
APL: A PROTOTYPING LANGUAGE

Robert Bernecky
I. P. Sharp Associates Limited

APL Systems Development Group
2 First Canadian Place, Suite 1900

Toronto, Ontario M5X lE3
Canada

(416) 364-5361

ABSTRACT

The use of APL as a language for system design
and prototyping is discussed. Benefits of APL over
traditional design techniques are shown to include
higher productivity, improved code reliability,
superior maintainability and performance, and
executable documentation.

Hierarchical and hybrid approaches to modelling
systems of various degrees of complexity are
presented, with examples chosen from the author’s
experience.

INTRODUCTION

The creation of any system is simplified if the
system is understood before implementation begins.
In the design of complex computer applications,
such as interpreters, compilers, and session
managers, executable models or prototypes of the
application are an aid to understanding. They also
provide other benefits, such as improved code
reliability, higher programmer productivity,
superior maintainability and performance, and
executable documentation. The following presents
the why and how of using APL for prototyping,
with practical examples.

WHAT ,IS A PROTOTYPE?

A prototype or model is an executable program
which simulates part or all of a system. Some major
functions of prototypes are:

0 to assist in the design of algorithms
0 to assist in the design of data structures
0 to estimate performance

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of The British Informatics Society Limited. To copy
otherwise, or to republish requires specific permission.

Robert Bernecky 221

0 to validate systern integration
0 to serve as a debugging tool
0 to help the user understand the system

EXECUTABLE PROTOTYPES

Non-executable techniques, such as “pseudocode”
or flowcharts, are inferior to an executable model.
The subjective “execution” of pseudocode by a
human may mask serious design errors, whereas the
execution of a working model by a computer will
turn up errors which ever-optimistic programmers
consistently miss. The importance of this objective,
unbiased nature of computer program execution in
analysis and design cannot be overemphasized.
Consider an expression such as:

Paris in the
the springtime

Anyone who read the above as “Paris in the
springtime” needs executable prototypes. This may
seem obvious, but programmers and mathematicians
exude a Panglossian attitude which persists in spite
of working in environments where much of their
time is spent in correcting the relation between
reality and their conception of reality. This time is
referred to as “debugging time” or “research” --
by programmers and mathematicians, respectively.

BENEFITS OF PROTOTYPING

Prototyping has a number of benefits over other
design techniques. One of the most important
occurs in system integration. It keeps you from
getting that sinking feeling two-thirds of the way
through a project, when it becomes obvious that
two major pieces of it do not, and cannot, be made
to fit together. If a prototype is built first, the
pieces have already been integrated, and a
potentially expensive redesign has been avoided.

Another advantage appears in the context of
“doing it” versus “doing it right”. In the course of
constructing a large system, it usually becomes
clear that certain algorithms, interfaces, or data
structures could benefit from partial or total
redesign [Wy13].

APL: A Prototyping Language

http://crossmark.crossref.org/dialog/?doi=10.1145%2F22008.22039&domain=pdf&date_stamp=1986-05-01

If these discoveries are made during the
modelling process, it is often possible to perform
the redesign immediately, with significantly less
effort than during the actual implementation phase.

Performance measurement is simplified by use of
prototypes. One of the virtues of an executable
model, particularly a model which permits human
interaction, is that it is easy to build
instrumentation and monitoring functions into the
model on a permanent or ad hoc basis. With proper
measuring tools, it is possible to quickly answer
questions such as:

0 Which facilities are used most often?
0 Which data structures are accessed most

frequently? In what way?
0 Will a linear search suffice, or is an index

required?
0 How does this data structure behave under

different stimuli?
6 How well will a given facility perform under

light load? Under heavy load? Under
overload?

0 What sorts of errors are being made by the
users?

Instrumentation may be analytical (producing
tables, plots, h istog rams, counters), visual
(displaying the parse tree generated by the syntax
analyzer) or any other kind. The only rule is: If it
helps the design process, use it. The use of a
powerful, interactive language, such as APL, al1ow.s
rapid ad hoc data collection and analysis, with
minimal effort. For example, functions may be
written to assist with topological analysis or to
perform time computations during model execution.

Models provide excellent documentation for a
system because they can combine the specifications,
structure, and algorithms into a single, compact
document. For this reason, proposed extensions to
a system are easily analyzed at the model level.

Often, in the course of system maintenance, one
encounters code which is apparently useless or
incorrect. Having a model of the system available
often helps to show why such code is either
necessary or nugatory.

Models offer an opportunity to optimize at a high
level, early in the design phase. A concise model
often highlights areas where significant time or
space improvements may be achieved, whereas the
actual implementation may be complicated enough to
hide these same areas.

WHY PROTOTYPE IN APL?

Prototypes may be written in any language, but the
use of APL offers significant advantages over more
primitive languages such as PASCAL or PL/I. APL
possesses certain important characteristics which
speed development and assist thought.
Executability is important, but so are human
interaction, powerful functions and operators,
sub-second response time, and rapid creation and
modification of functions.

Robert Bernecky

Algorithmic analysis and design are assisted by
the functions and operators in APL. Human minds
can only deal with about 7 to 9 “chunks” of
information at once, due to short-term memory
limitations (I had the bibliographic reference for
this in my head a minute ago, but forgot it while I
was typing this line). The density of concepts
embedded in an APL expression allows the mind to
grasp at once a larger portion of the problem than
is possible in other languages.

The functions and operators in APL are tools of
thought. They hide the details and allow
concentration on the problem at hand. The rapidity
of development in APL allows study and comparison
of alternate algorithms in a short period of time.

The interactive nature of the language speeds
debugging efforts, even by such simple facilities as
being able to display the value of an array in
human readable form by entering its name, rather
than by having to stare at a hexadecimal storage
dump. The ability to generate test scripts with ease
under program control makes vetting of the design
faster.

The executability of the model speeds fault
location in the actual implementation. If the model
works, but the implementation fails, the error lies
in the transcription of the model to the
implementation, and the model may be used in
conjunction with the implementation to isolate the
fault. If the model also fails, a design error exists,
and the model may be used by itself to isolate the
fault interactively.

The rapid response time of APL systems
(typically less than 0.1 second on most commercially
available systems) increases human productivity
and reduces frustration.

HIERARCHICAL PROTOTYPING

Just as the reasons for writing prototypes vary,
depending on perceived needs, so do the
approaches taken to writing them. A prototype
designed to prove the feasibility of an algorithm
may differ significantly in structure and detail from
one written to analyze data structure performance.

The completeness and level of detail of a
prototype will also vary depending on the problems
to be solved by the prototype. A new,
ill-understood project, such as a language compiler,
will benefit from a relatively complete model. On the
other hand, a small, well-specified problem, such
as replacing the symbol table search functions for
the same compiler, may be successfully modelled
without requiring a model of the entire compiler.

One technique the author has used for creating
prototypes is hierarchical prototyping, also called
levels of abstraction [Di68]. This has worked well
for simple, as well as complex systems. The basic
idea is to begin by writing a model which helps the
designer and the end user to understand the
problem and its solution, without too much concern
being given to actual details of implementation.
Once this is completed, successively more detailed

222 APL: A Prototyping Language

models are written, which converge on the actual
implementation, by mimicking actual code and data
structures of the target system. In the author’s
experience, 3 levels of models have sufficed:
Concise, intermediate, and detailed models, each
with different objectives.

The intermediate model should actually work and
produce results. It is prudent to write a driver
function to exercise the intermediate model against
the concise model, to ensure that they are in fact
both solving the same problem.

The Concise Model

The concise model or conceptual model has as its
major objective the comprehension of the problem
and proposed solutions to the problem. It serves as
a basis for exploring ideas and various algorithms.
Minimal consideration is given to the actual
implementation, since this distracts from the
important goal at this point, which is understanding
the problem and its solution. The language used is
pure APL. Anything goes, as long as it helps the
designer’s thought processes. This is not the time
to be thinking much about details of representation
(data structures). For example, a symbol table
might be represented as a vector of enclosed
arrays, and be searched by the indexof function,
even though the final implementation might be very
different.

The intermediate model is often the first concrete
model of the entire system, but it is not unusual to
have a model which mixes concise model and
iptermediate model components, for reasons of

1 efficiency or convenience. For example, if a group
of programmers are writing a compiler using a
concise model as their paradigm, each may use the
concise model as a driver for their components,
replacing specific concise model functions with
intermediate model equivalents. This allows each
developer to proceed independently of the others.

Because validation of data structures and
program structures is the goat, the actual APL code
used in the model remains of lesser importance than
verifying that the system can be built and will work
as planned.

The Detailed Model

The concise model is used to establish feasibility,
and to develop algorithms. The conceptual freedom
obtained from abstraction of data and program
structures is invaluable at this point, as is the
flexibility of that abstraction, if changes prove
necessary.

For example, in the course of modelling the
inner-product operator compiler for SHARP APL in
1978, the algorithms were redesigned several times
in order to take advantage of new concepts which
arose during the modelling process. Significant
gains in performance resulted, and new applications
became practical to solve in APL. The cost of
applications such as cross-tabulations and
transitive closure dropped dramatically, due to a
thousand-fold speedup in the performance of
Boolean inner products, such as QV.AW. Application
of the same technique to more traditional inner
products produced code which ran about twice as
fast as FORTRAN.

When the intermediate model is functional, work
begins on a low-level, detailed model. This model
should reflect, as directly as possible, the
implementation language which will be the final
product. The major objective of the detailed model
is to make the production of implementation
language code a transcription process. The detailed
model is created by “primitiviting” the intermediate
model. Primitivizing is the process of replacing APL
constructs with functionally equivalent constructs
which can be directly translated into known
constructs in the implementation language.
(Originally, the term “simplified” was used, but
since the expressions resulting from the action were
in fact usually more complicated, the term
“primitivizing” was adopted.) A vector reversal
might be primitivized in this way (All examples in
this paper assume index origin 0):

The Intermediate Model

Once the problem and solution are understood, the
task has been reduced to a programming exercise.
At this point, modelling is used more as a
programming aid and less as a tool of thought.

It is not necessary to primitivize all expressions,
if the transformation is obvious. In the above
example, scalar-oriented languages cannot generate
the vector resulting from IPW, but it is obvious
how to write a loop to achieve the same result. Even
though the example does have an obvious
expansion, it is safer to take the process a step
further, to precisely reflect the implementation
language:

The major objectives of the intermediate model
are to introduce the data structures of the actual
implementation, and to create program structures
which reflect those which will be used in the
implementation. For example, a recursive function
in the concise model might be replaced by an
iterative function in the intermediate model, and the
indexof function used to search a symbol table in
the concise model might be replaced by a
sophisticated binary tree search. The intermediate
model may bear little or no physicaf resemblance to
the concise model.

yam--l A yet another counter
10: +((Pw)lyac+yac+l)Plz

zCyacl+wC-l+(Pw)-yacl
+10

lz:

The reason for this is apparent: An auxiliary
variable and control structures have appeared.
Since the author somehow always manages to code
conditional branches and end conditions backwards,
and gets counters initialized wrong, this technique
is one of self-defense, to ensure that the errors
appear at the modelling stage, not in the

Robert Berneckv
I

223 APL: A Prototyping Language

implementation. In addition, bugs such as index
errors, which are detected in APL, but not in many
other !anguages, are caught here.

The detailed model should be run against the
intermediate model (and the concise model if
appropriate) to verify that they match. A
discrepancy indicates an error in one of the models.

TRANSCRIPTION

Once the detailed model operates correctly,
production of implementation language code should
be little more than a transcription process. For
example, the expression i+i+l, for i a scalar,
might be transcribed into IBM S/370 assembler code
as:

1 la rO,l
i+l a rO,i
i+i+l st rO,i

Vetting of the implementation is performed by
comparing the result of running it against the
models, with identical arguments supplied to both
systems.

If a suitably restricted dialect of APL is used for
the detailed model, a compiler may be used for this
phase. Since early 1983, the node computers used
in I PSANET, I.P. Sharp’s proprietary packet
switching network, have been programmed in a
subset of APL [Cr83], using a compiler (itself
written in APL) developed by Steven Crouch, of
the I. P. Sharp Network Development Department.

The time required to isolate faults can often be
reduced by comparing intermediate results of the
implementation against those of the model. The
ability to step through an APL function in such
cases, examining intermediate results, is
exceptionally useful.

OPTIMIZATION AND COMPLEXITY ANALYSIS

APL models lend themselves to all sorts of
optimization efforts. In the reversal example given
previously, some simple optimization improves the
inner loop:

yac+-Pw
k+yac-1

lO:+(O>yac+yac-1)pIz
zCyacl+w[k-yacl
+10

lz:

The changes here include removal of some
inner-loop arithmetic, and limit testing against
zero, which is faster on certain machines than
comparing two numbers. Similar techniques may be
used to replace multiplication by addition, take
advantage of hardware parallelism, move the limit
test to the end to reduce inner-loop branches, etc.

More complex optimizations, visible at the concise
model level, are often masked by code volume at

lower levels. Consider a model of a loom for weaving
cloth, which is a function of 3 arguments:

thread - A one-row integer matrix, specifying
which harness a given thread is
connected to.

treadle - An integer vector, specifying the
treadling pattern used.

tieup - An integer matrix, specifying which
harnesses are connected to which
treadle.

The original model, approximately as presented
to the author bv a weaver TPo821. follows. To
simplify the presentation, tieup' is a global
variable:

zfa weave0 w;n
z+((Pa > .PW)PW
n+O

Il:zCn;l+wetieupCaCnl;l
n+n+l
+(n<pa)/ll

A bit of analysis showed that this could be
expressed as an inner product and some array
indexing:

weavel: t ktCtieupEa;lv.=wl

tieup+ 2PO 3 2 3 1 2 0 1

(lOp(l4),@14) weave1 2Op14
* ** ** ** ** *

** ** *-k. ** *x
*x ** ** ** **

** ** ** ** A-*
** ** ** ** **

** ** ** ** **
** ** ** ** A-*

* ** ** x-k x-k *
* ** ** ** ** *

** xx ** ** **

Computation of a 100 by 100 weave, using
weavel, takes about 70 seconds on SHARP
APL/PC. A similar function, written in BASIC, took
several minutes, and required two and one half
pages of code [He82]. Complexity analysis at this
point is desirable and enlightening. tieup is
typically small, of shape 8 8 or smaller, whereas
treadle and thread are usually several hundred
elements each. The function consists of two index
operations, which are approximately linear with
respect to result size, and an inner product which
is nonlinear and of order n*3, where n is the
approximate shape of treadle and thread. Since
the arguments to the inner product are large in
shape, a reduction in their size will likely reduce
processor time by much more than optimization
efforts directed at the index expressions.

Since (ptreadle)>l+ptieup, the left argument
to the inner product (tieupCa;l) must contain
duplicate rows. This implies redundant computation
in the expensive inner product. If we instead
compute all possible treadling results once, and
then index those results with the actual treadling

Robert Bernecky 224 APL: A Prototyping Language

pattern used, the time spent in the inner product is
significantly reduced. This version takes 14
seconds on SHARP APL/PC:

weave2: I *lC(tieupv.=w)Ca;ll

The next candidate for optimization is the
characterCboolean1 indexing operation. weave2
indexes the character vector t *I with a Boolean
matrix which contains many duplicate rows. If the
indexing is factored out and performed once, the
processor time required drops to 7 seconds, a
factor of 10 improvement over weavel, and much
faster than the BASIC version:

weave3: (1 *l[tieupv.=wl)Ca;l

These sorts of optimizations may be obvious at
the concise model level, but require significant
amounts of careful analysis, measurement, and
study at the detailed model or implementation level,
simply because the great amount of detailed code
masks the process being performed. Furthermore,
attempts to optimize at the detailed model or
implementation level are inevitably error-prone,
again because of the code volumes involved at those
levels.

HYBRID MODELS

Frequently, a prototype written strictly in APL is
inadequate to model the solution to a problem. For
example, the APL model of the semantic analyzer for
a PL/I compiler might accept as input an
intermediate file created by an existing parser,
written in a language such as PASCAL. A terminal
session manager which is intended to drive a
real-world device may require extensive
experimentation to make it work at all.

AUXP is a very simple auxiliary processor. It
drives the device in the simplest possible way. It
accepts a datastream from the APL model via a
shared variable, and passes that directly to VTAM.
It waits for the VTAM response, and passes that
response back to the APL model. AUXP is
effectively transparent, and acts only as the
interface between the model (written in APL), and
VTAM.

In such cases, a hybrid model, which might use
shared variables to communicate with a simple
auxiliary processor, may be of value. The structure
of such a model is easily understood by looking at
an actual example.

The model is a collection of functions to perform
both session handling and terminal driver duties,
communicating with AUXP on one side, and with the
APL system on the other side (via APl).

SHARP APL session managers communicate with
APL via a shared-variable interface (APl) to the
interpreter, and communicate with the terminals
they are managing via interfaces such as VTAM,
provided by the operating system.

During development, it is convenient to have two
terminals side by side. One terminal runs the APL
model, and the other is the device being managed.
Aside from response time, a user of the device
being managed is unable to tell if the session
manager is being run in APL or in some other
language. All the facilities of the terminal are
available.

When Eric lverson wrote SAPV [Bu81], an early If an abnormality occurs during use, such as
IBM 3270 terminal session manager, he viewed the incorrect scrolling, all the power of APL is available
session manager in this way: to isolate the problem, including:

3270 - VTAM - TD - SH - APl - APL

The device (a 3270 terminal) communicates with
VTAM, a terminal access method provided by the
operating system. The session manager is. divided
into two parts: The first part is a terminal driver
(TD) which is concerned with the details of actually
driving a particular device, such as datastream
generation and decomposition, session establishment
with the operating system, and so on. The terminal
driver communicates with VTAM on one side at a
very primitive level and with the session handler
(SH) on the other side, at a relatively high level.

0 ability to trace and stop function execution
0 display of variables in the model, such as

datastreams
0 ability to alter the model functions or data at

any point
0 ability of the model to halt itself when an

error occurs

The device may be driven interactively by
sending it a datastream and examining the result.
The ability to generate and decode datastreams with
ease using APL functions greatly simplifies the
development process.

Robert Bernecky 225

The second part is a session handler, which
performs logical functions that are independent of
device peculiarities such as scrolling, windowing,
generic support of function keys, and so on. Most
of the visible functionality of a session manager lies
in the session handler.

In a classical programming environment, a
programmer would write the entire session manager,
then sit down and debug it via such time-honored
techniques as instruction step and core dumps to
examine datastreams and operating system return
codes. This is a slow, hard way to determine the
answers to questions like: Why did the screen scroll
too far? Why does it ignore PF keys? Why doesn’t
reverse video work correctly?

The terminal driver frequently requires a lot of
iterative, tedious work to understand what’s really
going on with the device. Core dumps are not the
most user-friendly debugging mechanism ever
invented, nor the fastest. If coding, recompilation,
and relinking are required between successive
tests, the speed of development will suffer.

A hybrid model to assist in the development of
such an application might look like this:

3270 - VTAM - AUXP - MODEL - APl - APL

APL: A Prototyping Language

Once the model runs in a satisfactory manner,
the methods described previously may be used to
generate the implementation code, which should
work as modelled.

COMPATIBLE MODELS

The shared-variable part of the auxiliary processor
may either be replaced by the implementation code,
or it may be retained to provide a compatible model
including such facilities as:

oA switch to allow choosing between
implementation code and model code, perhaps
on a demand basis, for one particular device
only. This allows “splicing” into a session, to
chase a particular problem, and also supports
continued development work on a running
session manager, without affecting other
users of that session manager.

OOptional monitoring of datastreams by a
shared-variable partner, while the session
continues to be managed by the
implementation code. This comes in handy
when examining hard-to-reproduce failures
which arise in the course of running real
applications.

These facilities, combined with a model which is
kept current with the actual implementation, are
also useful in supporting new device features, such
as graphics, as they become available.

CODE RELIABILITY AND STRUCTURE

Code produced via the modelling process has
proven to be more bug-free, and more
“structured”, than that produced via other
mechanisms. One reason for this is that APL
encourages a functional, rather than subroutine,
view of the world. This in turn encourages clean,
simple interfaces, and functions with well-specified
arguments and results, and no side effects. This
has a fingering effect, since such code is usually
quite amenable to modification, enhancement, or
complete. replacement in the future, by someone
other than the original author. The tendency in
APL to write straight-line code also makes vetting
of code easier. The minimization of complicated code
paths simplifies the application of techniques such
as code coverage to ensure that all instructions
paths are executed, and enhances the value of such
techniques.

In the implementation of high performance
versions of the SHARP APL functions rotate and
reversal in 1979, hierarchical modelling paid off in
two ways: The new functions ran more than ten
times faster than their predecessors, and only one
bug has ever been reported. The bug was in an
area which had not been modelled, because the
model was not a complete model of APL, and the
system integration was performed incorrectly.

Robert Bernecky 226

LIMITATIONS OF PROTOTYPING

In practice, the picture isn’t always quite as rosy
as it’s been painted here. There are a number of
things which are impractical or impossible to model,
and problems which are not detectable by
modelling.

Race conditions in a TCMP (Tightly-Coupled
Multi-Processor) environment are not caught by a
naive prototype. This is an area where further
research into prototyping may be of significant
value.

tntegration of partial prototypes into an existing
system may not be trouble-free, as the author
observed in 1979 with rotate. System integration
remains a serious problem with partial models.

Concise models, more so than detailed models,
may suffer from problems such as workspace full,
when presented with actual data. Programmers,
using hybrid and hierarchical prototyping to model
the semantic analyzer for a PL/I compiler,
encountered a hard workspace full in a concise
model when it was used to compile a lO,OOO-line
PL/I program.

The cost of converting a partial prototype to a
full-feature prototype may outweigh any savings
gained by doing so; particularly if the final
implementation language is APL.

Unless special care is taken, machine or
language-dependent constructs may cause
problems. An APL model which sometimes executes
OCO may appear to work correctly, but unless a
very critical eye is cast upon the transcription
process, the implementation may fail wher
presented with the same arguments. These problems
may be addressed by creation of a suite of
functions to perform the desired operations. A
divide function which properly handles 0~0 might
be written as:

divl: aI+

or as

div2: atw-ifw

In 1984, when Eugene McDonnell rewrote the
elementarv functions in SHARP APL for improved
performance and accuracy, he began by writing
APL functions which mimic, to the bit level, each of
the S/370 floating-point instructions which he
intended to use. Detailed models were built using
these functions, and the resulting code was
installed with minimal problems.

Finally, the speed of an APL model may limit its
applicability in certain problems where raw speed is
paramount. Current research into APL compilers
may help to solve this particular problem, at some
cost in ease of interaction.

APL: A Prototyping Language

PERFORMANCE ESTIMATION

APL models can be useful for estimating the
performance of the resulting system, in several
ways. As the section on optimization stated, it is
usually easier to perform complexity analysis at the
concise model level, than on the actual
implementation. Such analysis is a good predictor of
performance of an algorithm when presented with
various arguments. For example, a naive
implementation of the APL set membership function
CLEW, on characters or Booleans, might use an
algorithm which picks an element from CL and then
performs a linear search for it in ,w. This
algorithm has complexity:

An algorithm [Be731 which first builds a table
using elements of w, and then indexes that table
using elements of a, has complexity:

If the arrays contain 100 elements each, the
speed ratio of the two algorithms is about 50 to 1.

If the path length of the implementation code can
be estimated from one of the models, and if monitors
are written into the model to count the number of
calls, then the processor time required to execute
the implementation will be proportional to the path
length times the number of calls.

If a model of the present implementation exists,
then comparison of the execution time of the new
model versus the old one may help to indicate
relative performance. Some caution must be
exercised here, to avoid problems with model
performance anomalies due to differences in the APL
primitives, rather than differences in the models.
In the case of the models of indexof presented in
[Be73], not only was the new model faster than the
old one, but the new model frequently outperformed
the APL primitive it was intended to replace. Such
clearcut proof of superior performance is hard to
beat.

The use of APL for test data generation and
performance measurement often proves to be of
value in unexpected ways. Figure 1 shows relative
performance plots of the old and new rotate
function, measured while the function was being
rewritten for performance reasons. The rather odd
spikes appearing in an otherwise linear graph
puzzled the author, who searched code and model
unsuccessfully for an answer. The realization that
the spikes were sporadic, and apparently
non-reproducible didn’t help. When it became clear
that they were in some way related to user load,
and that the old code exhibited the same anomaly,
the search widened.

Further study revealed that the spikes
(consuming enough processor time to perform a
4,000-element integer rotate!) occu r red when
another APL user entered a line of input,
interrupting the execution of rotate. The anomaly
was traced to the “set storage key” instruction of
the newly-installed mainframe processor, which,
due to the non-store-through nature of the cache

Robert Bernecky 227

on the machine, took an excruciatingly long time to
execute. The computer architect chose to not
correct the problem, so a software fix was
developed, which avoided use of the offending
instruction. This resulted in the pleasant curves
shown in Figure 2.

I’M SURE THIS WORKED LAST WEEK

One very important part of any modelling work is to
keep track of the various changes which are made
during the course of modelling. Sometimes, one
makes changes to many parts of the model in an
attempt to correct a problem which is later found to
lie in a totally different area. If good records are
kept of all changes to the model, it is relatively
easy to back up to a previous model, compare
models, and so on. The use of APL as a base for
modelling allows a lot of the clerical work associated
with such recordkeeping to be automated. For
example, the consistent use of an APL application
maintenance tool, such as LOGOS [Go86], which
keeps an audit trail of all changes made to the
source, makes it possible to revive old versions of
the model with little effort, and to include
commentary on why the change was made.

A CLOSING WORD

As a programmer who struggled for many years
with core dumps, dirty bit switch contact, and
burned-out CPU indicator lamps, the use of
prototyping has been a great relief. It has reduced
the count of sleepless nights, and has made system
programming once more APL: A Pleasant Life.

ACKNOWLEDGMENTS

I owe a considerable debt of gratitude to my
colleagues: to Roger Moore, who got me interested
in prototvpinq in 1971; to Hiroshi Isobe, who . . -
requested that I give a talk on prototyping, and
thereby forced me to formalize my thinking about
it; and to Matsuki Yoshino, who helped me to see
the value and limitations of applying these
techniques to very large projects. Comments by
Arlene Azzareilo, Leslie Goldsmith, and an
anonymous APL86 referee resulted in substantial
revision of the manuscript.

BIBLIOGRAPHY

[Be731 Bernecky, R., “Speeding up Dyadic Iota
and Dyadic Epsilon”, APL CONGRESS 73,
North-Holland Publishing Company,
Amsterdam, 1973 (Post-congress edition).

[Bu81] Burger, J.D. “SATN-37: IBM 3270 User
Guide”, I.P. Sharp Associates Limited,
1981.

[Cr83] Crouch, S., Private communication, 1983.

APL: A Prototyping Language

[Di68] Dijkstra, E.W., “The Structure of the ‘THE’
Multiprogramming System”, Communications
of the ACM, Vol. 11, No. 15, May 1968.

[He821 Heiser, P., “A Weaving Simulator”, Byte
Magazine, September 1982.

[Go861 Goldsmith, L. H., et al, “LOGOS User’s
Guide”, I. P. Sharp Associates Limited,
1986.

[P082] r;;2ell, Denise A., Private communication,

[Wy13] Wyszkowski’s Second Law: Anything can be
made to work if you fiddle with it Long
enough.

M
I
L
L
I

C
P
u

U
N
I
T
s

Robert Bernecky 228 APL: A Prototyping Language

1500

1200

900

600

300

0

FIG
LAST AXIS 1 ROTATE
ON SQUARE MATRICES

iIIIIIImlIII~iIIIlllIIIIII1~IIIII~IIIIII~III~III~I_

------’ OLD BOOLEAN
------• OLD INTEGER

d’

------- OLD FLOATING
- - - - - - * OLD CHARACTER

NEW BOOLEAN
NEW INTEGER
NEW FLOATING

-.--- NEW CHARACTER

Lll~llll11lllltllil~~~~11111111111111111111111l1111

0 2000 4000 6000 8000 10000

NUMBER OF ELEMENTS IN ARRAY

FIG
LAST AXIS 1 ROTATE
ON SQUARE MATRICES

SHARP APL TORONTO
TfME=04/2I/70 21s 11
USER LOAD-34

1500 -
- ------- OLD BOOLEAN
- ------- OLD INTEGER /* -

1200 -
------’ OLD FLOATING /’
------- OLD CHARACTER #(@‘b

NEW BOOLEAN 0’ /;’

NEW INTEGER ,sfr ,3:*

QGIB NEW FLOATING
/-,p

NEW CHARACTER 0-F
4’ /:’

*S’

/
I “,y

,:/

880
/’ .I’

,>>d"
MC/

* ** 4.e

0
#- l OH

J4 ----
Il~~~~~~~l~l~l~~lll~~lllrl~~llllIIllI~~~~Il~~~~~I~J

0 2000 4000 6000 9000 10000

NUMBER OF ELEMENTS IN ARRAY

M
I
L

