Experience report on developing the Front-end
Client unit under the control of formal methods

J.F. Groote', A.A.H. Osaiweran', and J.H. Wesselius?

! Eindhoven University of Technology, Eindhoven, The Netherlands
2 Philips Healthcare, BU Interventional X-ray, Best, The Netherlands
{j.f.groote,a.a.h.osaiweran}@tue.nl, jacco.wesselius@philips.com

Abstract. Formal methods are extensively being applied to the devel-
opment of control software units, of highly sophisticated X-ray machines,
at Philips Healthcare. One of the early units incorporating formal meth-
ods is the Front-end client (FEClient), which was developed under the
control of formal technologies, supported by the Analytical Software De-
sign (ASD) method. As a result, only eleven coding errors were detected
during the construction of 28 thousands lines of code. Team members
attribute the ultimate quality of the software to the rigor of the formal
technologies supplied by the ASD method. In this paper we report about
the experience of applying ASD to the development of the FEClient, and
we show how formal methods substantially enhanced its quality. We also
discuss the nature of the errors found during the construction of the unit.

Key words: Formal methods in industrial applications; Analytical Soft-
ware Design; component-based software; Software quality.

1 Introduction

A collection of highly sophisticated X-ray systems are being developed at Philips
Healthcare, Best, the Netherlands. The systems are controlled by embedded
software, and comprise a number of control units that run concurrently, in a
distributed manner.

Understanding the behavior of such type of units, in order to test and verify
correctness of behavior using conventional testing methods, is regarded as an
extremely complex task. Programmers often encounter integration nightmares,
where all software units are separately complete, but do not correctly work
together, due to interface and design errors. Therefore, the quality of software
is degraded, and the safety of the controlled system is potentially endangered in
the field of operations.

The purpose of this paper is to provide an experience report on the appli-
cation of formal methods in system design. It shows that the formal techniques
can potentially provide a remedy for the above shortcomings, and substantially
enhance the quality of developed software in industrial settings. Furthermore,
since formal methods enforce rigorous disciplined processes, the errors found af-
ter applying such methods tend to be simple errors, easily detected and fixed,
and not profound design or interface errors.

The formal methods being used in this paper are provided by the Analytical
Software Design (ASD) [2, 13] method, which incorporates formal mathematical
methods to software development, for building defect free control software.

The ASD method enforces rigorous steps to be followed along software devel-
opment. The formal technologies being utilized in ASD potentially allow designs
of software to be systematically analyzed prior implementation, so that defects
can be prevented earlier. This compares to conventional software development,
where defects are typically detected and corrected at later stages of projects,
often with a high cost.

For obtaining high quality software, formal methods, by means of ASD, are
extensively being investigated and applied to the development of the control
parts of various software units of the X-ray machines. One of the major software
units incorporating ASD is the Front-end client (FEClient), the target of our
investigation. The main responsibility of the FEClient is to guard the flow of
information between two concurrent subsystems of the X-ray machines.

The control part of the FEClient was developed in a pipeline of consecutive
increments, each of which was formally described using an ASD specification,
and mathematically verified via model checking [12, 4]. As we will see, the control
part of this unit exhibits good quality results, and throughout its increments few
errors were encountered. Despite some limitations of the ASD technology, the
end quality of the FEClient code was remarkable.

In [8] we analyzed the effects of applying ASD to the development of a number
of software units, by comparing the quality of ASD code with the code written
manually. In this paper we detail the application of ASD to the development
of the FEClient unit. We report about the experience of how the ASD method
was tightly integrated with the development cycle, demonstrating the resulting
quality obtained by the method, and analyzing the nature of errors submitted
along the development of the unit.

We first introduce the ASD framework to the extent required for this article
in Section 2. The context of the FEClient unit is described in Section 3. The
steps accomplished for developing the FEClient using ASD are demonstrated in
Section 4; we mainly describe the adaptations made to incorporate the technol-
ogy in the development cycle. In Section 5 we provide the quality results of the
FEClient, and we discuss the nature of the errors found during its construction.

2 Principles of Analytical Software Design

ASD is a component-based, model-driven technology that incorporates software
development methods like Component-Based Software Development [3] with for-
mal mathematical methods such as Sequence-Based Specification (SBS) [11],
Communicating Sequential Processes (CSP) [12] and its model checker Failure
Divergence Refinement (FDR) [4].

A key principle of ASD is to identify a design of software as interacting
components, communicating with each other or their environment via chan-
nels (interfaces). A common ASD practice is to distribute system functionality

among components in levels (e.g., hierarchical structure), to allow a systematic
construction and verification of components separately. Figure 1 at the left de-
picts an example structure of components, which includes a controller (Ctr) that
controls a motor and a sensor.

For developing any ASD component the external behavior must initially be
described by an ASD interface model. The external behavior specifies how the
component is expected to behave with respect to its client components. The
concrete behavior of the component is described by another model, called the
design model. The specification of the interface and design models is supported
by an ASD industrial tool, called the ASD ModelBuilder.

- 1
Clients uses

I
] 1
; | only ICtr which |
Upper level client i re;'resems o L
components | lowerlevel 1
| components |
m=——== - i Y | Interface |
| A combined i i ,,_: model |
| model must 3 e N
I be deadlock T
| and livelock £ | Ictrmust |
Ctr 1 free 7 . bea !
b 3 i 1 refinement |
" Design T/ Lol ofthe |
7N =iy B
””” ! model !
Motor Sensor Motor Sensor
Device Device Device Device

Fig. 1. Example of structured components

The ASD models are state machines, described in a tabular format. Each
table is a state of the state machine, see Figure 2 which depicts an example
specification of the Imotor interface model presented in Figure 1. Every table
contains rows called rule cases, which comprise a number of items, such as the
interface name (channel), stimulus event and a list of responses. Upon invoking a
stimulus event of a rule case, corresponding responses are sequentially executed,
one by one, until completion, before a transition to a next state is performed.

For the sake of modeling completeness the ASD user must fill-in all items
for all possible rule cases in the tables. Further, to ensure consistency and cor-
rectness, mathematical models such as CSP [9] and source code implementation
such as C++ or C# (following the state machine pattern in [5]) are automat-
ically generated from ASD models. Changes to the generated CSP models or
the source code are often not recommended. The details of such translations are
irrelevant for this paper.

ASD components are created and verified in isolation. The compositional de-
sign and verification of isolated components in ASD is essential to circumvent the
state space explosion problem. The typical steps required for developing an ASD
component are summarized below. We consider developing the Cir component
depicted in Figure 1 at the right as an example.

imIMotorCtr - Verum ASD:Model i State diagram ! Model ! code
- - generation 8 check generation !
Eile Edit View Filters JTools Help T ~ <
= 1 S<
NEEHdE 90 & LBdX8 X% PP LI EV : i
v
Project Explorer B X || IMotorCtr | ClientAPI | Client Callbacks | Modeling Interfaces | Canonical Sheets | State Variables | Tags ‘
4 Models(1) i
4 [IMotorCtr |
4 MainStateMachine Channel |Stimulus event | Predicate | Response |State update [Next state |Cormment|Tag|*
4 IMotorCtr 1 |Uninitialized <> 1 state \‘
> States 2 |IMotorCtr |initialize IMotorCtr. NullRet Idle
" Variables 3 | IMotorCtr | uninitialize Tllegal R
. ITE';;::?;;IIBBHDH 4 |IMotorCtr| moveleft Illegal -
IMotorCir 5 |IMotorCtr | moveRight Illegal -
4 Client CB 6 |IMotorCtr | stopMovement Illegal -
IMotorCtrCB 7 |Idle<IMotorCtrinitialize > ———-1 state |
Modelling Interfaces 8 |IMotorCtr|inttialize Illegal -
Tags 9 |IMotorCtr| uninitialize IMotorCtr. NullRet UnInitialized
10 | IMotorCtr | moveLeft IMotorCtr NullRet Idle
R ____4+H11|IMotorCtr | moveRight IMotorCtr. NullRet Idle
L Rulecase | 12 | IMotorCtr | stopMovement IMotorCtr.NullRet Idle -
[Model size: 90~ ASD Function Points | LANGUAGE (VERSIOI |Connected

Fig. 2. The tabular specification in the ASD ModelBuilder

1. External behavior specification. Initially, the external behavior of the com-
ponent being developed is specified via an ASD interface model, which only
includes the behavior related to the client components located at the upper
level. Interactions with components located at a lower level of the component
being developed are excluded from this interface specification. For instance
ICtr is the interface model of the Ctr component, where concrete interac-
tions with the sensor and the motor interfaces are not included. ICtr specifies
how the clients are expected to use Ctr.

2. Ezxternal specification of boundary components. In a similar way, the inter-
face models of components located at the lower level are specified. These
models describe also the external behavior exposed to the component being
developed. For example, the Imotor and Isensor interface models describe
the external behavior related to the Ctr component. All other internal in-
teractions not visible to Ctr are not present.

3. Concrete, functional specification. On completion of the external behavior
specification, a design model of the component is constructed, such that it
specifies the concrete behavior including interactions with used components.
For instance the design model of Ctr includes method invocations from and
to the lower level Motor and Sensor components.

4. Formal behavioral verification. Through this step CSP processes are gen-
erated automatically from the interface and design models created earlier.
These processes form a combined model that includes the parallel compo-
sition of the design model process plus the processes of the used interface
models. The combined model is used to verify that a component being de-
veloped uses its used interfaces correctly. Concretely, this means that the
correctness of the combined model is checked for deadlock, livelock, and ille-

gal invocations using FDR; these properties are checked automatically using
the ModelBuilder. ASD users can additionally specify properties in CSP
and verify them against the combined model, if required. To clarify this
step using the Ctr component example, a combined model that includes Ctr
and Imotor and Isensor is constructed. The behavioral verification checks
whether Ctr uses the motor and the sensor interfaces correctly, such that no
deadlocks, livelocks, race conditions, etc. are present.

5. Formal refinement check of external and internal specifications. The client
components located at a higher level use only the interface model of the
component being developed, for constructing their own combined models for
the formal verification. To guarantee correctness of the interface model used
by the clients and to ensure that the combined model matches its prescribed
interface model, the combined model of the component being developed must
be a correct refinement of the interface model. The refinement check is for-
mally established using the failure or failure-divergence refinement supplied
by the FDR model checker, where the interface process is the specification
and the combined model is the implementation. Once the formal refinement
check is accomplished, the interface model represents all components located
at lower levels. For instance, when the combined model constructed in step
4 is a valid refinement of the ICtr process, ICtr formally represents all lower
level components.

6. Code generation. In this step source code is generated and integrated with
the rest of the code in the target programming language.

7. Recursive development of components. For each component located at a
higher or lower level the above steps can be repeated until the system is
developed. This provides the potential to develop ASD components in a top-
down, middle-out, or bottom-up manner, in parallel with constructing the
manually coded modules.

The ASD interface model plays important roles along the development of
software. Below, some of these roles are summarized.

1. The interface model is used as a formal document that specifies the protocol
of interaction between two or more components or subsystems. It provides a
shared understanding and simplifies communication among software archi-
tects and engineers.

2. The interface model is used to formally represent all lower level components.
Since all internal details are abstracted away, the interface behavior is often
easy to understand. Furthermore, the formal description of the interface
reduces the risk of misunderstanding of certain behavior or critical design
decisions.

3. When the interface model is formally refined by other lower-level complex
models, the model is used for verification with the design models of upper
level clients. The interface behavior tend to be simpler than its corresponding
composed model, so that verification of clients using model checking can
be a straightforward activity. For verification substantially fewer states are
generated compared to combining all models at once.

4. When a formally refined interface model of a component is used correctly by
ASD clients, the integration of clients’ code with the ASD code of the com-
ponent is typically done without errors (especially during the compilation
and the building process of the code).

5. The interface model can represent foreign components (hardware devices,
legacy code or handwritten code) developed outside ASD by describing the
external interface-level behavior. Doing this simplifies understanding and
implementing the internal code, regardless of the programming language
being used.

3 The context of the Front-end client unit

The embedded software of the underlying X-ray systems is deployed on a number
of fully concurrent subsystems, of which two are of interest for this work: the
BackEnd and the FrontEnd subsystems, see Figure 3. We briefly explain these
subsystems to the extent required for this article.

The BackEnd subsystem hosts a graphical user interface, which allows clinical
users to view patients’ X-ray images, and to manage their data and exam details.
It also houses predefined X-ray settings and clinical applications required to
configure the FrontEnd for various X-ray examinations. The BackEnd controls
the flow of events required for acquiring X-ray images with the FrontEnd through
a workflow protocol.

BackEnd subsystem FrontEnd subsystem

EEClient
unit

FEClient BEFE Interface
L

state
machine

A

BackEnd units

-4—Pp C#Interfaces <—> ASDinterfaces > Components developed manually

Fig. 3. Deployment of the FEClient in BackEnd

The FrontEnd subsystem is responsible for controlling motorized movements
of movable parts, such as the table where patients can lay and the stands that
holds X-ray collimators and image detectors. The FrontEnd subsystem is also
responsible for calibrating these components upon requests sent remotely by the
BackEnd subsystem, according to the predefined X-ray settings. Once all com-
ponents are prepared, the FrontEnd subsystem requests the BackEnd subsystem
to prepare its internal components, and asks permission to acquire images.

Upon obtaining permission, the FrontEnd starts acquiring X-ray images. The
images are then viewed on the graphical interface of the BackEnd and locally
stored for future potential references.

The BackEnd subsystem comprises a total of 12 distinct software units, three
of which incorporate the ASD technology for developing their control parts. One
of the key units is the FEClient, which mainly mediates messages between various
units of the BackEnd and the FrontEnd subsystem across a physical network.
The interaction between the two subsystems is standardized by a predefined
communication protocol, specified by an ASD interface model, called the BEFE
interface; see the deployment of the FEClient in Figure 3.

The interaction between the two subsystems is rather complex, and the ar-
chitecture depicted in Figure 3 is prone to various kinds of deadlocks, race-
conditions and failures. Any of the following components may fail during the
execution of the system: any unit of the BackEnd; the FrontEnd subsystem; the
network connection between the FrontEnd and the BackEnd subsystems. For
example, if the BackEnd loses its connection to the FrontEnd subsystem, the
problem may be that the FrontEnd subsystem has a major failure, or that there
is a network outage between the two subsystems.

In either case the failure may be temporarily or persistent. The FEClient
knows whether the FrontEnd subsystem is at fault, and therefore must correctly
respond to internal BackEnd requests, by providing proper handlings: viewing of
patients’ images and data, regardless of the presence or absence of the FrontEnd
subsystem, for instance. Once the source of failure has disappeared, the FEClient
must ensure that both subsystems are synchronized back to a predefined state.
Briefly, the FEClient provides numerous benefits such as:

- manipulation of data in readable formats comprehended to communicating

subsystems,

- guaranteeing the consistency of states between the external subsystems and

internal BackEnd units,

- exchanging of patients’ data and exams, constructed and originated by

BackEnd units, and sent towards the FrontEnd subsystem,

- processing of X-ray settings, constructed and exchanged by the BackEnd

and the FrontEnd subsystems,

- and handling the requests for acquiring X-ray images from the FrontEnd

subsystem.

The FEClient includes a complex control part (a state machine), which main-
tains the current state of the system, and enables units on BackEnd to correctly
communicate with the FronEnd and vice versa. The control part comprises a
total of 88 different stimuli, 211 responses and 26 distinct states. The impetus
of the FEClient state machine was the need of safeguarding the flow of informa-
tion between the fully concurrent subsystems, by preventing potential deadlocks,
livelocks, race conditions, and illegal interactions. Due to the distributed nature
of the system, each component has only partial information about the state of
the system, raising the complexity of providing correct interactions among the
concurrent, interacting parties.

Therefore, the ASD technology was used to develop the control part of the
FEClient unit, and the external interfaces of the components on the boundary.
Initially the ASD technology was utilized to formally specify the protocol of
interaction between the FrontEnd and the BackEnd subsystems, by means of the
BEFE interface, to provide equal understanding of the protocol among separate
teams developing the subsystems. At later stages, the interface model was used
not only as a formal documentation but also for the formal verification of the
FEClient state machine.

4 The application of ASD for developing the FEClient

We report about the activities conducted for developing the FEClient, starting
from January 2008 till the end of 2010. Development of the FEClient involved 3
full-time and 1 part-time team members. All had sufficient programming skills,
but limited background in formal methods. The team had been exposed to ASD
training courses, to learn the fundamentals of the method and its technologies.
The ASD method required a learning curve because it was new to the devel-
opment team. Therefore, time, investments and experience were required before
developers became skilled in the technology.

At the beginning of incorporating ASD to the development of FEClient, two
ASD consultants were present, who devoted roughly half of their time to the
project, helping developers to rapidly learn the technology and its practices.
The unit was developed in a small team to afford greater quality and control,
compared to larger teams or individuals.

Requirements Incremental Software Functional Behavioral Specification Code Code
planning design specification verification review generation integration
— — —» — — — — ¢
1 1
tg——f———f————[————l— —————— Testing 'Endof
increment
—> —»

Fig. 4. The ASD processes in a development increment

The FEClient was developed in a pipeline of consecutive increments. The
control part of the FEClient was fully implemented using the ASD method,
whereas the data or computation parts were developed using the conventional
development method. The traditional development process was adapted to fit
the ASD method; see Figure 4 which depicts the flow of processes with respect
to ASD in a development increment. Table 1 briefly describes these processes
plus the percentage of time conducted for developing the control part of the
FEClient throughout all of its increments.

Requirements and incremental planning. To ensure that the development team
clearly understands the essential functions of the system before development

Table 1. Time and activities of developing FEClient

5% Incremental Formation of teams and their responsibilities; work
planning breakdown estimation for each function including time,
efforts, deadlines, risks, etc. for each planned function
10% Software design Decomposition of the unit into ASD and manually de-
veloped components; assigning responsibilities to com-
ponents; adapting design to new planned functions
25% Functional Specifying the external behavior of the FEClient towards
specification its clients; describing the ASD design model of FEC;
specifying the interface models of the used components
24% Model checking Searching for deadlocks, livelocks, illegal calls; detecting
race conditions and violation of protocol of interactions;
formally check the refinement correctness of FEClient in-
ternal implementation against its external specification
5% Specification Team review of interface specifications for all specified
review rulecases; checking traceability to informal requirements;
checking naming consistencies
10% Code generation Generating code in C# language; integrating the gener-
and integration ated code to the system; implementing glue code

20% Testing Unit test of generated and manually written code; func-
tion and coverage test for manually written code
1% End of Problems solving; bug fixing
increment

activities begin, Philips chose to formally express the requirements of the system
in tags using CaliberRM, a software requirements management tool. To increase
their awareness even more, the development team is required to reference the
tags in the specification of ASD models.

As soon as the requirements of FEClient had been clarified, the planning
of implementing a subset of predefined functions was established, with work
breakdown estimations and a tight schedule.

FEClient design. On completion of incremental planning, the design of FEClient
components started as working drafts, reviewed by team members in a number
of sessions. Feedback from each team review session was incorporated to further
improve the informal designs. Team reviews provided opportunities for code
economy by identifying reusable modules (or common services) such as tracing
and logging. At the end of the design step the distribution of components was
accomplished, with well-defined interfaces and responsibilities.

The effort of obtaining an appropriate design that fits the ASD specifica-
tion and verification style was higher than normal since the technology does
not support all design or architectural patterns, with which the developers
were acquainted. For example, not all object-oriented design patterns [5] can
be easily modeled using the ASD ModelBuilder, and that all ASD components
must be structured in strict levels. The ASD components must be designed in a
component-based action-oriented manner.

10

Functional specification. After the design step was accomplished, fourteen ASD
interface models that capture the external behavior of the FEClient state ma-
chine component and the internally used components were described using the
ASD ModelBuilder. The structure of the ASD components of the FEClient is
depicted in Figure 5. The FEClient state machine was described using an ASD
design model, implementing both the external behavior towards the clients and
the internal behavior of the FEClient towards the internal components and to-
wards the FrontEnd subsystem. The development of the manually coded modules
was done in parallel to the ASD modeling.

The specification process of the ASD models was a straightforward but tena-
cious activity. It enforced the user to think carefully about every possible sce-
nario, leading to an increase in the quality of requirements and to stimulate early
discussions with stakeholders for clarifying ambiguous scenarios. The complete-
ness of specification imposed by the technology caused some models to suffer
from being over-specified and being difficult to understand and maintain, until
special filtering features were supported by the ModelBuilder.

Behavioral verification. After all models were specified, the formal behavioral
verification process using model checking was started. Race conditions, dead-
locks, livelocks, and illegal scenarios violating the communication protocols were
discovered early, causing either to adapt the specification or to redesign the com-
ponents of the FEClient. The verification of the FEClient included the interface
model of the BEFE interface. The communication protocol specified in the early
BEFE interface model contained some errors discovered during the behavioral
verification and specification reviews. Such errors were communicated to the
team involved in the development of the interface.

It is notable that the state space explosion problem kicked in during the ver-
ification sessions. Since developers could not proceed to code generation without
the behavioral verification, the design was adapted to circumvent the problem.
Various communication styles that cause this problem were avoided to make
verification achievable [7,6]. Although model checking contributed substantially
to the quality of the FEClient, it imposed additional efforts to deal with race
conditions that can hardly happen in practice.

Specification review. When the behavioral verification process had been com-
pleted, specification reviews of ASD models were conducted to verify complete-
ness, correctness, and traceability to the original tagged requirements. Partici-
pants in review sessions varied, but always included the owner of the specification
and one or more persons who had previously been trained in ASD. In general
it was difficult for non ASD users to follow the review process. The early lack
of compare and merge functionality in the ModelBuilder complicate the review
process further. Reviews were performed in a number of sessions of roughly half
an hour each, and documented in dedicated separate review sheets.

Code generation and code integration. Once specification reviews were accom-
plished, the models were automatically translated into the target language, in

11

Upper level clients
of FEClient

13 1 ¥—>
ersion > ----- racin IBEFE
FE

Manually coded
components subsystem

Fig. 5. The structure of the FEClient

this case, C#. The generated code was integrated with the manually written
code by implementing glues of appropriate adapter and wrapper code. The inte-
gration process of the FEClient generated code with the generated code of other
ASD components was remarkably smooth.

The interface model of the FEClient is used by 5 fully concurrent ASD client
components, which use the interface model for the behavioral verification, ac-
cording to the ASD recipe. Consequently only one error had been reported (de-
tailed in the subsequent section) during the integration of the FEClient generated
code with the code of the ASD client components. This compares favorably to
the traditional development methods where integrating concurrent components
poses substantial efforts to fix potential errors, and to bring components to work
together correctly.

FEClient test. The ASD generated code was not a target of function coverage
or statement coverage tests, which applies to the manually developed code. Unit
testing was started after the generated code was integrated with the manually
written code. The FEClient state machine always passed its unit test, and only
few errors were discovered during system test. During the construction of the
FEClient few errors had been committed; fixing these errors often commenced
at the end of each increment. We discuss these errors in subsequent section.

The total number of hours spent for specifying and verifying ASD models
plus generating and integrating code of all the FEClient increments was nearly
700 hours. Table 2 depicts statistical data of the FEClient state machine and
the interface models of the used components.

The first column lists the names of the ASD models, from which code was gen-
erated and correctness verification was checked. The second column reports the
total number of rule cases, specified and reviewed by team members. The third,
fourth and fifth columns demonstrate statistical outputs for checking deadlock

12

Table 2. The ASD models of the FEClient

Model Rule States Transitions Time Total Executable
cases (sec) LOC LOC
FECSM 2376 1,996,830 5,249,538 230 11,159 11,121
IFECSM 1,068 3,028 7,112 0 208 173
IBEFE 2,183 931 8,537 0 144 129
ICTFFacade 51 6 28 0 107 70
IConfigRepository 8 2 7 0 90 53
IDataServiceFactory 8 4 4 0 86 49
IEnumConversions 16 2 15 0 98 61
IParameters 18 7 22 0 125 88
IParameterCache 4 2 3 0 86 49
IPerformance 5 2 4 0 87 50
IReportLogging 3 2 2 0 85 48
IRunTag 12 15 33 0 90 53
ISystemType 4 3 4 0 85 48
ITracing 3 2 2 0 85 48
IUserGuidance 16 18 64 0 102 65
IVersionExchange 4 3 4 0 85 48

ASD run-time - 803 701

freedom using the model checker FDR: the generated states, the generated tran-
sitions and the time in seconds required for verification respectively. All models
are deadlock free. The last two columns depict the generated lines of code (LOC),
in the C# programming language. The total LOC denotes all source lines, in-
cluding blank and comment lines. The executable LOC includes all executable
source lines of code excluding blank and comment lines.

The IFECSM model is the interface model that captures the external be-
havior of the FEClient unit. As mentioned earlier, this model is used by other
ASD clients located at other units of BackEnd, to formally guarantee the inter-
action correctness among the units. As can be seen from the table the model
comprises a substantial number of specified rule cases. This directly affected the
description of the FEClient design model (FECSM), which is clearly the most
complex model among all others. The reason of this complexity is that ASD
allows only one design model for refining any interface model, which means that
a decomposition of an interface model to a number of simple design models is
not supported at the moment of writing this article.

The behavioral verification of all ASD models was conducted by a remote
server with secure connections, controlled by Verum, the ASD company. The
verification of all interface models were accomplished separately, except for the
state machine, which was verified as a combined model that includes the state
machine design plus all interface models of used components. As can be inferred
from the table roughly 8.5 thousand states can be generated per second by FDR,
but this number was not constant for all remote verification sessions of the state
machine. In some circumstances the remote verification process was slow, and

13

the ASD users were forced to wait longer until verification results appeared on
their screens.

5 Quality results of the FEClient unit

The FEClient development team prepared careful reports of all errors found
during the construction of the unit. The unveiled defects were committed to a
bug tracking system, which is part of a sophisticated code management system.

The feedbacks and comments from the project leaders were very positive,
and the unit appeared to be stable and reliable. But the project leaders wanted
to know more about whether the use of formal methods affected the quality of
the code.

For scrutiny purposes, Philips opened their error reports, and we carefully
investigated them trying to determine the impact of formal methods on the
quality of the code. Our analysis reveals the followings.

A total of eleven errors related to both ASD and the manually written code
were reported along the construction of the unit. Four errors were found during
implementation, five during integration, and two during system testing.

Three of the eleven errors were caused by design, e.g., missing a response to
a test component in the ASD state machine; and eight errors introduced during
implementation, e.g., a redundant “WARNING” word in some traces, which
complicated the analysis of other traces.

Of the eleven errors, four would have caused failures during system execution.
One of the four errors is severe and most likely to occur, e.g., misspellings in
data could cause a crash at the FrontEnd subsystem. One error is average with
low probability of occurrence, e.g., a race condition between a request to acquire
images from the FrontEnd subsystem and a request to exchange X-ray settings
from BackEnd clients. The remaining two are minor errors, e.g., a crash due to
a failure to load a missing dll file during version exchange with the FrontEnd
subsystem.

Channel Stimulus event Predicate Response
CTFFacadelCTFFacade Activated_Processed;
FEClientConfi itory:IFEClientConfigRepository.GetLic i ML);
FEAdapterBEFEInfraSetConfigurati i)
i ache FECi ache!
FEAdapterIBEFEDataReportParameter (parameterAskML);

p)

FEAdapter IBEFEData.Getl runTag.c Elnterface,afterRunDataAskML);
EEGheniEnanG 7 = ions.C €2BE(c e channelBE);
FEClientRunTagdFEClientRunTag SetL ilable,runTag,channelB, afterRunDataAsKML;
FEClientConfi YIFEClientC pository. T Tag);
o) FEClientRunTagdFEClientRunTag Setl Tag(run:
771 FEAdapter BEFEACtivationCB Activated AfteRunData==true | (oo g et o pr

oo . FEAdapter IBEFEData SetRunTag(runTag);

! Activation of an | FEClientConfi IFEClientC o L Tag(runTag);

| I~ = = IFEClientActivationCB.ActivateBEFElnterfaceSucceeded;

L exteral component | __— FeClientUserGuidancelFEClientl BEFEInterfaceActivated;

i 7 - [FEClientParameterCB BEFEInterfacectivated:

I Activation of internal IS < - IFEClientStartRunConditionCB. BEFEInterfaceActivated:

| |~ [FEClientFunctionCB BEFEInterfscectivated:

1 __Components__ FEC &IFEC e <<activationScenarioCookie §"ActivationSucceeded's);
i e e T b

Fig. 6. The order of activating boundary components caused an error

14

Figure 6 depicts a specification of a rule case that caused an unintended
behavior of the system, during the integration phase in one of the project in-
crements, due to a wrong order in the responses list. The rule case specifies
that when the FrontEnd subsystem is activated, it sends the Activated event to
the BackEnd via the BEFE callback interface; this is indicated by the channel
and the stimulus event of the rule case. Upon receiving the Activated event, the
FEClient sequentially executes a list of responses, each until completion.

The order of the depicted responses was not correct since one concurrent
external client component was activated before the internal components of the
FEClient. The order was initially made this way to shorten the time required for
activating BackEnd units. But, if the client component was quick, it could send
events to the internal components which were not activated yet. The consequence
was that the user interface, on the screen of the BackEnd, shows an indication
that acquiring images is not possible, while it should be.

Due to the concurrent nature of the client component, the error was hard to
reproduce manually, but locating the source of the error was easy. Correcting
the activation order, such that the external client is activated after the internal
components, was straightforward, and indeed solved the issue.

In general, the errors reported during the development of the FEClient are
simple goofs, easily found and fixed, and not critical design or interface errors. A
summary of these errors is given in Table 3. We use the error categories defined
by Basili and Selby in [1]. The error severity codes are as follows.

Major error,

Minor error,

Average error,

High probability of occurrence,

Low probability of occurrence,

Error would have cause a failure during system execution.

Four extra codes specify whether the error was caused/found during design
(“D”), implementation (“I”), integration (“G”) or system testing (“T”).

The development activities of the manually written code yield 15,462 lines
of executable code, with a rate of 0.52 defects per KLOC. The total number
of ASD generated code is 12,854 lines of executable code, which report 0.23
defects per KLOC. Clearly, the quality of ASD and the manually written code
are comparable, but the quality of ASD code appears to be better.

The complete unit exposes an average of 0.4 defects per KLOC. This level
of quality compares favorably to the standard of 1-25 defects per KLOC for
traditionally developed software in industrial settings [10].

The quality of the ASD developed code depends on many things, including
specification reviews and the formal behavioral verification. Model checking cov-
ered all potential scenarios, and defects were found early and quickly with the
click of a button.

The quality of the manually developed code depends on many factors, includ-
ing the external specification of components, strict code reviews and thorough
testing. Developers of the unit were committed to 100 percent function coverage

HE T <22

15

Table 3. Summary of errors found during the construction of the FEClient unit

Category Error Caused ASD Description of error
severity /Found
Control V/L/F D/I Yes Race condition between exchanging X-ray set-
tings and a request to acquiring X-ray images
A\ D/T Yes Missing a response to test component in a rule
case

M/L D/G Yes Not possible to generate images although it
should be possible
Data \% I/G No Test interface is exposed in deployment environ-
ment
M/H/F 1/G No Misspelling in DataDictionary caused exception
at the FE subsystem
V/L I/G No Image Acquisition indicator is not enabled
Initialization N/L/F I/T No Missing configuration file caused exception in
test system at startup
V/L/F 1/G No Exception when version exchange assembly
loading fails

External \% I/T No Tracing shows up in logging database
\% I/T No Coding standard violation

Cosmetic N I/ No Redundant WARNING word in tracing

Computation - - - No errors

Interface - - No errors

and 80 percent statement coverage. The team had tracked coverage testing us-
ing the NCover tool, which reports the percentage of functions and statements
covered by sets of tests.

The total number of test code written for FEClient unit test is 10,943 lines of
executable code. For the FEClient case, it appeared to us that code review was
far more effective than coverage testing, and that more issues had been found
during review than in testing. But unit testing had major benefits of detecting
memory leaks, optimize memory usage and provide a proper framework for code
coverage.

Team members appreciated the ultimate quality of the FEClient software.
The behavioral verification and the firm specification and code reviews provided
a suitable framework for increasing the quality, assisting the work, and decreas-
ing potential efforts devoted to bug fixing at later stages of the project.

Acknowledgements. We would like to thank Marco van der Wijst for his sub-
stantial efforts of developing the FEClient at earlier stages. We wish to thank
Tom Fransen, Amol Kakhandki and Marco van der Wijst for their useful com-
ments on the text.

16

References

1.

2.

10.

11.

12.
13.

V. R. Basili and R. W. Selby. Comparing the effectiveness of software testing
strategies. IEEE Trans. Softw. Eng., 13:1278-1296, December 1987.

G. H. Broadfoot. ASD case notes: Costs and benefits of applying formal methods
to industrial control software. In FM 2005: Formal Methods, volume 3582 of LNCS,
pages 548-551. Springer (2005), 2005.

I. Crnkovic. Building Reliable Component-Based Software Systems. Artech House,
Inc., 2002.

FDR homepage. hitp://wwuw.fsel.com, 2011.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

J. F. Groote, T. W. D. M. Kouters, and A. A. H. Osaiweran. Specifcation guidelines
to avoid the state space explosion problem. CS-Report 10-14, Eindhoven University
of Technology, 2010.

J. F. Groote, T. W. D. M. Kouters, and A. A. H. Osaiweran. Specifcation guidelines
to avoid the state space explosion problem. In Proceedings of the 4th IPM interna-
tional Conference, FSEN 2011, page (IN PRESS), Theran, Iran, 2011. Springer-
Verlag, Berlin, Germany.

J. F. Groote, A. A. H. Osaiweran, and J. Wesselius. Benefits of applying formal
methods to industrial control software. CS-Report 11-04, Eindhoven University of
Technology, 2011.

P. J. Hopcroft and G. H. Broadfoot. Combining the box structure development
method and CSP for software development. FElectr. Notes Theor. Comput. Sci.,
128(6):127-144, 2005.

S. McConnell. Code Complete, Second Edition. Microsoft Press, Redmond, WA,
USA, 2004.

S. J. Prowell and J. H. Poore. Foundations of sequence-based software specification.
IEEE Transactions on Software Engineering, 29(5):417-429, 2003.

A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
Verum homepage. hitp://www.verum.com, 2011.

