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ABSTRACT
In recent years there has been significant use of regular
cross-polytopes (regular octahedrons or hyper-diamonds) as
constructs to simplify problem solving in high-dimensional
database queries, collision detection algorithms and graphic
rendering techniques. Many of the algorithms for these ap-
plications use minimum volume bounding boxes as approx-
imations of the polytopes to minimize computational com-
plexity. The standard method [1] for finding these boxes
in three dimensions uses the constraint of having two edges
of a polyhedron coincident with two adjacent faces of the
minimum bounding box. In this paper, we show that for a
uniform cross-polytope in three dimensional space, a mini-
mum volume bounding box would have a face flush with the
convex hull of the polytope for all possible orientations of
the polyhedron defined. We also show that the projections
of the minimum bounding box of an n-dimensional regular
cross-polytope are locally optimal with respect to the pro-
jections of the enclosed cross-polytope. We use this result
to provide a necessary condition for the minimum bounding
boxes of such polytopes. Finally, we show that if the two
dimensional planar projections of a three dimensional uni-
form cross-polytope are simultaneously locally optimal then
the polytope itself is optimally oriented.

1. INTRODUCTION
Computing an axis-aligned bounding box for a given ob-

ject is important in many applications. An axis-aligned
bounding box is a box tightly fitting an object with each
side of the box parallel to the axis of the coordinate system.
This box can then be used as an approximation of the ob-
ject for a variety of applications. For example, a range query
using distance based on L1 norm (Manhattan Distance) in
2-D space is a diamond. Efficient implementation of this
range query by an axis aligned bounding box is presented in
[2]. In three dimensional space a range query in L1-norm
is a regular octahedron and computing optimal axis aligned
bounding box for this object is non-trivial. O’Rourke [1]
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has provided a complex method for computing an optimal
axis aligned bounding box in three dimensions for a given
set of points based on the necessity of having two edges of
the enclosed object flush with the faces of the bounding box.
Barequet et al [3] and Klowski et al [4] use an approximate
minimization of volume as a metric to efficiently determine
a good bounding box to reduce the complexity inherent in
O’Rourke’s method. In this paper we present several theo-
rems and their proofs related to axis aligned bounding boxes
for three and higher dimensional regular cross polytopes.
The organization of the paper is as follows:

Section-2 presents the two edges flush property of opti-
mal bounding boxes modified for the special case of a reg-
ular cross-polytope which follows from O’Rourke’s work.
In Section-3 we prove the existence of the one face flush
property for regular octahedrons. In Section-4 we prove
that the projections of a d-dimensional optimal bounding
box in lower dimensions are optimal for the projections of
the enclosed octahedron. We then generalize the two edge
flush property defined earlier for three dimensions to d-
dimensions. Section-5 shows that if the projections of the
regular octahedron in two dimensions are simultaneously lo-
cally optimal then the bounding box of the regular octahe-
dron is also optimal. Section-6 presents a few concluding
remarks.

2. TWO EDGES FLUSH
The problem of finding minimal volume boxes circum-

scribing a given set of three-dimensional points was inves-
tigated by O’Rourke in [1]. This work demonstrated that
for a three dimensional polyhedron defined by such a set
of points, a minimum volume bounding box would neces-
sarily have two faces flush with two adjacent edges of the
enclosed polyhedron. Given this condition we state the fol-
lowing theorem for the special case where the convex hull of
a set of points in three dimensional space defines a regular
octahedron.

Theorem 1:
Every minimal volume bounding box of a set of points de-
scribing a regular uniform octahedron in three dimensional
space must have at least two faces flush with two adjacent
edges of the enclosed octahedron.

Proof : The proof follows from O’Rourkes Theorem and is
detailed in [1]. �

Using this result we can develop an algorithm to deter-
mine the minimum volume bounding box for a regular octa-
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hedron. Such an algorithm would search through all possible
combinations of adjacent edges in the octahedron, creating
a bounding box for each pair, calculating its volume and iso-
lating the one which has gives the smallest value. However,
we can significantly improve upon this technique by lever-
aging one of the unique structural properties of a regular
octahedron. This property is stated in the following lemma:

Lemma:Any two adjacent edges of a uniform regular oc-
tahedron are separated by an angle of either 90◦ or 60◦

This suggests that there can only be two possible unique
combinations of adjacent edges with which the faces of a
bounding box can be flush. As the the octahedron is uni-
form, every other combination would be a reflection of these
two. Utilizing this observation, we propose an additional
necessary condition for the minimal volume bounding box
of a regular octahedron that is significantly stricter than the
one discussed above.

3. ONE FACE FLUSH
In this section we further constrain the possible orienta-

tion of a minimum volume bounding box enclosing a cross
polytope, by observing that for the special case of a regular
octahedron the minimum volume bounding box would have
one face flush with a face of the convex hull in addition to
having two faces flush with two adjacent edges of the en-
closed octahedron. In the subsequent discussion we assume
that without loss of generality, our cross-polytopes (regular
octahedrons) are centered on the origin.
Theorem 2:

A minimal volume bounding box must have at least one face
flush with a face of the enclosed regular octahedron.

Proof: We consider two cases, one in which the angle be-
tween adjacent edges is 90◦ and the other when the angle
between the two is 90◦ as discussed earlier. Based on the
geometry of the regular octahedron (the length of all edges
being equal), all pairs of adjacent edges in the octahedron
not bounding the same face of the octahedron, define three
mutually orthogonal squares. Therefore, the angle between
all such pairs of edges would be 90◦. Conversely, in the case
where two adjacent edges are at an angle of 60◦ , according
to the geometry of the regular octahedron (the length of all
edges being equal), every face of the octahedron is an equi-
lateral triangle. Since the angle between two edges of such a
triangle is always 60◦, all pairs of adjacent edges bounding a
face of the octahedron would have an angle of 60◦ between
them.
Case - I: Angle Between Adjacent Edges is 90◦:
In the first case, for simplicity we assume that the octa-

hedron (or the 3D hyper-diamond) is rotated in such a way
that one of the edges is flush with the face of the bounding
box parallel to the X-Y plane and the other edge is flush
with the face parallel to the Z-X plane as shown in Figure
3. Given this initial position, the projection of the octahe-
dron on the X-Y plane takes the form shown in Figure 1.
Initially, the octahedron is positioned so as to have line OA
parallel to the Z-X plane. Let θ be the angle by which the
figure is rotated. As is clear from the figure, the length l
of the minimum volume bounding box for the octahedron is
the projection of C’A’ on to X-axis and its height h is equal
to the projection of B’D’ on to Y-axis. The breadth b of the

Figure 1: Projection of the Octahedron on the X-Y
Plane
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Figure 2: Volume of the MBR as a function of θ

box remains constant irrespective of θ. Hence, volume of the
box can be calculated as V = lbh. As the polytope rotates
Figure 2 shows volume of the minimum bounding box as a
function of θ for 0 ≤ θ ≤ 90. Cases for other values of theta
are similar to these with slight changes in the orientation,
and are omitted hence. It can be seen that the function
is discontinuous at two points which also happen to be the
points of minimum volume. This is illustrated by the graph
in Figure 2.

It can be shown using trigonometry that these two points
correspond to the angles θ = ϕ and θ = 90◦ - ϕ, where
ϕ = 35.264◦. As the orientation of the cross polytope at
each of these two points ensures that two parallel faces of
the octahedron are flush with the two parallel faces of the
MBR, it follows that if the bounding box is oriented around
any two adjacent edges with an angle of 90◦ between them,
minimal volume can only be achieved when one of its faces
is flush with a face of the octahedron.

Case - II: Angle Between Adjacent Edges is 60◦

The starting condition is the same in this case. An axis-
aligned bounding box is constructed with two adjacent edges
of a regular octahedron having an angle of 60◦ between them
flushed with two adjacent faces as shown in Figure 4. For
simplicity we assume that this bounding box is placed at the
origin with the octahedron oriented as shown in the figure
(the face defined by vertices V 1, V 2andV 3 has the two edges
with an angle of 60◦ between them).

Due to the constraint just mentioned (two edges need to
be flushed with two adjacent faces), the only possible rota-
tion of the cross-polytope will result in the movement of the
vertice V 1 on the Y-Axis, V 3 on the Z-Axis and the edge
V 1 − V 2 over the face of the bounding box. The distance
from origin of this point is taken as a. Thus a varies over a
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Figure 3: Position of Octahedron Against the Adja-
cent Faces of MBB for (a) Case-I (b) Case-II

finite range for the possible rotation.
In its initial position (as shown in Figure 4), the three

vertices coincident with faces of the bounding box are given
by the following coordinates.
V1 = (0, a, 0)
V2 = (x2, y2, 0)
V3 = (0, 0, z3)
Based on the fixed distance D between the vertices V1, V2

and V3,we derive the following equations,

D2 = (x2)
2 + (y2 − a)2

D2 = (x2)
2 + (y2)

2 + (z3)
2

D2 = a2 + (z3)
2

where D is the length of a side of the cross-polytope. Solving
for x2, y2 and z3, we can thus define each vertex in terms of
a as given below,

V 1 = (0, a, 0)

V 2 = (

√
a2 − (

2a2 −D2

2a
)2,

2a2 −D2

2a
, 0)

V 3 = (0, 0,
√

D2 − a2)

Using the fixed distances between the vertices of the cross-
polytope, we can develop similar equations in terms of a and
D. Solving for the variable a we obtain the following values
for the coordinates of vertices V 4,V 5 and V 6

V 4 = (−(

√
−a2+d2(a3−ad2+

√
2
√

−a2(4a4−5a2d2+d4))

3(a3−ad2)
),

(

√
4d2− d4

a2 (4a3−ad2+
√

2
√

−a2(4a4−5a2d2+d4))

12a3−3ad2)
,

(4a3−ad2−
√
2
√

−4a6+5a4d2−a2d4)

3a2 )

V 5 = (

√
−a2+d2(2a3−2ad2−

√
2
√

−a2(4a4−5a2d2+d4))

3(a3−ad2)
,

2a3+ad2−2
√

2
√

−4a6+5a4d2−a2d4

6a2 ,
4d2−d4/a2√

(−4a3+ad2+2
√
2
√

−a2(4a4−5a2d2+d4))

24a3−6ad2
)

V 6 = (

√
−a2+d2(2a3−2ad2−

√
2
√

−a2(4a4−5a2d2+d4))

3(a3−ad2)
,

a3−ad2+
√

2
√

−a2(4a4−5a2d2+d4)

3a2 ,√
4d2−d4/a2(4a3−ad2+

√
2
√

−a2(4a4−5a2d2+d4])

12a3−3ad2
)

Given that every coordinate of each vertex is a function
of a, we can generalize the equation of a vertex of the cross
polytope as,

Vi = (fxi(a), fyi(a), fzi(a)) (1)

where i= 1,2,...,6 and fxi,fyi and fzi are the functions defin-
ing the x,y and z coordinates respectively for each vertex.

The length of each dimension of the minimum bounding
box is given by the minimum of the maximum values at-
tained by the coordinates of each vertex. From above it is
clear that the orientation of the octahedron is determined
by the range over which a fluctuates. Based on the fact
that V1 has to remain on Y-Axis, the edge (V1, V2) on the
XY-plane and assuming a unit octahedron for simplicity, we

find the value of a has to be between 1√
2
and

√
3

2
Utilizing

basic trigonometry and the structural properties of the oc-
tahedron, the minimum of the maximum value attained by
a coordinate in each dimension is thus given by,

LengthofMBBx = min1≤i≤6(max 1√
2
≤a≤

√
3

2

(fxi(a)))

LengthofMBBy = min1≤i≤6(max 1√
2
≤a≤

√
3

2

(fyi(a))

LengthofMBBZ = min1≤i≤6(max 1√
2
≤a≤

√
3

2

(fzi(a)))

where i = 1,2,...6.
To isolate the limits of the range of rotation of the polyhe-

dron, we assume a unit polyhedron. Once the limits of the
possible movement of the octahedron along its single degree
of freedom are identified, specified in terms of the variable
used as frame of reference i.e. a, we can obtain results for
equations 2-4 above. This is done by finding first the lo-
cal maxima and than the global minima of the coordinate
equations for each vertex. After finding the local maxima
for each dimension for every vertex we found that along
the X-dimension only the equations for the x-coordinates of
vertices V 2 and V 6 are differentiable and display monotone
convergence as functions of a over the given range. The x-
coordinate equation for V 5 is also differentiable, it retains a
lesser range of values over the given range and thus is irrel-
evant when considering local maxima. While the function
for the x-coordinate of V 2 is monotonically increasing, the
value of the function for the x-coordinate of the other vertex
is monotonically decreasing. Thus, over the given interval
the global minima would be point of convergence. The equa-
tions are,

x2 =
√

(a2 − ((2a2 − d2)/(2a))2)

x6 =

√
−a2 + d2(2a3 − 2ad2 −

√
2
√

−a2(4a4 − 5a2d2 + d4))

3(a3 − ad2)
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However for the y-coordinate equations, no such conver-
gence occurs. Here we determine the local maxima for the
y-coordinate of V 4, providing a measure of the height of the
minimum bounding box by the following equation.

y4 =

√
4d2 − d4

a2 (4a
3 − ad2 +

√
2
√

−a2(4a4 − 5a2d2 + d4))

12a3 − 3ad2)

Similarly, the z coordinate equations for vertices V 4 and
V 3 taken as a function of a are monotonically increasing and
monotonically decreasing over the given range respectively.
Thus, these functions are differentiable everywhere on the
given interval allowing us to determine the global minima in
the next step. Also, as these two functions converge to the
same point over the given interval the global minima would
be the point of convergence. Hence, we find that the length
of the minimum bounding box in Z-dimension is given by
the following equations.

z4 =
(4a3 − ad2 −

√
2
√
−4a6 + 5a4d2 − a2d4)

3a2

z3 =
√

(d2 − a2)

Figure 4: Local Maxima of X

The properties discussed above are easily verified by plot-
ting the coordinate equations of each vertex as a function of
a over the range of rotation identified as shown in Figures 5-
7. These three extremities give the minimum volume bound-
ing box since V olumeofMBB = Length∗Breadth∗Height.
Minimizing the value of the x,y and z-coordinates over the
given range, we find the orientation of the octahedron (given
by the value of a at point of global minima) inside the min-
imum bounding box. This minimization results identifying

the orientation with a =
√

3
2

as the point of global minimum.
As we can see from Figure 3, this orientation corresponds
to the previous case where the angle θ = ϕ and θ = 90− ϕ,
where ϕ = 35.264◦ and two parallel faces of the octahedron
are flush with two parallel faces of the bounding box. Thus
it follows that if the bounding box is oriented around any
two adjacent edges with an angle of 60◦ between them, min-
imal volume can only be achieved when one of its faces is
flush with a face of the octahedron. �

4. BOUNDING BOX UNDER PROJECTION
We now have a trivial method to determine the bounding

box of a three dimensional cross polytope. In the following
section we postulate about the characteristics of a cross-
polytope under projection when encapsulated within such

Figure 5: Local Maxima of Y

Figure 6: Local Maxima of Z

a bounding box. The result presented is applicable to d-
dimensional cross-polytopes and their bounding boxes. It,
therefore, also applies to the special case of the three dimen-
sional cross-polytope and its bounding box just discussed.
The discussion is made with the assumption that the cross-
polytope has already been optimally oriented such that its
axis aligned bounding box is also the arbitrarily oriented
minimum bounding box.

4.1 Minimality of Projected Bounding Box
If the bounding box of a d-dimensional regular cross poly-

tope is minimal, then we postulate about the nature of its
projections in lower dimensions as follows,

Theorem 3:
Given an optimally oriented convex d-polytope P and its
axis-aligned minimum bounding box B, any projection p :

Rd → Rd′ , d′ ≤ d of B will also be a minimum bounding
box for the corresponding projection of P.

Proof: By way of contradiction, assume there exists a d-
polytope P and rotation R such that an axis-aligned mini-
mum bounding box B is also the minimum arbitrarily ori-
ented minimum bounding box. Assume there exists a pro-
jection p’ of P rotated by R such that B’ (corresponding to
the projection of B along the same dimensions)is not an arbi-
trarily oriented minimum bounding box of the projection p’
of P rotated by R. Then there exists an arbitrarily oriented
minimum bounding box B” of the projection p’ of P rotated
by R which is different from B. Let R’ be the rotation that
rotates B” such that it is an axis-aligned bounding box. The
area of the bounding box is the product of the ranges in each
dimension. Since projection discards dimensions not subject
to the projection, any rotation of the projection does not
change the dimensions of the axis not subject to projection
for an axis aligned bounding box. However, there does now
exist a rotation of the projection such that an axis aligned
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bounding box is smaller than B’. Hence, the composition
of R and R’ is a rotation that will rotate the d-polytope
P such that a smaller axis-aligned minimum bounding box
exists. This contradicts our earlier assumption of the opti-
mality of the three dimensional bounding box and hence is
not possible. �

4.2 Edges Flush in d-Dimensions
Using the result just obtained we can come up with a

necessary condition for the minimum bounding box of an
n-dimensional cross polytope. This condition is stated by
the following theorem:
Theorem 4:

Given a convex d-polytope P and an arbitrarily aligned min-
imum bounding box B, at least d-1 edges must be flush with
d-1 orthogonal faces of B.

Proof: Without loss of generality, assume P and B are ro-
tated such that B is an axis-aligned minimum bounding box.
By the previous theorem, any 2d projection of B must also
be a minimum bounding box of the 2d projection of P. By
a previous theorem, at least one edge of the 2d projection
of P must be flush with one edge of the 2d projection of
B. Such an edge will have identical values for each the di-
mension corresponding to the bounding box edge and the
values must be either the minimum or maximum values of
that dimension. Otherwise the bounding box would not be
minimum since some value in one dimension is beyond the
range of the bounding box. An edge that is flush with the
edge of the bounding box in a 2d projection is also flush
with the corresponding face of B, since the values in that
dimension are equal for both edges of the edge and are the
minimum or maximum value in that dimension. Hence, for
every possible pair of dimensions an edge must exist that is
flush with a face of B for one of those dimensions. It is pos-
sible for an edge to serve as the flush edge for more than one
2d projection involving a given dimension N. The edge will
always have the minimum or maximum value for dimension
N for every 2d projection that includes that dimension. The
minimum number of edges that can satisfy this constraint
for all possible pairs of dimensions is d. Assume it is less
than d Then there exist two dimensions for which— a flush
edge does not exist. Hence, the 2d projection would not
have a flush edge and we have a contradiction. �

5. CROSS-POLYTOPE UNDER PROJECTION
The theorems just discussed confirm that if the bounding

box in dimension d is optimal then the bounding boxes of
the projections in d-1 dimensions are also optimal. This
also leads us to a definition of the local optimality of the
projection of the object. This is stated as:
Local Optimality:If the axis-aligned bounding box of a d-

1 dimensional projection of a d-dimensional cross-polytope
is its arbitrarily oriented minimum bounding box requiring
no rotation of the projection to make it smaller, then the
projection is said to be locally optimal.
Using this definition we can further elaborate on the situ-

ations where multiple projections of the same cross-polytope
exhibit local optimality at the same time. Thus:
Simultaneous Local Optimality:If the d-1 dimensional

projections of the d-dimensional cross-polytope in each co-
ordinate plane are locally optimal then it is said to have si-
multaneous locally optimal projections.

From Theorem 3, we see that minimum bounding boxes
of each d-1 dimensional projection of the n-dimensional op-
timally oriented object, correspond to the d-1 dimensional
projections of the minimum bounding box of the object in
the corresponding planes. This, therefore, leads to the fol-
lowing corollary:

Corollary: Given a convex d-polytope P, there exists at
least one set of simultaneously locally optimal d-1 dimen-
sional projections.

5.1 Projected Polygons
Now, specifically in the case of a three dimensional cross-

polytope, we can make additional statements about the na-
ture of the projections of the polytope in two dimensions.
The first of these statements is given the subsequent theo-
rem,

Theorem 5:
Given a convex three dimensional cross-polytope P any pro-
jection p : Rd → Rd1 , 1 < d1 < 3 of P will either be a
hexagon, a rhombus or a rectangle.

Proof: The structural properties of a regular octahedron
ensure that only two vertices of the polytope can be collinear
at one time. Given this property, a vertex first projection
onto one of the axial planes for any orientation of the octahe-
dron would require that either one pair of vertices, two pairs
of vertices or no pair of vertices be simultaneously coincident
in the same planar projection.

Case - I: One Vertex Pair Coincident - The point
formed from the projected pair would be bound by the con-
vex hull of the remaining four and the planar projection
obtained is rectangular.

Case - II: Two Vertex Pairs Coincident - The two
pairs needs must lie on two parallel edges of the polytope
thus forming two opposite points on the planar projection.
The remaining two vertices are also opposite to each other
and thus when projected onto the plane, form two more
opposing points creating a rhombus.

Case - III: Three Vertex Pairs Coincident - Each
vertice is projected as a point onto the plane forming a
hexagonal envelope. �

5.2 Unique Simultaneous Local Optimality
We can use the result of the theorem just discussed and

the first theorem to define the optimal orientation of the
three dimensional cross-polytope in terms of simultaneously
locally optimal projections. This can be stated as:

Theorem 6:
Given a three dimensional cross-polytope P, there exists only
one combination of two dimensional projections in the coor-
dinate planes that are simultaneously locally optimal, corre-
sponding to the optimal orientation of the polytope.

Proof: Case - I: No Two Adjacent Edges Flush(Object
Orientation is Sub-Optimal) :

For this scenario we assume that no two adjacent edges
of the object P are flush with two adjacent faces of the
bounding box B. This implies that the orientation of P is
sub-optimal and the bounding box B of P is not minimal.
From Theorem 5 we see that the two dimensional projections
in the coordinate planes are a combination of rhombuses,
hexagons and rectangles. We now consider each projected
shape in turn and determine the conditions under which they
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become locally optimal.
Rhombus: Consider a projection p’ of P on the XY -

plane which forms a rhombus. For p’ to be locally optimal,
one of its edges must be coincident with one of the axes.
However, we see that rotating p’ to obtain the required ori-
entation corresponds to rotating P such that one of its faces
is coincident with a face of B. By Theorem 1 this corresponds
to the optimal orientation of the object, contradicting our
starting assumption that no two adjacent edges are flush
with adjacent faces of B. Therefore, any such combination
of projections would be sub-optimal
Hexagon: Consider a projection q’ of of P on the XZ -

plane which forms a hexagon. For q’ to be locally optimal,
at least two of its edges also need to be parallel with one
of the axes and at least one must be coincident. Applying
the rotation required to make the edges parallel, results in a
corresponding change in the orientation of P such that the
edges of P projected onto the XZ-plane to give the edges of q’
being made parallel, become coincident with opposing faces
of B. Due to the structure of P, any such pair of edges are
joined with an adjacent edge that becomes coincident with
an adjacent face of B contradicting our starting assumption.
This precludes the possibility of a locally optimal hexagonal
projection under the given conditions.
Rectangle: Proving the non-existence of simultaneous lo-

cal optimality in all cases where the combination of projec-
tions on the coordinate planes contain a hexagon or a rhom-
bus, leaves us with a single scenario where all of the projec-
tions are rectangles. A rectangular projection requires two
pairs of adjacent edges forming a closed ring such that the
angle between each pair is 90◦. Due to the structure of the
octahedron, at no point in time can there be more than one
such ring for any orientation of the polytope. Therefore,
a combination of three rectangular projections is not possi-
ble. Hence, there cannot be a simultaneously locally optimal
combination of projections when two adjacent edges of the
cross-polytope are not flushed with the bounding box.

Case - II: Two Adjacent Edges Flush: Object Ori-
entation May Be Optimal:
As discussed earlier, any two adjacent edges of the poly-

tope will have an angle of either 60◦ or 90◦ between them.
Assume that the polytope is oriented such that two edges
with an angle of 60◦ between them are flush with adjacent
faces of the bounding box. A projection P of the object on
the XY-plane forms a hexagon, given that no two vertices
of the polytope have the same coordinates in the plane. For
this hexagon to be locally optimal, it needs to have at least
two edges parallel to one of the axes, with one being coin-
cident to it. Since this is not the case here, it is not locally
optimal. From the orientation of the polytope and from
Theorem 1, the range of rotation of the polytope is limited
such that for the given range, the projection of the polytope
on the XY-plane remains a non-locally optimal hexagon ex-
cept at the boundary where it becomes a rhombus. At this
boundary the projection is optimal. For all other orien-
tations it is sub-optimal, meaning that the combination of
projections cannot be simultaneously locally optimal.
Now, for the case where two adjacent edges with an angle

of 90 between them are flush with two adjacent faces of the
bounding box. As we see from Figure 2, the projection of
the polytope on the XY-plane is a rhombus for the entire
range of possible rotations. For the rhombus to be locally

optimal, one of its edges must be coincident with one of
the axes. From the discussion above, this is only possible
for the optimal orientation of the polytope. This precludes
the existence of a simultaneous local optimal combination
of projections for all possible orientations of the polytope
under the given conditions (the rhombus is sub-optimal for
all these orientations).

Therefore, we see that there can only exist a single unique
combination of two projections that is simultaneously locally
optimal. �

Corollary: Given a convex three dimensional uniform
regular octahedron P, any simultaneous locally optimal pro-
jections pi : Rd → Rd1 , 1 < d1 < 3, 0 < i < 4 of P will
consist of a hexagon, a rectangle and a rhombus.

Proof: The proof follows from Theorems 5 and 6. �

6. CONCLUSION
In this paper we identify face coincidence as an additional

constraint for the existence of a minimum volume bound-
ing box for a regular cross-polytope. We identify certain
unique properties and characteristics of the d-1 dimensional
projections of these polytopes when encapsulated by a min-
imum bounding box. We also discuss the forms the convex
hulls of those projections take in the projected dimensions.
In future work we aim to use the results just discussed in
database indexing and querying techniques with the objec-
tive of improving upon current querying methods.
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