless special care is taken, machine or 
language-dependent constructs may cause 
problems. An APL model which sometimes executes 
OCO may appear to work correctly, but unless a 
very critical eye is cast upon the transcription 
process, the implementation may fail wher 
presented with the same arguments. These problems 
may be addressed by creation of a suite of 
functions to perform the desired operations. A 
divide function which properly handles 0~0 might 
be written as: 

divl: aI+ 

or as 

div2: atw-ifw 

In 1984, when Eugene McDonnell rewrote the 
elementarv functions in SHARP APL for improved 
performance and accuracy, he began by writing 
APL functions which mimic, to the bit level, each of 
the S/370 floating-point instructions which he 
intended to use. Detailed models were built using 
these functions, and the resulting code was 
installed with minimal problems. 

Finally, the speed of an APL model may limit its 
applicability in certain problems where raw speed is 
paramount. Current research into APL compilers 
may help to solve this particular problem, at some 
cost in ease of interaction. 
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PERFORMANCE ESTIMATION 

APL models can be useful for estimating the 
performance of the resulting system, in several 
ways. As the section on optimization stated, it is 
usually easier to perform complexity analysis at the 
concise model level, than on the actual 
implementation. Such analysis is a good predictor of 
performance of an algorithm when presented with 
various arguments. For example, a naive 
implementation of the APL set membership function 
CLEW, on characters or Booleans, might use an 
algorithm which picks an element from CL and then 
performs a linear search for it in ,w. This 
algorithm has complexity: 

An algorithm [Be731 which first builds a table 
using elements of w, and then indexes that table 
using elements of a, has complexity: 

If the arrays contain 100 elements each, the 
speed ratio of the two algorithms is about 50 to 1. 

If the path length of the implementation code can 
be estimated from one of the models, and if monitors 
are written into the model to count the number of 
calls, then the processor time required to execute 
the implementation will be proportional to the path 
length times the number of calls. 

If a model of the present implementation exists, 
then comparison of the execution time of the new 
model versus the old one may help to indicate 
relative performance. Some caution must be 
exercised here, to avoid problems with model 
performance anomalies due to differences in the APL 
primitives, rather than differences in the models. 
In the case of the models of indexof presented in 
[Be73], not only was the new model faster than the 
old one, but the new model frequently outperformed 
the APL primitive it was intended to replace. Such 
clearcut proof of superior performance is hard to 
beat. 

The use of APL for test data generation and 
performance measurement often proves to be of 
value in unexpected ways. Figure 1 shows relative 
performance plots of the old and new rotate 
function, measured while the function was being 
rewritten for performance reasons. The rather odd 
spikes appearing in an otherwise linear graph 
puzzled the author, who searched code and model 
unsuccessfully for an answer. The realization that 
the spikes were sporadic, and apparently 
non-reproducible didn’t help. When it became clear 
that they were in some way related to user load, 
and that the old code exhibited the same anomaly, 
the search widened. 

Further study revealed that the spikes 
(consuming enough processor time to perform a 
4,000-element integer rotate!) occu r red when 
another APL user entered a line of input, 
interrupting the execution of rotate. The anomaly 
was traced to the “set storage key” instruction of 
the newly-installed mainframe processor, which, 
due to the non-store-through nature of the cache 
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on the machine, took an excruciatingly long time to 
execute. The computer architect chose to not 
correct the problem, so a software fix was 
developed, which avoided use of the offending 
instruction. This resulted in the pleasant curves 
shown in Figure 2. 

I’M SURE THIS WORKED LAST WEEK 

One very important part of any modelling work is to 
keep track of the various changes which are made 
during the course of modelling. Sometimes, one 
makes changes to many parts of the model in an 
attempt to correct a problem which is later found to 
lie in a totally different area. If good records are 
kept of all changes to the model, it is relatively 
easy to back up to a previous model, compare 
models, and so on. The use of APL as a base for 
modelling allows a lot of the clerical work associated 
with such recordkeeping to be automated. For 
example, the consistent use of an APL application 
maintenance tool, such as LOGOS [Go86], which 
keeps an audit trail of all changes made to the 
source, makes it possible to revive old versions of 
the model with little effort, and to include 
commentary on why the change was made. 

A CLOSING WORD 

As a programmer who struggled for many years 
with core dumps, dirty bit switch contact, and 
burned-out CPU indicator lamps, the use of 
prototyping has been a great relief. It has reduced 
the count of sleepless nights, and has made system 
programming once more APL: A Pleasant Life. 
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