
Parallelism in Sequential Functional Languages

Guy Blelloch (blelloch@cs. emu. edu)

John Greiner (jdg@cs. emu. edu)

School of Computer Science

Carnegie Mellon University

Abstract

This paper formally studies the question of how much paral-

lelism is available in cal-by-value functional languages with

no parallel extensions (i. e., the functional sub;ets of ML or

Scheme). In particular we are interested in placing bounds

on how much parallelism is available for various problems.

To do this we introduce a complexity model, the PAL, based

on the call-by-value A-calculus. The model is defined in

terms of a profiling semantics and measures complexity in

terms of the total work and the parallel depth of a com-

putation. We describe a simulation of the A-PAL (the PAL

extended with arithmetic operations) on various parallel ma-

chine models, including the butterfly, hypercube, and PRAM

models and prove simulation bounds. In particular the sim-

ulat ions are work- eficient (the processor-time product on

the machines is within a constant factor of the work on the

A-PAL), and for p processors the slowdown (time on the

machines divided by depth on the A-PAL) is proportional

to at most O(log p). We also prove bounds for simulating

the PRAM on the A-PAL.

Based on the model, we describe and analyze tree-based

versions of quicksort and merge sort. We show that for an

input of size n these algorithms run on the A-PAL model

with O(rI log n) work and 0(log2 n) depth (expected case for

quicksort ).

1 Introduction

Many researchers have argued that an important aspect of

purely functional languages is their inherent parallelism—

since the languages lack side effects, subexpressions may

safely be evaluated in parallel. Furthermore, researchers

have presented many implementation techniques to take ad-

vantage of this parallelism, including data-flow [28], par-

allel graph reduction [20, 30], and various compiler tech-

niques [14]. Such work has suggested that it might not be

necessary to add explicit parallel constructs to functional

languages to get adequate parallelism from functional lan-

guages.

There has been little study, however, of how much par-

allelism can be achieved for various problems, or how the

inherent parallelism in functional languages relates to more
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standard models used for analyzing parallel algorithms, such

as the PRAM. For example, what are asymptotic bounds for

sorting using a parallel implementation of a functional lan-

guage such as ML or Haskell? What kind of sort would we

use? How would the bounds compare with parallel sorting

algorithms designed for various machine models? Does it

matter whether the language is strict or lazy? Before these

can be answered, we first need to augment functional lan-

guages with a formal model of complexity. Furthermore,

if we want to compare results to previous research on par-

allel algorithms, we also need to relate this complexity to

run time on various machine models. This relation needs

to capture some aspects of the parallel implementation of

the language. To address these issues this paper makes the

following contributions:

1. We introduce a parallel model based on the pure A-

calcnlus using applicative order (call-by-value) eval-

uation and specified in terms of a profiling seman-

tics [38, 39]. This semantics defines two measures of

complexity. The work is the total amount of com-

putation executed by a program. The computational

depth (or simply depth) is the depth of the computa-

tion tree, assuming that the two subexpressions of an

application e I ez are evaluated in parallel. The lan-
guage is basically equivalent within constant factors

of complexity to the functional subsets of eager lan-

guages such as ML or Scheme when the parallelism in

those languages comes from evaluating arguments in

parallel [7]. This correspondence allows us to use the

simpler ,Vcalculus to prove results about the complex-

ity model while using an ML-like language to prove

results about algorithms.

2. We prove results on how the complexities in our model

relate to complexities of various machine-based mod-

els, including the PRAM [15], hypercube, and but-

terily models. For the PRAM, we examine both the

concurrent read, concurrent write (CRCW) and con-

current read, exclusive write (CREW) variants. The

results are summarized in Figure 1. The proofs in-

troduce a parallel version of the SECD machine [25],

the P-ECD machine. A state of the P-ECD machine

consists of a set of substates, and each state transition

of the machine transforms this set into a new set of

substates. On each step the substates are scheduled

across the processors of the host machine. We also

prove results for simulating the PRAM model on our

model.
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Machine Model Time

CREW PRAM o(zu/p+ dlogp)

CRCW PRAM o(w/p + dlog logp)

CRCW PRAM (randomized) o(w/p + dlog’p)

Butterfly (randomized) o(w/p + dlogp)

Hypercube (randomized) o(w/p + dlogp)

Figure 1: The mapping of work (w) and depth (d) in the

proposed model (the A-PAL) to running time on various

machine models. The number of processors on the machine

is p. For the randomized algorithms the running times are

high-probability bounds (i. e., they will run within the speci-

fied time with very high probability y). Alf the results assume

that the number of independent variable names in a program

is constant, as wilf be discussed in Section 3. For the butter-

fly we assume it has p lgp switches, and for the hypercube,

we assume the multiport version (can communicate over all

wires simultaneously ).

3. We provide examples of analyzing algorithms, specifi-

cally parallel versions of quicksort and mergesort. Se-

quences of size n are stored as balanced trees, since for

sequences stored as a list, any algorithm would require

O(n) depth just to traverse the list. This accentuates

the importance of storing data as trees rather than lists

to take advantage of parallel implementations of func-

tional languages. The merging in mergesort borrows

ideas from algorithms designed for the PRAM [41],

but has some substantial changes to make up for the

lack of random access. Both sorting algorithms require

O(n log n) work and O(log2 n) depth, and our work

bounds are optimal for both merging and sorting, and

our depth bounds are optimal for merging.

Applicative-order evaluation is used instead of normal-

order evaluation because of ambiguities in defining a for-

mal model based on normal-order evaluation. The prob-

lem is that normal-order evaluation can have wide range of

implement ations, such as call-by-name, cafl-by-need (lazy),

and call-by-speculation (lenient )1, and these implementa-

tions would have very different complexity models. The fist

two, call-by-name and cal-by-need, actually offer no signif-

icant parallelism [23]. Call-by-speculation offers plenty of

parallelism but does the same amount of work as applicative-

order semantics. In particular, a model that uses call-by-

speculation would give the same asymptotic work bounds

as our model, although it might be possible to improve

some depth bounds. Most implementations of lazy lan-

guages suggested in the literature sit somewhere between

call-by-need and call-by-speculation. Typically some heuris-

tic or strictness analysis is used to decide when to use call-

by-speculation instead of call-by-need, and there is some way

to garbage collect speculative computations that are never

needed. In these implementations a complexity model would

depend critically on what heuristics are used or how good

the strictness analysis is. An interesting line of future work

would be to formally compare implementations using their

complexity models.

One inconvenience with our model is the need to keep

track of how many variable names are needed. In particular,

our simulation bounds need to include the logarithm of the

1We use the term to mean a fully speculative implementation [19],

number of independent variables (we) in order to account for

variable lookup. Fortunately it is straightforward to show

that the number of variables for algorithms, such as sorting,

is independent of the size of the input, so that V. does not

effect the asymptotic bounds. Another choice would be to

restrict the J-calculus to only allow a constant number of

variables. This, however, would require that we chose a

particular constant and then show how to convert programs

with more variables into this fixed constant number.

The paper is organized as folfows. Section 2 describes

the model and Sections 3 and 4 relate the model to various

machine models. Section 5 gives algorithms for sorting and

merging. Section 6 discusses related work.

2 The PAL Model

Our model is based on the untyped A-calculus using an

applicative-order (call-by-value) operational semantics that
is augmented with complexity measures. We chose the ,4-

calculus rather than a specific language since its simplicity

makes the simulation results in Section 3 much cleaner. and

many features of modern languages (e. g,, data-types, con-

ditionals, recursion, and locaf variables) can be simulated

with constant overhead [7], therefore not affecting asymp-

totic performance. The abstract syntax of the model is

e c Expressions ::= clzlkr.elelez

where the meta-variable c ranges over a set of constants.

We refer to the pure version with no constants as the par-

ailel applicative A-calculus (PAL) model. For the sake of

practicality, we also consider a model that includes a set

of arithmetic constants (the integers along with some in-

teger operators). We refer to this extended version as the

Arithmetic-PAL (A-PAL) model. The A-PAL model can

be simulated on the PAL with costs polylogarithmic in the

integer range.

In the applicative-order ~-calculus the function and ar-

gument can always be evaluated in parallel, and thk is the

only form of parallelism we consider in this paper. To ac-

count for this parallelism our model tracks two complexity

measures, the total work executed by a computation and the

paralfel depth of the computation. When evaluating an ex-

pression e I eQ the work of the computation is the sum of the

work required to evaluate e 1 and eQ plus the work needed to

aPp& the result of el to the result of ez. The depth of the
computation is the maximum of the depths of evaluating e 1

and eQ, plus the depth of applying the result of e I to the

result of ez. We keep track of the work in addition to the

depth for the purpose of proving useful simulation bounds

on parallel machines that have a fixed number of processors.

We formalize the work and depth complexities in terms

of a profiling semantics [38, 39], which extends the standard

operational semantics with cost measures. The judgment
.

E 1- e ~ u: w. d reads as “In the environment E. the ex-

pression e ev~uates to value u in work w and depth d.”

This relation is defined by the rules in Figure 2.

When evaluating a program, we start with an empty en-

vironment D. The extension of an environment with a vari-

able and associated value is denoted by E[z I-+ v], where z

may be in E. If E has a binding for z, the associated value

is denoted by E(z).

The APP and APPC rules show how work is combined

with addition and depth with maximum. The uses of the
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EPC4C;1,1 (CONST)

E t- Az.e L cl(ll,x,e);l, 1 (LAM)

E(z) = v
(VAR)

EEZLW; l,l

E t- el ~ ci(E’, z,e’); wl, dl E1--ez ~vz;wz,dz

E’[x + W] E e’ ~ v;ws,ds (APP)

EEelez~v; wl+wz+w3+ 2,max(dl, dz) +d3+2

Et-el~c; wl, dl E~ez ~uz;wz,dz 6(C, W) = w
(APPC)

E1-elez ~u; wl+wz+2, max(dl, d,)+2

Figure 2: The profiling semantics of the PAL model.

constant 2 in the these rules is to make an exact correspon-

dence between work and depth and states processed in our

simulations (see Section 3). Otherwise the constants do not

matter since we are interested in asymptotic analysis. Pro-

gram constants, A-expressions, and variables are assumed to

evaluate with constant work and depth. As usual, program

constants evaluate to themselves, A-expressions evaluate to

closures, and the value of variables is determined by the

current environment. Applying a constant function is also

assumed to evaluate with constant work and depth. This

is a reasonable assumption for most constant functions, in-

cluding those used here. It is straightforward, however, to

augment the model with constant functions whose work and

depth is a function of their argument [7].

Definition 1 The PAL model is the A-calculus with no con-

stants and with the semantics defined by E 1- e ~ v; w, d.

Adding Constants to the PAL Model

We now extend the basic PAL model with arithmetic con-

stants to obtain the Arithmetic-PAL model. These con-

stants can be simulated in the base model, but this would

require polylogarithmic overheads in both work and depth.

The constants are

c 6 Constants ::= . ..liladd ladd. ]mullmul, l

neg I div2 I pos?

where z ranges over the integers. The primitive functions

are addition, multiplication, negation, division by two, and

the test for positive integers. For syntactic simplicity, all

primitive functions are curried. The choice of primitives is

not important, but for the purpose of lower bounds proofs

they should be incompressible [2], which ensures that certain

kinds of data encoding schemes cannot asymptotically im-

prove complexity bounds, e.g., encoding arrays as integers.

This is why general division has been omitted.

The J functions for these constants are given in Figure 3.

The two closures in the ti-rule for pos? are standard encod-

J(add, Z) = add, J(mul, i) = mul,

J(add,, z’) = z + i’ J(mul,, i’) = i x 2’

J(neg, t) = –2

%f t >0 :::;;: TV .;i/2]J(pos?, 2) = >.

eise c1(O, x, Jg. y)’

Figure 3: The J functions for the A-PAL model.

ings for the booleans and can be used to encode condition-

als [7]. Applying each of these constants requires constant

work.

Definition 2 The A-PAL model is the ~-calculus with the

constants i, add, add,, mul, mul,, neg, div2, and pos?

and with the semantics defined by E k e & v; w, d.

3 Simulating the A-PAL on Various Machines

In this section we give simulation bounds for simulating the

A-PAL model (or PAL) on various machine models.

We first describe the simulation on a serial RAM and

then extend this for the simulation on a PRAM, butterfly

net work, and hypercube. To simulate the A-PAL on the

RAM, we use a variant of the SECD machine [25, 31] as

an intermediate step. We first show how the work complex-

ity of an A-PAL program is related to the number of state

transitions of the SECD machine and then show that each

transition can be implemented within given bounds. For the

parallel simulations of the A-PAL, we introduce a parallel

variant of the SECD machine, the Parallel ECD (P-ECD)

machine. The basic idea of the P-ECD machine is that it

keeps a set of substates that can be evaluated in parallel. A

state transition causes each substate to convert into either

O, 1, or 2 new substat es, so the number of substates will

vary over the computation. We show that the work com-

plexity of a program is equal to the total number of sub-
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states processed and that the depth complexity is exactly

equal to the number of steps taken by the P-ECD machine.

We then show using an appropriate scheduling how this can

be mapped onto various machines with a fixed number of

processors.

The SECD machine is a state machine with transition

function ~, where a state (S, E, C, D) consists of a data

stack S of values, an environment E, a control list C of ex-

pressions or the symbol @ (apply), and a “dump” D which

is a list of (S, E, C) triples used as a control stack to return

from function calls. To evaluate an expression e, the ma-

chine starts in the state (nil, nil, [e], ni~. It halts when S is

a singleton and both C and D are nil, with the result being

the singleton value in S.

Using the SECD machine, the mapping between work in

the A-PAL model and time on a RAM can be split into two

simpler parts: the mapping of work in the A-PAL to the

number of states in a SECD machine transition sequence,

and the mapping of this to time on a RAM.

Lemma 1 If D F e ~ u; w, d, then the SECD rnachme eval-

uates e to u in a transition sequence of w states.

Proof outline: Generalizing the lemma to all environments,

we can show by structural induction on the A-PAL evalua-

tion derivation that if E 1- e ~ v; w, d, then the transition
*

sequence (S, E, e :: C, D) A (v :: S, E, C, D) involves w

states. The full proof can be found in [7]. •I

In our variant of the SECD machine, environments are

represented as balanced trees, such as AVL trees. Extend-

ing an environment crest es a new environment sharing as

much structure with the old environment as possible. In

particular, extending an environment with a variable name

already in the environment creates a new environment with

only that binding changed, so that the new environment is

no larger than the old. As a result, no environment cre-

st ed during the evaluation of expression e, contains more

than the number of variables in e. In the worst case this is

equal to the number of A-expressions since each could have

its own variable name, but we assume without loss of gen-

erality that names are shared among J’s where it does not

cause a conilict. In practice Ve, the logarithm of the number

of variables in e, is a small constant that is independent of

the data size—it is easy to share names in all common data

representations.

Lemma 2 The SE(7D transition on state (S, E, C, D) can

be simulated on a RAM in no more than k lg IE] time, for

some constant k, where IE] is the number of variables in E.

Proof outline: All transitions except for environment lookup

and environment extension can be imdernented with simde

list manipulations or primitive arit~metic operations ~nd

take constant time (this assumes the RAM supports the

same arithmetic operations as the A-PAL). The balanced

trees representing environments allow lookup and extension

in logarithmic time. ❑

Corollary 1 Each SECD transition in the evaluation of e

from the empty environment can be s,mulated on a RAM in

no more than kve time, for some constant k.

Proof outline: Follows from V. bounding the depth of each

environment in the evaluation. ❑

We note that Lemma 2 holds for a pointer machine [24,

44, 2] as well as a RAM since the simulation does not require

random access to memory.

Theorem 1 If D ~ e ~ u; w, d, then a RAM can calculate

v from e in no more than kvew time, for some constant k.

Proof: Follows from Lemma 1 and corollary 1. ❑

Simulating the A-PAL on the P-ECD

For the parallel simulation we introduce the P-ECD ma-

chine. Again the simulation can be split into relating the

complexity of the A-PAL to the number of state transitions

of the P-ECD, and then we can bound the time to execute

each transition on various parallel machines.

Each step of the P-ECD machine transforms the current

state (Q, M) into a new state. The array Q of substates

describes the subexpressions being evaluated, and the array

M describes the partial results obtained so far, taking the

place of the data stack in the SECD machine, Each element

of M contains zero (novcd) or one ( val(v)) partial result.

To execute a step we process all the substates (E, C, D)

in parallel. Processing of each substate consists of executing

three transitions. At the beginning of the step, each substate

consists of environment E, a balanced tree as in our SECD

machine; control C, a single expression to be evaluated; and

dump D, a description of how this computation is to commu-

nicate its results. After the three transitions each substate

results in zero, one, or two new (E, C, D) substates. The

combination of all these new sub states makes up the new Q,

thus the size of Q can vary over time. The P-ECD machine

starts with one substate (nil, e, n d), where e is the program

to be evaluated, and exits when a substate reaches a special

Exit (v) substate, where v is the program result (this can

only happen when it is the only substate left). We are also

guaranteed that a step results in no new substates if and

only if the computation is finishing.

The three transitions of a step, eval, val~ and vala, are

defined in Figure 4, The eval substep may create an in-

termediate e substate res(v, D) containing the value of this

subcomputation which is then communicated by one of ualf

and vala. These two substeps coordinate the intermediate

results obtained from evaluating functions and arguments,

so the processors must synchronize between these latter sub-

steps. Array M can be side-effected by the substeps: eval

can extend the array, and valj and vala can update its con-

tents.

We now argue informally why the machine works. The

interesting transitions are eval on applications and the non-

identity y valf and vala transitions. This eval transition cre-

ates two new substates, one each to evaluate the function

and argument. The index i added to the dump D is guaran-

teed to be independent for each substate processed (e.g., the

processor ID plus the number of substates processed in pre-

vious steps) and is used as an index into M. Whichever cal-

culation completes first writes its result into M, and returns

no subst at es. Whenever the second calculation completes,

it reads the result from M, and initiates the application of
VI to V2. In the case that the two branches complete on the
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E, C, D %1 res(c, D) constant

E, Az.e, D %1 res(ci(E, z,e), D) lambda

E, X, D =1 res(E(x), D) variable

E, el ez, D %i M, := nova~ apply
2S((E, el, fn(E, i) :: D), (E, e2, arg(E, i) :: D))

where i is new

E, @(cl(E, z,e), w), D %1 lS((EIZ H v], e, D)) func-call

E, @(C, u), D =1 res(~(c, w), D) prim-call

res(v, ml) St Exit(v) exit

res(v, fn(E, Z) :: D) @ case M, of left-return

vai(v’) ~ lS((E, @2(v, v’), D))

novai ~ M, := ml(v); OS

va!a
res(v, arg(E, i) :: D) =+ case M, of right-retuxn

vat(v’) +. lS((E, @(w’, v), D))

nouals M, := val(v); OS

Otherwise, valf and vala are identities.

QJ%l Q~%f Q~*Q~, foreachj~{l,..., q}

FiEure 4: Transitions on the substates of the P-ECD. On each steD. each substate leads to zero, one, or two new substat es

(OS, 1S, or 2S) for the following step. Semicolons are used to sequ~nce a group of statements.

Step I expressions in Q I IQI
1 add (add 1 2) (add 3 4) 1

2 add (add 1 2), ‘ add 3‘4 2

3 add, add 1 2, add 3, 4 4

4 add 1, 2, add, 3 4

5 add, 1, @(add,3) 3

6 @(add,l), @(add3,4) 2

7 @(addl,2) 1

8 @(add,3) 1

9 @(adds,7) 1

Work: 19

Figure 5: P-ECD example evaluation using the expression

add (add 1 2) (add 3 4). The total work is the sum over

all steps of the lengths of Q.

same step, we guarantee that they both do not believe that

the other is still running by synchronizing between the valf

and waia phases. (With an atomic test-and-set, synchroniz-

ing could be avoided. )

As an example of the execution of the P-ECD, Figure 5

shows Q at the beginning of each step of evaluating the

expression (add (add 1 2) (add 3 4)).

Lemma 3 For all expressions e, if there exists a value v

A
such that H h e + v; w, d, then v is calculated from e us-

ing d steps of a P-ECD machine. Furthermore, the P-ECD

calculation processes a totai of w substates.

Proof: We prove that the number of steps taken by the

P-ECD machine is d by induction on the structure of the

A-PAL evaluation derivation. The induction hypothesis is

that if E E e ~ v; w, d and the P-ECD machine at step s is

in a state (Q, M) such that substate (E, e, D) is in Q, then

an instance of the eval substep of step s + d — 1 results in

res(v, D).

CONST, LAM, or VAR: The current coal substep results

in res(v, D). By the profiling semantics, d = 1, so the

hypothesis is true.

APP: By eval, two substates (E, el, Dl) and (E, e~, Dz) are

created after one step. By the induction hypothesis,

e 1 completes after dl steps, and e2 completes after dz

steps. If the calculation fore 1 completes before the cal-

culation for ez (i. e., dl < dz ), then when ez completes,

(E, @(vI, v2), D) is in Q at step s + d2 + 1. Otherwise,

when el completes, (E, @(vl, V2), D) is in Q at step

S+CZI +1. Therefore, (E’, @(cl(E, z, e), VZ), D) is in Q

at step s+max(dl, dz )+ 1.At the beginning of the next

step, s +max(dl, dz) + 2, the substate (E[z @ v], e, D)

is in Q. By the induction hypothesis, an instance of

the evalsubstep of step (s+max(dl, d2)+2)+d3 –1 re-

sults in res(v, D). Since the profiling semantics shows

that d = max(dl, dz) + dQ + 2, this gives the desired

results.

APPC: The argument is the similar to the previous rule,

except that at the beginning of step s + max(dl, dz ) + 1

the substate (E, C@(c, 92 ), D) is in Q, and an instance

of the eval substep results in res(v, D).
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Now we show that the calculation processes w substates,

using induction on the A-PAL derivation.

CONST, LAM, or VAR: Exactly one P-ECD substate is

processed for each of these A-PAL rules.

APP: By induction, computing el, ez, ande’ processes WI,

WZ, and W3 substates, respectively. In addition, one

substate with expression e ~ ez and one with expression

@(ci(E, x, e), v) are processed, so the total processed

iszu=wl+w2+wa +2.

APPC: By induction, computing el and ez processes WI

and wz substates, respectively. In addition, one sub-

stat e with expression e 1 ez and one with expression

@(c, v) are processed, so the total processed is w =

WI+ W2 +2.

❑

Simulating the A-PAL on other Parallel Machines

We now need to show how to simulate the P-ECD machine

on a PRAM, butterfly network, and hypercube. For the but-

terfly we assume that for p processors we have p lg p switches

and p memory banks, and that memory references can be

pipelined through the switches. On such a machine each

of the p processors can access (read or write) n elements

in O(n + log p) time with high probability [27, 33]. The

O(log p) time is due to latency through the network. We

also assume the butterfly network has simple integer adders

in the switches, such that a prefix-sum computation can ex-

ecute in O(log p) time. A separate prefix tree, such as on

the CM-5, would also be adequate. For the hypercube we

assume a multiport hypercube in which messages can cross

all wires on each time step, and for which there are separate

queues for each wire. This model is quite similar to butter-

fly and has the same bounds for simulating shared memory.

However, we do not need to assume that the switches have

integer adders. As in the previous models, we assume that

primitive function calls can be implemented in constant time

on a single processor.

Lemma 4 Each step of the P-ECD machme with q sub-

states can be processed on a p processor machine within the

following time bounds:

Machine Model Time

CREW PRAM kv.( [q/pi + log p)

CRCW PRAM kve( [q/pi + log logp)

CRCW PRAM (rand.) kv.( [q/pi + log” p)

Butterfly (rand.) kve( [q/pi + logp)

Hypercube (rand.) kve( [q/p] + log p)

for some constant k, where the bounds on randomized nm-

chmes hold with high probability.

Proof: For the simulation we keep the substates returned

by each step in an array. If this substate array is of size q,

each processor is responsible for q/p elements of the array

(I.e., processor i is responsible for the elements [iq/p, . . . . (i+

l)q/p – 1]).We assume each processor knows its own pro-

rxmor number, r.o it can calculate a pointer to its section

of the array. For the CREW and butterfly simulations the

size of the array is exactly q. For the CRCW PRAM sim-

ulations the array can have holes in it that don’t contain

substates, as explained below. These holes are marked, and

we guarantee that the total length of the array is at most

kg for some constant k. This means that each processor is

responsible for at most kq/p elements.

The simulation of a step consists of the following sub-

steps:

1<

2.

3.

Locally evaluating the substates using the evai transi-

tion in Figure 4. This requires accessing shared mem-

ory for reading but requires no communication among

the substates.

Evaluating the va~and vaia transitions. This requires

a synchronization between the two transitions. Each

processor first applies the val} transitions for all the

substates for which it is responsible. The processors

then synchronize, and then each processor applies the

vala transitions.

Creating a new substate array for the next step. After

the sub~tep transitions, each array element ~ontains

zero, one, or two substates (OS, 1S, or 2S), and these

must be distributed into the new array.

We need to show that each of these steps can be executed in

the given bounds. The first step requires the time it takes

to process q/p substates. The ewd transition is similar to

the evai for the serial SECD machine. The only real dif-

ference is the apply transition. Each of the other substate

transitions require the V. time that was required in the se-

rial machine and can have at most W. memory references.

The apply transition can also be executed in these bounds

since it just requires an additional memory write. We can

generate the independent i’s simply by using the array index

for the substate added to an offset which gets reset on each

round. None of the memory references require concurrent

writes. The time for the first substep on the CREW and

CRCW PRAM is therefore q/p. The time on the butterfly

and hypercube is q/p -t Ig p since the memory references re-

quire a lg p latency through the network. The second step

can also be executed in the same bounds.

The third step requires generating a new substate array.

Each transitioned substate of the old array contains zero,

one, or two substates, which need to be dktributed into a

new array for the next step. For the CREW PRAM and

butterfly this can be done by executing a prefix-sum on the

number of new substates and using the result as an offset

into the new array. In both cases for p processors the prefix

sum and writing into the new array can run in O(q/p+log p)

time. This will give a new array that is exactly the length

of the number of new substates. On the CRCW PRAM the

distribution into the new array can be done more efficiently

using a solution to the linear approximate co mpactz on prob-

lem [26]: given an array of n cells, m of which contain an

object, place the m objects in distinct cells of an array of

size km for some constant k > 1. The idea is to first allocate

two new positions for each substate, mark the substates that

will remain (neither for OS, one for 1S, and both for 2S)

and then do an approximate compaction. Since the result

array is a constant times larger than the total number of re-

maining subst ates, we will maintain the invariant mentioned

earlier-. Gil, Matias, and Vishkin [16] have shown that the

linear approximate compaction problem can be solved on a

p processor CRCW PRAM (ARBITRARY) in O(n/p + log” p)



expected time (using a randomized solution). Goldberg and

Zwick [17] have recently shown that the problem can be

solved deterministically in O(n/p + log log p) time.

When we add the times for the three substeps, we get

the stated bounds for each of the machines. ❑

Theorem 2 If I + e ~ u; w, d, then u can be calculated

from e on a CREW PRAM with p processors in kv,(w/p +

dlogp) time, for some constant k. Analogous results are

true for the other models.

Proof: The proof uses Brent’s scheduling principle [9]. We

prove it for the CREW PRAM, but the other proofs are

almost identical. We assume that step z of the P-ECD pro-

cesses q, substates. We know from Lemma 3 that ~~~~ q, =

w. We also know from Lemma 4 that it takes k’o.( [q, /pl +

log p) time to process step i. The total time to process all

substates is then

a<d

T = ~ k’o.( [g,/Pl + logp)

,=0

< k’u. ~(gJp + 1 +logp)

,=0

%<d

— k’w((zdd +41 + kp))
*=O

= k’t&(W/P + d(l +logp))

s 2k’ve(w/p + dlogp)

= kv, (w/p + dlogp)

where we have set k = 2k’. ❑

4 Simulating a PRAM on an A-PAL

In this section we consider simulating a PRAM on an A-

PAL. The simulation we use gives the same results for the

EREW, CREW, and CRC W PRAM as well as for the multi-

prefix [32] and scan models [4]. The simulation is optimal in

terms of work for all the PRAM variants. This is because it

takes logarithmic work to simulate each random access into

memory (this is the same as for pointer machines [2]). Since

we don’t know how to do better for the weaker models, we

will base our results on the most powerful model, the CRCW

PRAM with unit-time multiprefix sums (MP PRAM).

Theorem 3 A program that runs in time t on a p processor

MP PRAM u~ing m memovg can be gimzdated on the A.

PAL model with kWp log m work and kdt log m log p depth,

for some constants k~ and kd.

Proof: We will simulate a PRAM based on state transitions

on the state (C, M, P) where C is the code, M’ is the mem-

ory, and P is state for all the processors (i. e., registers and

program counter). Let c = ICI, m = IMI, andp = IPI. We

assume C, M, and P are stored as balanced binary trees and

that p < m, and c < m. Each state transition corresponds

to a step of the PRAM, and the processors will be strictly

synchronous. Register-to-register instructions can be imple-

mented with O(p) work and O(log p) depth, and concurrent

reads with O(p log m) work and O(log m) depth. This just

requires traversing the appropriate trees. The writ es are the

only interesting instruction to implement, and can be imple-

mented by sorting the write requests from the processors by

address and then recursively splitting the requests at each

node of M as we insert them. We can sort the p requests

in O(p log p) work and 0(log2 p) depth as discussed in the

next section. We assume the sorted reauests. which we call

the write-tree, start out balanced and ‘are sorted from left

to right in the tree. To implement a concurrent write or

multiprefix, we combine nodes in the write-tree that have

the same address. Since the addresses are sorted this can be

done in O(p) work and O(log p) depth.

We now consider the insertion of the sorted requests of a

write-tree W into memory M (modify (M, W ) ). We assume

that M stores the addresses and associated values at the

leaves, ordering the addresses from left-to-right, and that

the internal nodes contain the value of the greatest address

in the left branch. We assume all addresses in W are also

in M, and that each node of W stores the minimum and

mammum address of its descendants, so that we can access
these in constant work and depth. To insert W into ikf,

we first check if &l is a single node, in which case W must

also be a single node, and we simply modify the value and

return. Otherwise, we check if all the addresses in W belong

to just one of the branches of the M tree. If so, we call

modify recursively on that branch of A4 with the same W

and put the result back together with the other branch of

M when the call returns. If not, we split W based on the

address stored at the root of &f and call modify in parallel

on the two children of M and the two split parts of W. This

algorithm works since all addresses in the original write-tree

will eventually find their way to the appropriate leaf of the

M tree and modlfv that leaf.

We now consi~er the total work and de~th reauired.

Splitting W into two trees based on a key ~an be ~mple-

mented in O(log p) work and depth by following down to

the appropriate leaf, splitting along the way. Since M is of

depth lg m, the total depth complexity is therefore bound

by O(log p log m). To prove the bounds on the work, we ob-

serve that it cannot take more than O (p log p) work to split

the tree into p pieces of size 1 since each split takes O(log p)

work and there are p — 1 of them. This means the total work

needed to split the original write-tree is bound by O(p log p).

The only other work is the check at each node of the M tree

of whether we have to split or send all values down to one

or the other branches. The maximum work done for these

checks is O (p log m) since there can be at most p separate

chains (one per leaf of the write-tree) each which is at most

as deep as the M tree (O(log m)). The total work is there-

fore O(p(logp + log m)) = O(plog m). ❑

5 Analyzing Algorithms

In this section we examine how the model can be used to an-

alyze algorithms. As examples, we describe parallel versions

of quicksort and mergesort. These two algorithms illustrate

some of the techniques necessary for programming efficient

algorithms in the model.

We fist note that any sorting algorithm that represents

its input as a list requires depth at least proportional to
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datatype ‘a Tree =
Empty I Leaf of ‘a

I Bode of int * ~a Tree * >a Tree

Figure 6: Representing sequences as trees. The values are
stored at the leaves and each internal node stores the size of

its subtree (the number of leaves below it).

its input size—this is the time required just to look at all
the elements. In fact a simple mergesort that makes its

two recursive calls in parallel will match this lower bound
for depth. To derive parallel algorithms that are sublinear
in the input size requires that the input and output are
represented as trees. This section shows how trees can be

used to derive effective paralleI versions of quicksort and
mergesort and analyzes these versions in the PAL model.

The tree representation we will use is given in Figure 6. We
assume that the ordering for sorted sequences is specified by

a left-to-right traversal of the tree.

Parallel Quicksort: The code for our quicksort algorithm is

given in Figure 7. The function qsort -.rec returns a sorted
tree, but in general it will not be perfectly balanced, so the

function rebalance rebalances it. The function qsortxec is
similar to the sequential version of quicksort on lists, except
that elt, select, and append are implemented on trees.
The function elt can be implemented by traversing the tree
down to the appropriate leaf, and for a tree of depth d, this

requires O(d) work and depth (there is no parallelism). The
function select is implemented by calling itself recursively

in parallel on both branches and putting the results back
together. Assuming the function f has constant work and

depth, select on a tree of size n and depth d requires O(n)
work and O(d) depth. We note that the tree returned by

select is generally not going to be balanced, which is why
we do not assume that d = lg n. The append function simply

puts its two arguments together in a tree node and therefore
has constant work and depth.

We first present a general theorem that bounds work and
depth for our quicksort in the expected case for any input
tree, even if not balanced, and as a corollary give the bounds
for balanced input.

Theorem 4 The quicksort algorithm specified in Figure 7

when applied to a tree with n leaves and depth d will exe-
cute in O(n log n) work and O(dlog n) depth on the A-PAL

model, both expected case (i.e., aver-age over all possible in-
puts of that depth and size).

fun
I
1

fun
I

I

fun

fun
I

fun

&
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/
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append Empty b = b
append a Empty = a
append a b = Tree (size (a)+size(b), a,b)

select f Empty = empty
select f (Leaf x) =
if f x then Leaf x else Empty
select f (Tree (- ,left ,right))
append (select f left) (select f right)

qsort.rec x =
if (size x) < 2 then x
else

let val pivot = elt a ((size x)/2)
val less = select (fn x => x < pivot) a
val equal = select (fn x => x = pivot) a
val greater = select (fn x => x > pivot) a

in

append (qsort-rec IeSS)
(append equal (qsort.rec greater))

end

rebalance Empty = Empty

rebalance (Leaf x) = Leaf x
rebalance a =
let val half = (size x)/2

in

append (rebalmce (take x half)
(rebalance (drop x half))

end

quicksort a = rebalance (qsort-rec a)

Figure 7: An example diagram of the select function and
the code for the parallel quicksort algorithm.

Proof: We first consider qsort -rec. We note that since the
pivots in quicksort will not perfectly split the data, some re-
cursive paths will be longer than others. We call the longest
path of recursive calls for qsort -ret on a particular input

233



the recursion depth for that input. We note that the worst

case recursion depth is 0(n) and that fewer than 1 out of n
of the possible inputs will lead to a recursion depth greater
than k log n [34]. To determine the total computational

depth of qsort~ec, we need to consider the computational
depth along the longest path. We claim that this computa-

tional depth is at most O(d) times the recursion depth since
each node along the recursion tree will require at most O(d)

depth. This is because elt and select will run in O(d)

depth.z. Since a fraction of only l/n of the inputs will have

a recursion depth greater than O(log n), and these cases will
have recursion depth at most O(n), the average (expected

case) computation depth of qsortrec is

D(n) = O(d(logn + in)) = O(rllog n).

To see that the work is expected to be O(n log n), we simply
note that all steps do no more than a constant fraction more
work than a list-based sequential implementation.

We now briefly consider the routine rebalance. We note
that the depth of the tree returned by qsort-r-ec is at most a

constant times the recursion depth. The function rebalance
is implemented by splitting the tree along the path that

separates the tree into two equal size pieces (or off by 1),
recursively calls itself on the two parts, and appends the

results. We claim that for a tree of size n and depth d it will
run with O(n log n) work and O(dlog n) depth (worst case).
Given the above bounds on the recursion depth, this gives

an expected depth of 0(log2 n). D

Corollary 2 The quicksort algorithm specijied in Figure 7

when applied to a balanced tree wzth n ieaves wdi execute in
O(rJ log n) work and O(log2 n) depth on the A-PAL model,
both expected case.

Parallel Mergesort: We first consider the problem of merg-

ing two sorted trees. We use n to refer to sum of the sizes
of the two trees. We assume that each internal node of

the input trees contains the maximum value of its descen-
dants, as well as its size. This is clearly easy to generate

in O(n) work and O(log n) depth. The main component of
the parallel algorithm is a routine select lrth which given
two ordered trees a and b, returns the kth smallest value
from the combination of the two sequences (see Figure 8).

It is implemented using a dual binary search in which we go
down a branch from one of the two sequences on each step,
using the maximal element at each node for navigation. As-
suming the depths of the two trees are da and db, the work
and depth complexity of this routine is O(da -1-db).

To merge two trees, we use select-kth to find their com-
bined median element. We then select the elements less and

greater, respectively, than the median for each tree with
the functions take_less and dropdess. These can be im-
plemented with O(log n) work and depth since the trees are
sorted and balanced (it just requires going down a tree split-
ting along the way). Recursively merging the two trees of
lesser elements and the two trees of greater elements gives us
two sorted trees which are guaranteed to be the same size (or
off by one) by construction. So, joining them under a new
node produces a balanced sorted tree. As a whole, merging

2Note that although select does not return balanced trees, it will
never return a tree with depth greater than the original tree, which
has depth d

dat at ype ‘a Tree =

I

fun

I

I

I

fun

I

fun

Empty I Leaf of ‘a
IJode of int * ‘a * ‘a Tree * ~a Tree

select.kth k (Leaf vi) (Leaf v2) =

if V2 > VI then if k = O then VI else VO
else if k = O then VO else VI
select_kth k (Leaf v1) (Bode (rr2 ,v2 ,12 ,r2) ) =
if V2 > vi then if k > n2

then select_kth (k-n2) (Leaf vi) r2
else select_kth k (Leaf vI) 12

else if n2 > k

then select.kth k (Leaf vi) 12
else select-kth (k-n2) (Leaf vI) r2

select-kth k (Mode (ni ,vl,ll, rl)) (Leaf v2) =
select-kth k (Leaf v2) (Bode (ni ,vI ,11 ,rl)) =
select-kth k (Mode (ni ,vl,li, ri))

(Mode (n2, v2,12, r2)) =
if V2 > VI then if k > (nl+n2)

then select-kth k (Node (nl ,vI ,11 ,rl)) 12

else select-kth (k-nl) rl (Node (n2 ,v2 ,12 ,r2) )
else if k > (nl+n2)

then select-kth k 11 (Mode (n2 ,v2 ,12 ,r2))
else select-kth (k-nl) (mode (nl ,v1 ,11 ,rl) ) r2

merge (Leaf x) b = insert x b
merge a (Leaf y) = insert y a
merge a b =
let val k = ((size a) + (size b)) / 2

val median . select-kth k a b

in

append (merge (take-less a median)
(take_less b median))

(merge (drop-less a median)

(dropJess b median))
end

merge-sort a =
if (s;ze a) < 2 then a
else let val half = (size a)/2

in merge (merge-sort (take a half))
(merge-sort (drop a half))

Figure 8: Code of the parallel mergesort algorithm.

in this manner takes O(n) work and O (logz n) depth since
we recurse for the lg n depth of the trees.

Theorem 5 The rnergesort algorithm specijied in Figure 8
when applied to a balanced tree with n leaves will execute in
O(n log n) work and 0(log3 n) depth on the A-PAL model.

Proof We can write the following recurrences for work and
depth:

W(n) =

—

——

D(n) =

.

——

❑

2VV(n/2) + Wmerge(n)

2W’(n/2) + O(n)

O(n log n)

D(n/2) + Dmerge(n)

D(n/2) + 0(log2 n)

0(log3 n)
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This version of mergesort is not as efficient as the quick-
sort previously described. However, if merging uses n/ lg n

split ters, rather than just the median, the depth complex-
ities of merging and mergesort can each be improved by a
factor of log n [7].

6 Related Work

Several researchers have used cost-augmented semantics for

automatic time analysis of serial programs [3, 38, 39, 45].

This work was concerned with serial running time, and since
they were primarily interested in automatically analyzing

programs rather than deiining complexity, they each altered

the semantics of functions to simplify such analysis. Fur-
thermore, none related their complexity models to more tra-
ditional machine models, although since the languages are
serial this should not be hard.

Roe [36, 37] and Zimmerman [46, 47] both studied pro-
filing semantics for parallel languages. Roe formally defined

a Profing semantics for an extended A-calculus with lenient
evaluation. In his semantics, the two subexpressions of a

special let expression piet x = el in ez evaluate in paral-

lel such that the evaluation of an occurrence of x in ez is

delayed until its value is available. To define when this is
the case, he augmented the standard denotational semantics

with the time that each expression begins and ends evalu-

ation. He did not show any complexity bounds resulting

from his definition or relate this model to any other. Zim-
merman introduced a profiling semantics for a data-parallel
language for the purpose of automatically analyzing PRAM
algorithms. The language therefore almost directly modeled
the PRAM by adding a set of PRAM-like primitive opera-
tions. Complexity was measured in terms of time and num-

ber of processors, as it is measured for the PRAM. It was

not shown, however, whether the model exactly modeled the
PRAM. In particular since it is not known until execution
how many processors are needed, it is not clear whether the

scheduling could be done on the fly.
Hudak and Anderson [19] suggest modeling parallelism in

functional languages using an extended operational seman-
tics based on partially ordered multisets (pomsets). The

semantics can be though of as keeping a trace of the compu-
tation as a partial order specifying what had to be computed
before what else. Although significantly more complicated,
their call-by-value semantics are related to the A-PAL model

in the following way. The work in the A-PAL model is within
a constant factor of the number of elements in the pom-

set, and the steps is within a constant factor of the longest
chain in the pomset. They did not relate their model to
other models of parallelism or describe how it would effect

algorithms.

Previous work on formally relating language-based mod-

els (languages with cost-augmented semantics) to machine
models is sparse. Jones [21] related the time-augmented se-

mantics of simple while-loop language to that of an equiva-
lent machine language in order to study the effect of constant
factors in time complexity. Seidl and Wilhelm [40] provide
complexity bounds for an implementation of graph reduction

on the PRAM. However, their implement at ion only consid-
ers a single step and requires that you know which graph
nocles to execute in parallel in that step and that the graph

has constant in-degree. Under these conditions they show

how to process n nodes in O(n/p + p logp) time (which is
a factor of p worse than our bounds in the second term,

see Lemma 4). There have also been several experimental

studies of how much parallelism is available in sequential

functional languages [11, 8, 10].

The work-step paradigm has been used for many years

for informally describing parallel algorithms [42, 22]. It was
first included in a formal model by Blelloch in the VRAM [5].

NESL [6], a data-parallel functional language, includes com-
plexity measures based on work and steps and has been

used for describing and teaching parallel algorithms. Skil-

licorn [43] also introduced cost measures specified in terms
of work and steps for a data-parallel language based on the
Bird-Meertens formalism. In both cases the languages were

not based on the pure J-calculus but instead included ar-
ray primitives. Also neither formally showed relationship
of their models to machine models. Part of the motivation
of the work described in this paper was to formalize the

mapping of complexity to machine models and to see how
much parallelism is available without adding data-parallel
primitives.

Dornic, et al. [13] and Reistad and Gifford [35] explore

adding time information to a functional language type sys-
tem. But for type inference to terminate, only special forms

of recursion can be used, such as those of the Bird-Meertens

formalism.

There has been much work on comparing machine mod-
els within traditional complexity theory. The most closely

related is that of Ben-Amram and Galil [2], who show that

a pointer machine incurs logarithmic overhead to simulate a
RAM. The pointer machine [24, 44] is similar to the SECD
machine in that it addresses memory only through point-
ers, but it lacks direct support for implementing higher-

order functions. We borrow from them the paramet eriza-
tion of models over incompressible data types and opera-

tions. Paige [29] also compares models similar to those used
by Ben-Amram and Galil.

Goodrich and Kosaraju [18] introduced a parallel pointer

machine (PPM), but this is quite different from our model

since it assumes a fixed number of processors and allows side
effecting of pointers. Another parallel version of the SECD

machine was introduced by Abramsky and Sykes [1], but
their Seed-m machine was non-deterministic and based on

the fair merge.

7 Conclusions

This paper has discussed a complexity model based on the
A-calculus and shown various simulation results. A goal of
this work is to bring a closer tie between parallel algorithms
and functional languages. We believe that language-based

complexity models, such as the ones suggested in this paper,
could be a useful way for describing and thinking about
parallel algorithms directly, rather than always needing to

translate to a machine model.
This paper leaves several open questions, including

We mentioned that a call-by-speculation impler,,.nta-
tion of normal-order evaluation might allow for im-

proved depth bounds for various problems. In partic-
ular it allows for pipelined execution. Does this help,
and on what problems?

Is it possible to sort within d = o(logz n), and w =

O(nlog n)?
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● Can the bounds for simulating the A-PAL on a PRAM

be improved? The bounds for the butterfly network

are tight.

● Our simulations are memory inefficient. Can good

bounds be placed on the use of memory?

● Because it lacks random-access, can the A-PAL model

be simulated more efficiently than the PRAM on ma-
chines that have less powerful communication (e. g.,
fixed-topology networks, parallel 1/0 models, or the
LOGP model [12]), and can the complexity model be
augmented to capture the notion of locality for these
machines?
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