Creating Mobile ad hoc Workflows with Twitter -

Martin Treiber, Daniel Schall,
Schahram Dustdar
Distributed Systems Group, TU Vienna
Argentinierstrasse 8, A-1040 Wien
{lastname}@infosys.tuwien.ac.at

ABSTRACT

The wide-spread adoption of powerful mobile devices allows
for the design of workflows while on the move. In this pa-
per, we leverage established SOA principles towards mobility
in design and execution. For this purpose, we introduce a
lightweight Service workflow model that is tailored for the
needs of ad-hoc creation and mobility. We show how sensor
data from mobile devices can be included during the design
of Service workflows and we address crowd sourcing aspects
for the deployment and execution of Service workflows. We
present a proof of concept prototype application that sup-
ports the creation of Service workflows on mobile devices.

Categories and Subject Descriptors

H.4 [Information Systems Applications]|: Miscellaneous;
D.2.11 [Software Architectures]: Service-oriented archi-
tecture (SOA)

General Terms
Mobility, Workflows, SOA

Keywords
Mobility, Crowd Sourcing, Workflows

1. INTRODUCTION

Service workflows are one of the key concepts of Service
Oriented Computing (SOA) [1]. As of today, there is a large
number of languages and tools available that supports the
creation of workflows for the reuse of Services. More re-
cently, Service mashups build of Restful Services [5, 17] were
proposed as alternative [10] to the SOA stack.

*The research leading to these results has received fund-
ing from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 26-30, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1998

Christian Scherling
ikangai solutions
Treustrasse 59/5/20
A-1220 Wien
chs@ikangai.com

With the wide-spread adoption of mobile devices that
provide sufficient connectivity and computation capacities,
toolsets emerged that bring SOA concepts mobile devices.
However, little attention was paid to the design and creation
of workflows on mobile devices. In this paper, we describe
an approach that allows users to design and consume Ser-
vice workflows directly on their mobile devices. In doing
so, we create ad hoc and personal Service workflows which
are designed and executed spontaneously in the social con-
text of the workflow designer. In particular, we build upon
the Human Provided Service approach [11] that allows us to
abstract from concrete workers and to integrate them into
Service workflows - building a mixed system of human pro-
vided and software Services [14].

The rest of the paper is organized as follows. We introduce
the main challenges for the creation of mobile ad hoc Service
workflows in Section 2. In the following sections we discuss
our approach in and present our prototype application in
Section 4. We conclude the paper with related work and an
outlook for future work.

2. MOBILE WORKFLOW CHALLENGES

Lightweight Workflow Model. Workflow languages
like BPEL provide a large set on functions for the execution
of business processes on enterprise infrastructures. In mo-
bile environments, we operate on a different scale in terms
of infrastructure. Thus we need to integrate mobile services
with a lightweight coordination and communication infras-
tructure that is tailored to mobile devices.

Ad hoc creation of a workflow in a mobile environ-
ment. Workflow editors require at least a laptop to work,
a limiting factor for mobility. In mobile environments, cre-
ating ad hoc workflows that includes context information,
walking around with a laptop is not practical. In addition,
laptops might do not provide the necessary sensor array to
capture context information (GPS data, camera). Conse-
quently, we need a tool that can be used on mobile phones
to create the workflow in situ and be able to integrate sensor
data (GPS, pictures) during the design of the workflow.

Working the Crowd. In contrast to traditional work-
flow systems which are used in static settings with a small
number of participants, we have a considerably larger num-
ber of participants. For example, we can use local volunteers
that are connected over a social network in a mobile Service
workflow. This task requires the ability to address a crowd
consisting of volunteers and local workers in order to per-
form a specific task.

3. LIGHTWEIGHT WORKFLOW MODEL

Our prototype supports Tweetflows [15] which is a sim-
ple language for the creation of workflows. In this section,
we investigate how our proposed Twetetflows programming
model address these issues.

Flat graph model. Our proposed process model is a
flat graph model with no nesting (with the exception of it-
eration loop constructs) and no dedicated exception han-
dling in order to keep the development as simple as possible
and applicable on mobile devices. Our model contains two
structured activities that can be compared with features of
other workflow languages such as BPEL. Tweetflows provide
structured iteration loops (so called closed sequences) and
the ability to include choices (<pick> activities).

Workflow scripting. We follow an scripting approach
in which we do not use typing constructs: variables can be
directly used without having to declare (their type) first.
The output of activities can be accessed with implicit ac-
tivity variables and we reduced the level of indirection by
omitting message typing and Service binding. We directly
include URLs to input data and we do not require the spec-
ification of external partner links.

Workflow Language. As with most workflow languages,
Tweetflows contains two main constructs: activities and
links. Activities are units of work and are connected with
links that define dependencies between activities (see Table
1). In addition to links between actions, we also support
unstructured activities, i.e., a set activities that can be ex-
ecuted in any order. This is also reflected in the Tweetflow
editor, which provides a canvas to position arbitrary activi-
ties.

Symbol Description
SR Service Request
SF Service Response
RT Retweet Service Request
LG Log Service Activtiy

Table 1: Tweetflow Language Primitives.

Tweetflow activities can have a transitionCondition which
triggers the execution of activities in Tweetflows. We model
these similar to Unix pipes and have similar execution se-
mantics: after an activity is completed, the result serves as
input for the next activity and triggers its execution (see
Listing 1).

Listing 1: Tweetflow Syntax Structure
command = metadata {address}

”

operation”.” object [data]{hashtags}{condition}

metadata — ”SR” | ” SP ” | ” SF ” | ”LG”

address = "@”chars

data = url | url—ecodeddata
hashtags = "#”chars
condition=key”’="value
key=chars

value=chars | url

4. COMPOSING MOBILE WORKFLOWS

Mobility constraints require to have a lightweight editor
that can be used on a mobile device and a graphical user
interface to support the quick creation of a Service work-
flow. Our prototype implementation is build on the Android

platform and is able to generate complex Tweetflows with a
simple to use interface (see Figure 1).

Za Ml @ 3:33em

didCreate.TwitterList

@security
follow.TwitterList

@delivery
follow.TwitterList

make.Pictures
Cond.: location=festival

upload.Pictures

Figure 1: Tweetflow Editor.

We followed the design of traditional workflow editors,
which represents activities/actions and their connections as
graph. The vertices (dots) represent a Tweetflow command
(e.g., a Service Request) and the edges are used to create
complex constructs like closed sequences. For the integra-
tion of available context information during the design of
the Service workflow. we use sensor data that is available
on a mobile phone, such as geo location, time, language, gy-
roscope data or network connectivity (WLAN, 3G, GPRS,
EDGE). We decided to add the ability to capture this data
directly into the editor: the user has a set of context but-
tons on the screen that allow for the capturing of context
informations.

5. WORKING THE CROWD

By adopting a popular social network platform like Twit-
ter, we tab into the social network of the creator of a mo-
bile, ad hoc Service workflow. Twitter followers receive the
Tweetflow specification and can be directly addressed in the

Tweetflow using Twitter’s build-in addressing operators. By
exploiting the follower structure we are able to distribute
the responsibility for the execution of a Tweetflow among
the participants of a Tweetflow, i.e., we crowdsource the
execution of the Tweetflow.

Tweetflows offer two types of adaption mechanisms that
are salient features of collaboratively executing a Service
workflow. Firstly, Service instances can be actively changed
during the execution of the workflow. Each Service provider
can modify the addressee of the tweet by delegating a Service
request to another Service provider, other than originally
specified. Secondly, during the execution of a Tweetflow,
tweets can be added that perform additional actions by the
Tweetflow followers.

The aspect of social trust is out of scope of this paper, we
refer the interested reader to the work of Skopik et. al [14]
for a detailed discussion on this matter.

6. RELATED WORK

TurKit [4] is a crowd computing framework based on MTurk
and is closely related to our work. [12] discusses a hybrid
human-computer document translation system, but does not
focus on the realization as a service-based system. Juszczyk
et. al. [3] introduce a middleware for service-oriented com-
munication which runs on mobile devices. Architectures for
Mobile Web Services [7] aim at providing alternative repre-
sentations other than XMIL-based SOAP and fast communi-
cation transport options for mobile Web Services [8, 2]. The
approach presented in [9] uses aspect oriented programming
to facilitate the access to Services from mobile devices. [16]
describes an infrastructure which is based on the Jini Surro-
gate Architecture Specification. A mobile SOA-based archi-
tecture based on J2ME is discussed in [6] which minimizes
the traffic between mobile devices. Singh et. al[13] investi-
gate the use of short messages for communication purposes
between mobile devices in asynchronous Service invocation.

7. FUTURE WORK

In future work, we will study the social interface to the
crowd in greater detail and introduce a social programming
layer for mobile apps that integrates Tweetflows directly into
mobile applications. For this purpose we will extend the
Tweetflow language with additional constructs that facili-
tate this kind of integration. We are going to extend our
prototype with additional features and conduct user studies
on the usability.

8. ACKNOWLEDGEMENTS

We thank our students Matthias Neumayr and Martin
Perebner for their work on the prototype implementation.

9. REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services - Concepts, Architectures and
Applications. Springer, October 2003.

[2] F. Jammes, A. Mensch, and H. Smit. Service-oriented
device communications using the devices profile for
web services. In MPAC ’05: Proceedings of the 3rd
international workshop on Middleware for pervasive
and ad-hoc computing, pages 1-8, New York, NY,
USA, 2005. ACM.

2000

[3] L. Juszczyk and S. Dustdar. A middleware for
service-oriented communication in mobile disaster
response environments. In MPAC ’08, pages 3742,
New York, NY, USA, 2008. ACM.

[4] G. Little, L. B. Chilton, M. Goldman, and R. C.
Miller. Turkit: tools for iterative tasks on mechanical
turk. In HCOMP 09, pages 29-30. ACM, 2009.

[5] E. M. Maximilien, A. Ranabahu, and S. Tai. Swashup:
situational web applications mashups. In OOPSLA
07: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems
and applications companion, pages 797-798, New
York, NY, USA, 2007. ACM.

[6] Y. Natchetoi, V. Kaufman, and A. Shapiro.
Service-oriented architecture for mobile applications.
In SAM °08: Proceedings of the 1st international
workshop on Software architectures and mobility,
pages 27-32, New York, NY, USA, 2008. ACM.

[7] S. Oh and G. C. Fox. Hhfr: A new architecture for
mobile web services: Principles and implementations.
Technical report, 2005.

[8] S. Oh and G. C. Fox. Optimizing web service
messaging performance in mobile computing. Future
Gener. Comput. Syst., 23(4):623-632, 2007.

[9] G. Ortiz and A. G. D. Prado. Improving device-aware
web services and their mobile clients through an
aspect-oriented, model-driven approach. Inf. Softw.
Technol., 52(10):1080-1093, 2010.

[10] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. "big” web services: making
the right architectural decision. In Proceeding of the
17th international conference on World Wide Web,
WWW 08, pages 805814, New York, NY, USA,
2008. ACM.

[11] D. Schall, H.-L. Truong, and S. Dustdar. Unifying
human and software services in web-scale
collaborations. IEEE Internet Computing,
12(3):62-68, 2008.

[12] D. Shahaf and E. Horvitz. Generalized task markets
for human and machine computation. In AAAI, 2010.

[13] R. Singh, S. Mishra, and D. S. Kushwaha. An efficient
asynchronous mobile web service framework.
SIGSOFT Softw. Eng. Notes, 34(6):1-7, 2009.

[14] F. Skopik, D. Schall, and S. Dustdar. The cycle of
trust in mixed service-oriented systems. In SEAA,
2009.

[15] M. Treiber, D. Schall, S. Dustdar, and C. Scherling.
Tweetflows: flexible workflows with twitter. In
Proceeding of the 3rd international workshop on
Principles of engineering service-oriented systems,
PESOS 11, pages 1-7, New York, NY, USA, 2011.
ACM.

[16] A. van Halteren and P. Pawar. Mobile service
platform: A middleware for nomadic mobile service
provisioning. In Wireless and Mobile Computing,
Networking and Communications, 2006.
(WiMob’2006). IEEFE International Conference on,
pages 292 —299, 19-21 2006.

[17] M. Vasko and S. Dustdar. Introducing Collaborative
Service Mashup Design. In Lightweight Integration on
the Web (ComposableWeb’09), pages 51-62. CEUR -
Workshop Proceedings, June 2009.

