Evolution of Composition Filters to Event Composition

Somayeh Malakuti and Mehmet Aksit
Software Engineering group, University of Twente, 7500 AE Enschede, the Netherlands
{s.malakuti,m.aksit}@ewi.utwente.nl

ABSTRACT

Various different aspect-oriented (AO) languages are intro-
duced in the literature, and naturally are evolved due to the
research activities and the experiences gained in applying
them to various domains. Achieving modularity, compos-
ability and abstractness in the implementation of crosscut-
ting concerns are typical requirements that these languages
aim to fulfill; and the degree to which they are fulfilled dif-
fers per language. Therefore, we always face two questions:
what are the limitations of current AO languages from the
perspective of these requirements, and what kinds of changes
and/or new language mechanisms are necessary to address
the limitations. This paper elaborates on the limitations
of the current AO languages by means of runtime enforce-
ment as an example domain. Via a new computation model
termed as Event Composition Model, which is a successor of
the Composition Filters Model, we outline the new language
mechanisms that are necessary to overcome the limitations.
This paper introduces the EventReactor language as an im-
plementation of Event Composition Model, and by means
of an example runtime enforcement technique, it illustrates
the suitability of Event Composition Model to achieve bet-
ter modularity, composability and abstractness in the im-
plementation of concerns.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.3.3 [Programming Languages|: Language Con-
structs and Features—Modules, packages

General Terms

Languages, Design

Keywords

modularity, composability, abstractness, aspect-orientation,
runtime enforcement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1850

1. INTRODUCTION

Various different aspect-oriented (AQO) languages are in-
troduced in the literature [7, 1, 10, 3, 12, 2|, and naturally
are evolved due to the research activities and the experi-
ences gained in applying them to various domains. Achiev-
ing modularity, composability and abstractness in the im-
plementation of crosscutting concerns are typical require-
ments that AO languages aim to address. For this mat-
ter, these languages offer first-class abstractions to define
aspects, so that the modularity is achieved; and offer var-
ious operators to compose aspects with the other concerns
in program. Some AO languages [7] also aim at defining
aspects at the higher level of abstraction without incorpo-
rating unnecessary implementation details. The degree to
which the above-mentioned requirements are fulfilled differs
per language. Therefore, we always face two questions: what
are the limitations of current AO languages from the per-
spective of these requirements, and what kinds of changes
and/or new language abstractions are necessary to address
the limitations.

This paper makes use of runtime enforcement (RE) [4]
as an example domain to answer these questions. RE tech-
niques enable software to tolerate failures and to continue
operating in case of failures. In these techniques, the changes
in the states of the software are verified against the formally
specified properties of the software. If any failure is de-
tected, diagnosis and recovery actions may be performed to
respectively detect the causes of the failure and to recover
the software from the failure. Due to the difficulty of cre-
ating fault-free software, RE techniques are more and more
adopted in large-scale software and this trend seems to con-
tinue also in the future. This causes the implementation of
RE techniques also becomes extremely complex.

This paper identifies the core concerns that typically ex-
ist in RE techniques. By means of an example, the paper
illustrates the need to fulfill the modularity, composability
and abstractness requirements in the implementation of RE
techniques, so that we can cope with the complexity of these
techniques. This paper explains that the existing AO lan-
guages fall short to fulfill these requirements; nevertheless,
the Composition Filters Model (CFM) [1] and its language
Compose* [7] offer promising features for this matter. We
introduce a new computation model termed as Event Com-
position Model, as a successor of the CFM, which offers a
set of novel linguistic abstractions to overcome the identified
shortcomings.

We introduce the EventReactor language, as a successor
of Compose*, to implement Event Composition Model. By

1: save 1.1: store

aDocMng:

DocMn: Storage

: open
: write
: close

w iy

EN

User

Figure 1: The sequence of method invocations to
store a document

means of an example RE technique, we illustrate the suit-
ability of Event Composition Model and its implementation
language EventReactor to achieve modularity, composabil-
ity and abstractness in the implementation of concerns.

This paper is not only useful for the composition filters
practitioners but also for other AO language users, because
the limitations of composition filters are also valid for most
other AO languages. The evolution experience of the CFM
may inspire the researchers to extend the current AO lan-
guages. The AO language designers can consider the chal-
lenges that exist in the implementation of RE techniques to
introduce new language mechanisms if necessary.

The rest of this paper is organized as follows. Section 2
provides background information about RE techniques. Sec-
tion 3 identifies the requirements to be fulfilled in the im-
plementation of RE techniques and evaluates AO languages
with respect to these requirements. Section 4 explains Event
Composition Model, and Section 5 illustrates the features of
the EventReactor language. Section 6 evaluates the suitabil-
ity of the EventReactor language with respect to identified
requirements, and Section 7 outlines conclusion and future
work.

2. BACKGROUND

In the following, we first provide an RE technique that is
used as the illustrative example throughout the paper, and
then we identify the core concerns that typically exist in RE
techniques.

2.1 An Illustrative RE Technique

Assume that there is a document-editing software, with
two core modules DocMng and Storage, which provide ser-
vices to edit a document and to save its contents, respec-
tively. DocMng is implemented in Java, and Storage is
implemented in C. Assume that it is required to verify at
runtime that a request to save a document by the user even-
tually results in storing the document on the file system.

Figure 1 makes use of a UML collaboration diagram to
depict the sequence of causally-dependent invocations that
handles this request. To save a document, first the user
invokes the method save on the object aDocMng of type
DocMng. This causes the functions store, open, write and fi-
nally close to be invoked on Storage. For the sake of brevity,
we eliminated the objects that facilitate inter-language com-
munication.

We consider it as a failure if after the invocation of save by
the user, (a) any of the other invocations does not occur in
the specified order, and/or (b) the operating system thread
in which a user’s request is handled terminates before these
events occur. As the recovery actions for the case (a), we
would like to first log an error message, and then prevent
the execution of the method whose invocation violates the
specified sequence. For the case (b), we only want to log an
error message.

1851

2.2 Concerns in RE Techniques

We divide the concerns that typically exist in RE tech-
niques in five categories: base, verification, diagnosis,
recovery and constraints.

The base concerns are the concerns of interest in soft-
ware, whose properties must be enforced. These are for ex-
ample, objects, functions, subsystems, processes, or groups
of them. In our example, DocMng and Storage are two base
concerns. The changes in the states of the operating system
thread must also be considered while verifying the behavior
of DocMng and Storage. Therefore, the operating system
thread is another base concern of interest in the software.
These three form a group of correlated base concerns.

The verification concerns define the expected and /or un-
expected properties of the base concerns, receive the neces-
sary data from the base concerns, and verify the data against
the specified properties. In our example, the specified se-
quence of invocations is a property to be enforced, and the
functionality to check the specified sequence is provided by
a verification concern. The verification of the specified prop-
erties results in new data, for example, indicating whether
the properties are satisfied or violated. This data can be
used by the diagnosis and recovery concerns.

The diagnosis concerns define the rules to diagnose causes
of failures; for this matter, they may refer to the base con-
cerns and/or the results of verification. The diagnosis also
results in new data indicating the results of the diagnosis.

The recovery concerns define a set of actions to recover
the base concerns from the failures, and for this matter they
may refer to the data provided by the other concerns. In
our example, the functionalities to log an error message and
to prevent the execution of a method are provided by recov-
ery concerns, which are executed if the verification concern
reports the specified sequence of invocations is not satisfied.
For the sake of brevity, we do not consider diagnosis con-
cerns for our example RE technique.

The constraint concerns define the inter-dependencies
within and/or among the other RE concerns. In our example
RE technique, the order in which the two recovery concerns
must be executed represents a constraint.

To be able to create a more adaptive system, it may be
necessary to consider an RE technique as a base concern
and to define higher-order RE techniques on the top of it.
Such hierarchal organizations are quite common in adaptive
control systems for example, where multi-levels of control
systems can be stacked on each other. For this reason, any
concern may be regarded as a base concern including for
example the verification, diagnosis, and recovery concerns.

3. IMPLEMENTING RE TECHNIQUES

Due to the difficulty of creating fault-free software, RE
techniques are more and more adopted in large-scale soft-
ware and this trend seems to continue in the future. This
causes the implementation of RE techniques also becomes
extremely complex. In this section, we first identify the
requirements that we claim must be fulfilled in the imple-
mentation of RE techniques, so that we can cope with the
complexity of the RE techniques. Afterwards, we evaluate
AO languages with respect to these requirements to identify
their suitability for implementing RE techniques.

3.1 Requirements

We claim that a language is suitable for implementing an
RE technique if it fulfills the following three requirements in
the implementations:

e Modularity of implementations: Individual RE
concerns must be represented as individual reusable
modules, preferably by having a one-to-one correspon-
dence between the elements of the language and the
RE concerns. Otherwise, the implementation of a con-
cern may be scattered across and tangled with the im-
plementation of other concerns. Scattering and tan-
gling are well-known problems that are discussed in
the aspect-oriented literature. They decrease the mod-
ularity of the concerns, decrease the reusability of the
concerns and increase the required effort to maintain
software.

For example for our illustrative RE technique, the em-
ployed language must enable us to represent aDocMng,
Storage and the operating system thread as one group
of correlated base concerns. Object-oriented languages
provide a first-class abstraction to represent objects;
whereas, the other kinds of concerns such as groups
of correlated objects cannot directly be represented in
these languages. As a result, we have to provide a
workaround representation, which scatters across other
concerns in the software.

Composability of implementations: The compo-
sition mechanism offered by the language must offer
a rich set of constructs for the following matters. a)
To integrate various modularized concerns with each
other. b) To express various kinds of composition con-
straints. ¢) To cope with different implementation lan-
guages of the concerns. d) To facilitate constructing
higher-level of concerns by systematically reusing the
existing ones, this facilitates considering RE concerns
as base concerns and define a higher order RE on top
of them.

To implement our example RE technique, the composi-
tion mechanism of the employed language must enable
us to compose the verification and recovery concerns
with DocMng and Storage that are implemented in
different languages. The language must also facilitate
composing two recovery concerns with each other so
that their order of execution can be constrained.

Abstractness of implementations: The language
must enable us to implement the concerns of interest
naturally at the right level of abstraction without in-
corporating unnecessary implementation context (e.g.
implementation language). This helps to increase the
portability and reuse of concerns.

For example, our illustrative software may evolve such
that the module Storage is replaced with another mod-
ule that provides the similar functionality, but is imple-
mented in the Java language. We expect that the em-
ployed language enables us to reuse the implemented
verification and recovery concerns, regardless of this
change in the implementation language of Storage.

3.2 Shortcomings of Current AO Languages

The RE concerns are by nature crosscutting. For example,
the verification concerns crosscut the base concerns to gather

1852

the necessary data from them and to verify their properties.
The recovery concerns crosscut the verification concerns to
get the result of the verification, and crosscut the base con-
cerns to enforce their properties.

AO languages are introduced in the literature [10, 3, 12,
7, 2] to modularize crosscutting concerns as aspects. These
languages facilitate the composition of aspects with the other
concerns, and usually provide various constructs to constrain
the compositions. It seems to us that the AO languages pro-
vide promising features to fulfill the modularity and com-
posability requirements in the implementation of RE tech-
niques. For example, a verification concern can be imple-
mented as an aspect that is composed with the base concerns
in software to check their properties; a recovery concern can
be implemented as another aspect that is composed with the
verification aspect and with the base concerns in software;
and so on.

Several AO languages [10, 3, 12, 2] exist in the literature,
which adopt the constructs of an existing programming lan-
guage such as the Java, C and .Net languages. If these
AO languages are employed to implement an RE technique,
the abstractness requirement will not be fulfilled, because
the implementation of concerns is specific to one program-
ming language. Moreover, the shortcoming in fulfilling the
abstractness requirement causes the modularity and com-
posability requirements to be neglected too. Consider the
following example.

We would like to verify the sequence of invocations shown
in Figure 1. Since aDocMng and Storage are respectively
implemented in Java and C languages, we must define two
aspects, say one in AspectJ [10] and one in AspectC [3], to
implement the verification concern. The former verifies the
invocation of save on aDocMng, and the latter verifies the in-
vocations of store, open, write and close on Storage. We also
have to implement a program to compose these two aspects
with each other, such that it is ensured that the sequence
of invocations on Storage is causally dependent to the invo-
cation of save on aDocMng. This solution however violates
the composability requirement, because there is no standard
linguistic mechanism to compose these two aspects that are
implemented in two languages. Implementing a composition
program for each different kind of composition is a costly and
error-prone task, and may lead to the solutions that are not
reusable.

To fulfill the abstractness requirement, one may consider
employing a language-independent AO language. Compose*
is an illustrative example of such languages. Although Com-
pose* fulfills the abstractness requirement, it falls short in
satisfying the other two requirements. The shortcomings are
mainly rooted in the Composition Filters Model (CFM) that
is underlying computation model of Compose*. In the fol-
lowing, we briefly explain the CFM and elaborate on short-
comings of the CFM and Compose*.

The CFM aims at improving the composability of object-
oriented software. In such software, objects send messages
between each other for example in the form of method calls.
In the CFM, these messages can be filtered. Each filter has
a type, which implements the functionality that should be
executed if the filter receives a message. Filters are grouped
in so-called filter modules. A superimposition selector
chooses a set of classes using a query language and applies
(superimposes) a specified filter module to them. As a result,
all messages sent to and received by all instances of those

selected classes are subjected to the filters within the filter
module.

The CFM can be applied to any language that supports
the notion of message passing between objects. In a non-
object-oriented language such as C, the invocations of func-
tions can be considered as messages that are passed between
source files. This characteristic of the CFM helped the de-
signers of the Compose* language to keep the language in-
dependent from any programming language.

Dedicated filter types can be provided to implement the
concerns that exist in various domains. Multiple instances
of a concern can be created via filters. For example for
the purpose of RE, one may define a dedicated filter type
that verifies messages against a specified sequence of mes-
sages, and reports the result of the verification. Dedicated
filter types can also be provided to implement diagnosis and
recovery concerns. This feature helps to preserve a one-to-
one correspondence between the concerns of interest and the
first-class abstractions of the Compose* language, so that
the modularity requirement is fulfilled.

The composition offered by the CFM is limited to apply a
filter module on an individual application object, and to pro-
cess the messages that are sent or received by the application
object. This degrades the degree to which the composability
and consequently the modularity requirements are fulfilled,
in the following two ways.

First, there are various different kinds of concerns in soft-
ware, whose behavior must be verified and enforced; groups
of correlated objects, processes, subsystems are examples.
To employ Compose* for implementing an RE technique,
we have to provide a workaround to represent these con-
cerns as an application object. As it is explained earlier,
this violates the modularity requirement in which a one-to-
one correspondence between the concerns of interest and the
first-class abstractions of the language is expected.

Second, if individual RE concerns are implemented as in-
dividual filters, we must be able to compose such filters with
each other such that the overall RE technique is achieved.
In the CFM, filters can be composed in one filter module to
process messages in a sequence; however, we require more
complex forms of composition for implementing an RE tech-
nique. For example, a recovery filter must be informed of the
results of the verification performed by a verification filter
and accordingly must take an action. Since such a composi-
tion of filters is not possible in the CFM, we have to sacrifice
the modularity of the concerns and define them as one filter.
Such a filter must also implement the desired composition
constraints among concerns, if any.

4. EVENT COMPOSITION MODEL

As it is explained in the previous section, the CFM pro-
vides promising features for fulfilling the modularity and
abstractness requirements. However, its composition mech-
anism must significantly be extended to satisfy the compos-
ability requirement too. This paper introduces a computa-
tion model termed as Event Composition Model, as a
successor of the CFM to overcome its shortcomings.

The interactions among the concerns of RE techniques

have by nature a transient characteristic, which means changes

in the states of a concern drives the other concerns. Defini-
tion of a state change can be different. For example, it can
refer to an invocation of a method on an object, calling a
function, begin or end of a thread of execution, a success or

1853

failure of a verification process, triggering a diagnosis pro-
cess, committing a recovery action, etc. For example, the
verification concerns observe the changes that occur in the
states of base concerns, and verify them against the speci-
fied properties of the base concerns. If the verification of a
property fails, it may trigger a diagnosis and/or a recovery
concern.

In Event Composition Model, all such state changes are
termed as event. Although the notion of event seems to be a
fundamental concept for RE techniques, it is a too low-level
representation with respect to the concerns of interest. For
example, it may be necessary to represent all the events that
are related to an object, a function, a thread of execution,
a process, or a subsystem as a linguistic abstraction. It is
therefore logical to consider a group of related events as a
module, which we term as event module.

In the literature [6], a module is defined as a software unit
with input and output interfaces. The former defines the ser-
vices that the module requires from its context; the latter
specifies the services that the module provides for its con-
text. A module promotes information hiding by separating
its interface from its implementations.

We think that like the modules in programming languages,
an event module must be uniquely identifiable for example
by its name, must provide input and output interfaces and
must separately specify its implementations.

The input interface of an event module is defined by the
events that it groups. The input interface is invoked implic-
itly, which means upon the occurrence of a grouped event,
the corresponding implementations of the event module are
invoked without explicitly writing a code for it.

The implementations of event modules are termed as re-
actors. Reactors are grouped in a module termed as re-
actor chain. Such reactors are composed with each other
such that they process the events in a sequence starting from
the first specified reactor within the reactor chain until the
last reactor. One or more reactor chains can be bound to
an event module as its implementations.

Each reactor has a type implementing the operation that
should be executed if the reactor receives an event. Each
reactor type may publish new events during its operation.
These are termed as reactor events. The output interface
of an event module is a union of the reactor events that are
published by the reactors bound to the event module.

The selection of events, and the grouping of the events
in an event module is carried out by an event composi-
tion language. The language is capable of selecting any
event that is declared in the system and is in the scope.
The reactor events can also be selected, and can be spec-
ified as the input interface of other event modules. This
enables us to create more abstract event modules by sys-
tematically composing the existing ones. The compositions
may be constrained; the constrains is defined using an event
constraint language.

If Event Composition Model is employed to implement an
RE technique, a concern of interest can be represented as
an event module. In this case, the set of events that the
concern requires from other concerns are specified as the in-
put interface of an event module. The set of events that the
concern provides to the other concerns are specified as the
output interface of the event module. The implementation
of the concern is provided via reactors.

Reactors, reactor types and reactor chains resemble fil-
ters, filter types and filter modules in the CFM, respec-
tively. In contrary to Event Composition Model, the CFM
offers a limited sort of event processing. In the CFM, only
two kinds of events are supported; these are the events
corresponding to the incoming and outgoing messages that
are exchanged among application objects. However, Event
Composition Model is open-ended with respect to the kinds
of supported events. The composition mechanism of the
CFM is limited to superimpose individual instances of filters
(modules) on individual objects. However, the event com-
position language in Event Composition Model facilitates
grouping events that are published by single and/or mul-
tiple correlated publishers. In Event Composition Model,
reactor types can publish events; this cannot be realized by
filter types in the CFM. Finally, superimpositions in the
CFM are not named; therefore, it is not possible to refer to
them. In Event Composition Model, however, event mod-
ules are named, and the events in their output interface can
be selected by the event composition language.

S. EVENTREACTOR: A LANGUAGE FOR
EVENT COMPOSITION MODEL

There are several languages that support the notion of
events, but as we discuss in details in [11], these languages
fall short to support Event Composition Model. Therefore,
we introduce the EventReactor language, which is a succes-
sor of Compose*, as the implementation of Event Compo-
sition Model. The language supports predefined kinds of
events and provides an API to programmers to declare new
kinds of events. EventReactor provides dedicated linguistic
constructs to define event modules, reactor types, reactors
and reactor chains. It makes use of the Prolog language
and the set operators [5] as its event composition language.
Dedicated constructs are provided by the language to define
composition constraints.

Adopted from Compose*, the EventReactor language does
not make any assumption about the implementation lan-
guage of software, and its compiler can support software
implemented in the Java, C and .Net languages. The syn-
tax of the language, its compiler and execution semantics
are explained in details in [11]. Due to the space limit,
this paper only explains the features of the EventReactor
language by providing an implementation of our illustrative
RE technique.

For implementing the illustrative RE technique, the fol-
lowing tasks must be carried out: a) the events of interest
must be defined in the language, and must be published to
the runtime environment of the EventReactor language, b)
dedicated reactor types must be provided to implement the
functionality of the RE concerns, and c¢) event modules and
reactor chains must be defined to implement different con-
cerns that exist in the RE technique. In the following, these
tasks are explained in detail.

5.1 Defining and Publishing the Events

In EventReactor, each kind of event is represented via a
set of attributes that are categorized in two groups: static
context and dynamic context. The attributes whose val-
ues are known when a new kind of event is defined, are in
the category of static context. The attributes whose values
are known when an event is published, are in the category

1854

of dynamic context. Each kind of event must at least de-
fine two attributes named wid and PrologFacts as its static
context. The former is internally used by the EventReactor
language to uniquely identify the event kind in the language,
and the latter is a set of Prolog facts that are used to define
an event kind in the language and later on to select events
from the language.

The EventReactor language supports predefined kinds of
events, which correspond to the following state changes: a)
before invocation of methods, b) after invocation of meth-
ods, c) after invocation and immediately before execution
of methods, and d) after execution of methods, which have
terminated normally. These are considered as predefined,
because the compiler of the EventReactor language identi-
fies them in program, and defines them in the language.

Listing 1 shows an example code that compiler uses to de-
clare a predefined event kind in the EventReactor language.
Line 1 defines the variable ekind of the type EREvent that
is a class provided by the EventReactor language. In line 2,
the compiler specifies the value ’el1’ as the unique identifier
of the event kind in the language. Lines 3 to 9 define the
attribute PrologFacts.

EREvent ekind = new EREvent();
ekind.staticcontext.add("uid”, " 'el’ ");
ekind.staticcontext.add("PrologFacts”,
"isBeforeExecution(’el’,’public void save(java.lang.Object)’).

'DocMng’).
isDefinedIn ("public void save(java.lang.Object)’,

'public class DocMng extends java.lang.Object’).”);
ekind.dynamiccontext.add("threadid”, ");
ekind.dynamiccontext.add("method”, ™);
EventReactor.declare(ekind);

© 0 N O oA W N e

-
=

Listing 1: Declaring a predefined event

The expression isBeforeExecution in line 4 specifies that
the event kind represent the events that correspond to the
state change after the invocation of a method and imme-
diately before the execution of the method. The first ar-
gument is the unique identifier of the event kind, and the
second argument is the signature of the method of interest.
The character * .’ in Prolog represents the termination of a
fact.

Compose* provides various Prolog expressions, which are
also adopted by EventReactor, to identify the methods and
the classes of interest in program. For the sake of brevity,
we show a subset of these Prolog facts in Listing 1. The ex-
pression isMethodWithName in line 5 specifies the method of
interest. The first argument is the signature of the method,
and the second argument is the name of the method. The ex-
pression isClassWithName in line 6 specifies the class DocMng.
The first argument is the signature of the class, and the sec-
ond argument is the name of the class. The expression is-
DefinedIn in line 8 specifies that the method save is defined
in the class DocMng.

When defining a new kind of event, we must also define the
list of attributes that represent the dynamic context of the
event kind. The compiler considers two attributes threadid
and method as the dynamic context of the predefined event
kinds. The attribute threadid will keep the unique identifier
of the thread of execution in which a predefined event occurs.
The attribute method will keep the reflective information of
the method that a predefined event corresponds to. These

isMethodWithName ('public void save(java.lang.Object)’, 'save’).
isClassWithName ('public class DocMng extends java.lang.Object’,

attributes are defined in lines 10 and 11. Line 12 defines
the event kind in the language. The other predefined event
kinds are declared in the language in a similar way.

The EventReactor language also provides an API to pro-
grammers to define new kinds of events. For our example,
we make use of the code excerpt in Listing 2, to define an
event kind for the events representing the termination of a
thread of execution. Line 1 defines the variable ekind, and
line 2 specifies ’e2’ as the unique identifier of the event kind.
The compiler of the EventReactor language reports an er-
ror if the assigned identifier is not unique in the language.
Lines 3 and 4 define the Prolog fact isEventWithName (’e2’,
>terminated’) ., which specifies ’terminated’ as the name
of the event kind. Line 5 defines the attribute id that will
keep the unique identifier of the thread whose execution is
terminated. Line 6 defines the event kind in the language.

1 EREvent ekind = new EREvent();

2 ekind.staticcontext.add("uid”, " 'e2" ");

3 ekind.staticcontext.add("PrologFacts”,

4 "isEventWithName('e2’, "terminated’).”);
5 ekind.dynamiccontext.add("id", ™);

6 EventReactor.declare(ekind);

Listing 2: Declaring a user-defined event

For the predefined events, the compiler modifies the pro-
gram code to assign the expected values to the attributes
threadid and method, and to publish the events to the run-
time environment of the EventReactor language. For user-
defined events, this must be carried out by the programmers.
Listing 3 shows an excerpt of the code that publishes the
event defined in Listing 2. Line 2 of Listing 3 specifies ’e2’
as the unique identifier of the event. This enables EventRe-
actor to match a published event with a declared event in
the language. Line 3 specifies the value of the attribute id,
and line 4 publishes the event. This code must be inserted
in places in the program where the termination of a thread
of execution is detected.

RTEvent event = new RTEvent();
event.staticcontext.add("uid”, " 'e2" ");
event.dynamiccontext.add("id", getTerminated ThreadlD());
EventReactor.publish(event);

T SR

Listing 3: Publishing a user-defined event

It is note-mentioning that the runtime environment of
EventReactor is implemented in Java, and the API to pub-
lish events is available in Java, .Net and C languages. This
API makes use of Java-JNI technique [9] to announce the
events to the runtime environment.

5.2 Defining the Reactor Types

To implement our illustrative RE technique in the Even-
tReactor language, we provide four reactor types React, Reg-
ularFExpression, Log and ForceReturn. Reactor types are de-
fined in the EventReactor language in a similar way as filter
types are defined in Compose*. The implementation details
can be found in [7].

The only function of the reactor type React is to publish
a reactor event when it receives an event to process. The
name of the reactor event may be provided as an argument
to the reactor type; otherwise, it has the same name as the
event being processed. The reactor type RegularEzpression
receives a regular expression as its parameter, and translates

1855

it to a deterministic finite state automaton according to the
algorithm discussed in [8]. It makes use of the automaton
to check an event against the regular expression formula,
and publishes the reactor event wviolated if the event does
not satisfy the formula. The reactor type Log reports a
message on the screen when it receives an event to process.
The message is passed to the reactor type as an argument.
The reactor type ForceReturn prevents the execution of a
method by returning the flow of execution to the caller of
the method. The information about the method is provided
as the dynamic context of a predefined event.

5.3 Implementing the RE Technique

Individual concerns of our illustrative RE technique can
be implemented as individual event modules, which are com-
posed with each other. We start from the base concerns
DocMng, Storage and the thread of execution in which the
specified events occurs. Listing 4 represents these correlated
concerns as one event module. Starting from line 1, Even-
tReactor provides the construct eventpackage as a means to
package a set of event modules. In this example, the event
package is named base_concern. The events of interest are
specified in the part selectors of the event package. Line
3 selects the events E whose name matches the string ’ter-
minated’, and names them as e_terminated in the event
package. This Prolog expression is defined in the language
via Listing 2.

In line 4 the Prolog expression isBeforeExecution (E,
M) selects the predefined events E, which correspond to the
state change after the invocation and immediately before the
execution of the methods M. The Prolog expressions in lines
5 to 7 select the methods M whose name matches the string
’save’, and are defined in the classes whose name matches
the string ’DocMng’. The character ’,’ between the Prolog
expressions is a conjunction operator. The results of these
Prolog queries are named as e_save in the event package.
Similarly, lines 8 to 11 select the other predefined events that
occur on Storage. It is worth mentioning that EventReac-
tor supports wildcard characters in the Prolog expression to
enable us to select various numbers and/or kinds of events.

1| eventpackage base_concern{

> selectors

3 e_terminated = {E | isEventWithName(E, 'terminated’)};

4 esave = {E | isBeforeExecution(E, M),

5 isMethodWithName(M, save’),

6 isClassWithName(C,'DocMng’),

7 isDefinedIn(M, C)};

s e.store = ...

9 eopen
e_write
e_close = ...

eventmodules

<— perthread {group};

Listing 4: An event module for base concerns

Event modules are defined in the part eventmodules of an
event package. EventReactor makes use of the set operators
to group the selected events as the input interface of the
event modules, and provides the operator <- to bind reactor
chains to event modules. EventReactor supports various in-
stantiation strategies for event modules, which are explained
throughout the paper.

base := {e_save, e_store, e_open, e_write, e _close, e_termination}

Lines 13 and 14 of Listing 4 define the event module base,
which specifies perthread as its instantiation strategy and
the reactor chain group as its implementation. We assume
that a request to save a document must be handled in one
thread of execution. Multiple requests may be handled by
multiple threads. The keyword perthread indicates that
individual instances of the event module must be created
for each individual thread of execution in which the selected
predefined events occur. The details of filtering events based
on the instantiation strategy of event modules can be found
in [11].

Listing 5 shows the reactor chain group, which defines the
reactor forward of type React. At runtime when any of the
specified events in Listing 4 occurs, the input interface of the
event module base is activated, and the event is provided to
the reactor forward. Consequently, a reactor event which
has the same name as the event is published.

1/ reactorchain group{
2 reactors

3 forward: React;
4

}

Listing 5: A reactor chain for base concerns

As the next step, we would like to implement a verification
concern, which checks whether a request to save a document
is handled correctly. Listing 6 defines the corresponding
event module. Lines 3 to 10 select all the events that form
the output interface of the event module base. These are in
fact the reactor events that are published by the reactor for-
ward. Lines 12 to 15 define the event module verification.
Here, all selected events are specified as the input interface,
perinstance is specified as the instantiation strategy, and
verify is specified as the implementation of the event mod-
ule. The expected sequence of events to handle the user’s
request is specified as a regular expression formula and is
passed as an argument to the reactor chain verify. The
regular expression indicates that the event eb_save must be
followed by eb_store, eb_open, one or more times eb_write
and finally eb_close, and this sequence may occur zero or
more times. Since the instantiation strategy perinstance is
chosen, separate instances of the event module will be cre-
ated for separate instances of the event module base that
publish the selected reactor events.

1/ eventpackage verification_concern{

> selectors

3 eb_save = {E | isEventWithName(E, 'e_save’),

4 isEventModuleWithName(EM, 'base_concern.base’),
5 isPublishedBy(E, EM)};

6 eb_store = ...

7 eb_open = ...

8 eb_write = ...

9 eb_close = ...

eb_terminated = ...
eventmodules
verification :

10

perinstance
{verify('(eb_save eb_store eb_open eb_write+ eb_close)x’)};

Listing 6: An event module for verification concern

Listing 7 shows the reactor chain verify, which receives a
parameter named ?regformula, and defines the reactor reg-

{eb_save,eb_store,eb_open,eb_write,eb_close,eb_terminated} <—

1856

exp from type RegularExpression. In the body of the reac-
tor, the reactor parameter formula is assigned with 7reg-
formula. If any of the expected event does not occur in the
specified order in the regular expression, the reactor regexp
publishes the event violated.

Listing 8 defines the event modules log and prevention,
which implement the recovery concerns of our example. The
event violated, which is published by the event module
verification, is selected and is specified as the input inter-
face of these event modules. The reactor chains log_recovery
and prevent_recovery are respectively bound to the event
modules log and prevention. The event modules are spec-
ified to be instantiated as singleton, because the recov-
ery actions are stateless. In the part constraints of the
event package, the composition constraints are specified for
the event modules. The keyword precede specifies that the
event module log must process the event e_verification
before the event module prevention. Listing 9 defines the
reactor chains log_recovery and prevent_recovery.

1/ reactorchain verify(?regformula){

2 reactors

3 regexp: RegularExpression { reactor.formula = ?regformula; };
4

Listing 7: A reactor chain for verification concern

1/ eventpackage recovery_concern{

2 selectors

3 e_verification= {E | isEventWithName(E, 'violated'),

4 isEventModuleWithName(EM, 'x.verification’),
5 isPublishedBy(E, EM)};

6 eventmodules

7 log := {e_verification} <— singleton {log _recovery};

8

9

prevention := {e_verification} <— singleton {prevent_recovery};

constraints
0 precede(log, prevention);

-

Listing 8: Event modules for recovery concern

reactorchain log_recovery{
reactors
logger: Log {reactor.info = 'An error has occurred!’; }

reactors

1

2

3

4

5 reactorchain prevent_recovery{
6

7 preventer: ForceReturn;

8

}

Listing 9: Reactor chains for recovery concern

Assume that the following scenario occurs at runtime. The
method save is invoked on the object aDocMng in the thread
of execution t. The execution of the method save is sus-
pended, and the flow of execution is transfered to the run-
time environment of EventReactor. The runtime environ-
ment identifies that the event e_save specified in lines 3 to
5 of Listing 4 has occurred. Since there is no instance of
the event module base for the thread t, the runtime envi-
ronment creates one, and forwards the event e_save to the
reactor chain group and consequently to the reactor for-
ward. The reactor publishes the reactor event e_save, which
activates the input interface of the event module verifica-
tion as it is specified in Listing 6. The runtime environment
creates an instance of this event module, and forwards the

event to the reactor regexp. The event is checked against
the specified regular expression, which does not violate it.

Assume that in the same thread of execution, the function
open is invoked on Storage. This causes the event e_open
specified in Listing 4 to be detected and be processed in a
similar way using the same instances of the event modules
base and verification. Since, it violates the specified reg-
ular expression, the reactor event violated is published by
the reactor regexp. This event activates the input interface
of the event modules log and prevention as it is specified
in Listing 8. The runtime environment creates a single in-
stance of these event modules, and provides the event to the
reactor logger that prints the specified error message on
the screen. Afterwards, the event is provided to the reactor
preventer.

In the EventReactor language, each reactor event keeps
a reference to the original event; therefore, there will be a
chain of events that are causally published after each other.
Each predefined event also keeps a reference to its corre-
sponding method/function in the program. In our example,
the chain of events contains two events e_open and vio-
lated, which e_open keeps a reference to the function open
in the program. The reactor preventer iterates through this
chain, obtains the necessary reflective information about the
function open, and informs the runtime environment that
the execution of this function must be prevented. When the
flow of execution returns to the function open, the runtime
environment prevents its execution by returning the flow of
execution to the caller of the function.

Assume that the thread of execution t terminates before
all the specified events occur. This causes the event termi-
nated to be published, which violates the specified regular
expression. The recovery actions are executed, and because
the event terminated is not a predefined event, preventer
ignores it.

6. EVALUATION

As the listings in the previous section show, the abstrac-
tions offered by Event Composition Model, which are im-
plemented by the EventReactor language, enable us to im-
plement various different concerns that exist in an RE tech-
nique. The abstractness requirement is fulfilled in the im-
plementations, because the EventReactor language does not
make any assumption about the implementation language of
program. The modularity requirement is fulfilled by means
of event modules. The separation of reactor chains from the
event modules increases the modularity of the implementa-
tions further.

The composability requirement is fulfilled too, because re-
actors can publish events, and these events can be selected
as the input interface of other event modules. As a result,
a hierarchy of event modules is formed in which the event
modules at higher levels of the hierarchy abstract from the
events modules locating at their lower levels. This increases
the modularity, composability and the abstractness of imple-
mentations further. For example, an event module residing
at higher levels of the hierarchy can remain unchanged, if its
lower level event modules change, providing that the output
interface of the lower level event modules remains the same.

As for Compose™®, we believe that the other AO languages
can also be extended to support this computation model,
and consequently offer better modularization, composition
and abstraction mechanisms.

1857

7. CONCLUSION AND FUTURE WORK

This paper discussed that current AO languages usually
alm at implementing crosscutting concerns such that the
modularity, composability and abstractness requirements are
fulfilled in the implementations. However, these languages
fall short in satisfying these requirements; hence new lan-
guage mechanism are required. This paper introduced a new
computation model named as Event Composition Model and
its implementation language EventReactor. By means of
an example, the paper illustrated the suitability of the new
computation model and language in fulfilling the identified
requirements.

As future work, we consider utilizing the EventReactor
language in various different domains, whose concerns have
the same event-driven characteristics as the runtime enforce-
ment concerns. We also consider extending EventReactor
with various compile-time checks, for example, to ensure
that multiple recovery concerns do not conflict with each
other.

8.
1]

REFERENCES

M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting Object Interactions using
Composition Filters. In ECOOP, volume 791 of
LNCS, pages 152-184. Springer-Verlag, 1993.

I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of CaesarJ. In TAOSD, LNCS, pages
135-173. 2006.

AspectC.
http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.
H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund,
I. Lee, G. J. Pace, G. Rosu, O. Sokolsky, and

N. Tillmann, editors. Proceedings of First
International Conference on Runtime Verification,
volume 6418 of LNCS. Springer-Verlag, 2010.

M. Ben-Ari. Mathematical Logic for Computer
Science. Springer, 2003.

P. Clements, F. Bachmann, L. Bass, D. Garlan,

J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Addison-Wesley
Professional, 2002.

Compose*. http://composestar.sourceforge.net/.

J. E. Hopcroft, R. Motwani, and J. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 2000.

Java-JNI.

2]

3]

[4]

[5]

[6]

[9]

http://download.oracle.com/javase/1.5.0/docs/guide/jni/.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP, pages 327-353, London, UK,
UK, 2001. Springer-Verlag.

S. Malakuti. FEvent Composition Model: Achieving
Naturalness in Runtime Enforcement. PhD thesis,
University of Twente, 2011.

H. Rajan and K. Sullivan. Eos: Instance-Level
Aspects for Integrated System Design. In ESEC/FSE,
pages 297-306, Helsinki, Finland, 2003. ACM.

(1]

(12]

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

