
Towards the Visualization of Software Systems as 3D
Forests: the CodeTrees Environment

Ugo Erra and Giuseppe Scanniello
Dipartimento di Matematica e Informatica

Università della Basilicata
Potenza, Italy

{ugo.erra, giuseppe.scanniello}@unibas.it

ABSTRACT
We present an approach based on a forest metaphor to ease
the comprehension of object oriented software systems. Soft-
ware systems are represented as forests of trees that users
can navigate and interact with. We also describe here the
mapping of the information of the source code in meaningful
ways to take advantages of familiar concepts such as agglom-
erates of trees (or sub-forest), trunk, branches, leaves, and
color of the leaves. The approach has been implemented in
a prototype of a 3D environment, namely CodeTrees. To as-
sess the validity of the approach and environment, we have
also conducted a preliminary empirical evaluation on three
open source software systems implemented in the program-
ming languages Java and C++.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: Graph-
ical User Interface; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction Techniques

Keywords
Software visualization, Software maintenance, forest metaphor

1. INTRODUCTION
Software maintenance is essential in the evolution of soft-

ware systems and represents one of the most expensive, time
consuming, and challenging phase of the development pro-
cess. Maintenance starts after the delivery of the first ver-
sion of the system and lasts much longer than the initial de-
velopment process [1]. As shown in the survey by Erlikh [2],
the costs needed to perform maintenance operations range
from 85% to 90% of the total cost of a software project.

During the maintenance phase, a software system is con-
tinuously changed and enhanced because of the execution
of maintenance operations that are carried out for several
reasons (e.g., to correct faults or to improve quality require-
ments) [3]. Whatever is the maintenance operation, a main-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’12 March 25-29, 2012, Riva del Garda (Trento), Italy
Copyright 2012 ACM 978-1-4503-0113-8/11/03 ...$10.00.

tainer has to comprehend source code implemented by others
[4]. Therefore, it is easy to imagine that the greater part of
the cost and effort for accomplishing maintenance tasks is
due to the comprehension of the source code. There are sev-
eral reasons that make the comprehension even more costly
and complex, they range from the size of the software to its
overall quality.

Software visualization [5], [6] has been being extensively
and successfully explored and used in the software main-
tenance and program comprehension, in particular. Re-
searchers have proposed metaphors and supporting tools
based on 2D and 3D techniques [7], [8], [9]. The proposed
metaphors and tools often fail to show significant informa-
tion of a software system to improve its comprehension (e.g.,
public attributes and methods).

In this paper1, we propose a 3D visualization metaphor
for depicting object oriented software system and a support-
ing tool, named CodeTrees. In particular, a given software
software is visualized as a forest of trees that users (also
maintainers in the following) can navigate and interact with.
Visual properties of trees (e.g., trunks, branches, and leaves)
are mapped according to well defined rules with the metrics
extracted from source code.

The metaphor is new from the point of view of software
visualization and, compared to previous metaphors, provides
a fine-grained representation of the entire software system
and a large-grained representation of the classes and the
packages they reside in. Therefore, we display classes as
trees and packages as agglomerates of trees (from here on,
sub-forests or simply forests). The shape (trunk and foliage)
of each tree is characterized by source code metrics of the
class it represents.

To validate the metaphor and CodeTrees, we have also
conducted a preliminary case study on three well known
open source software systems implemented in Java and C++:
JEdit, ArtOfIllusion, and FileZilla.

The main contributions of the paper can be summarized
as follows:

• A visualization metaphor based on forests of trees;

• A prototype of software tool (i.e., CodeTrees) imple-
menting the metaphor;

• A preliminary case study on small/medium open source
software systems implemented in Java and C++.

1Please read the paper on-screen or as a color-printed paper
version, we make extensive use of color pictures.

The remainder of the paper is organized as follows: in Sec-
tion 2, we review previous software visualization metaphors
based on natural environments (e.g., the solar system) or
real objects (e.g., a jigsaw puzzle). In Section 3, we describe
the proposed metaphor. In Section 4, we present the prelim-
inary results of the conducted empirical evaluation. Finally,
Section 5 concludes and discusses possible future directions
for our research.

2. RELATED WORK
In the literature there are some metaphors to visually rep-

resent software systems as natural environments. Among
these, the city metaphor is one of the most explored (e.g.,
[10], [11], [12], [13]). For example, Wettel and Lanza [14]
propose a city metaphor for the the comprehension of ob-
ject oriented software systems. Similar to our proposal, the
metaphor proposes a large and low -scale understanding of
software. Classes are represented as buildings and packages
as districts. The metaphor is implemented in the CodeCity
tool and to improve the realistic aspect of the city, authors
focused on the design of urban domain. Our metaphor is
different because the fine-grained representation of classes
takes into account a larger number of metrics (e.g., number
of public methods). However, we plan users’ study to un-
derstand whether the use of more information results in a
deeper understanding of the system.

In a recent paper, the same authors [15] present a con-
trolled experiment with professionals to assess the validity
of their metaphor and supporting tool. The results show
that the CodeCity tool leads to a statistically significant
improvement in terms of task correctness. The results also
indicate that the use of the tool statistically decreases the
task completion time.

Graham et al. [16] propose a solar system metaphor where
suns represent a package, planets are classes, and orbits
represent the inheritance level within the package. Such
metaphor is used as a means to analyze either static or
evolving code to perceive in real time suspected areas of
risk within the code base.

Mart́ınez et al. [17] suggest a metaphor based on land-
scape, whose main objective is to visualize the integrated
representation of software development processes. The meta-
phor is conceived to describe several aspects of development
process. Differently from our proposal, the metaphor does
not provide means to visualize source code.

Ghandar et al. propose a jigsaw puzzle metaphor in [18],
where each component of a system is modeled as a piece of
a jigsaw puzzle. The most remarkable characteristic of the
metaphor concerns the visualization of the system complex-
ity that is represented as a pattern on the surface of the
piece. The metaphor does not provide a view at class gran-
ularity level. This is one of the most remarkable differences
with respect to our proposal.

A botanical tree metaphor is proposed in [19]. Differently
from us, the authors suggest forests of trees for the visualiza-
tion of huge hierarchical structures and apply the proposed
metaphor to the visualization of directory structures. Di-
rectories, files, and their relations are visualized using trees.
The approach is basically a natural visual metaphor for in-
formation hierarchically structured. Several are the differ-
ences with respect to our proposal. For example, we propose
here a metaphor for the visualization of software systems,
while in [19] the authors propose trees for depicting hierar-

chical structures in file systems. Further, we use trees as
fine-grained representation of classes.

Several are the differences with respect to the approaches
discussed above. The most remarkable one is that our pro-
posal offers a proper representation for methods, attributes,
and source code comment. A possible drawback that af-
fects our metaphor is that it could result complex in case
the maintainer is not properly trained. This issue is directly
connected to the considerable amount of information our
metaphor is able to visually summarize.

3. THE METAPHOR
We propose a 3D visualization metaphor that depicts ob-

ject oriented software systems as forests of trees. Maintain-
ers can freely navigate and interact with the forests to im-
prove the comprehension of the systems. The reasons for
defining this metaphor can be summarized as follows:

• A tree has a familiar shape. We use trees to visually
summarize complex information in a natural way.

• A tree is a complex structure composed of unmistak-
able elements such as trunk, branches, leaves, and color.
Several aspects of a software system can be represented
through the visual properties of a tree.

• The class proliferation problem is a major cause of fail-
ure in object oriented development. A forest of trees
provides developers with a large-scale understanding
of the design and the proliferation of classes avoiding
exponential explosion in the number of classes.

Our main goal is a large-scale understanding of a software
system because the overall result is a visualization of all the
contained classes. The metaphor also provides a fine-grained
representation of the components of a software in terms of
individual classes. This is because a visualization of each
class is possible zooming on the corresponding tree.

3.1 The Rendering of the Trees
The model upon which we based the creation and the

rendering of the trees is based on the Weber and Penn ap-
proach [20]. This approach uses an intuitive model to de-
sign the geometrical structure of trees. It handles proper-
ties/parameters to modify the shape of a tree. There are
general parameters to control: the height of the tree, the
width of the trunk, the level of recursion of the branches,
and so on. Further, there are also parameters that control
more specific aspects of a tree (e.g., leaves orientation).

The approach needs no knowledge of botany and com-
plex mathematical principles. For example, each branch
may have similarity with its parent and inherit attributes
from it. Due to this concern, all the branches are influenced
by the primary branches that mainly depend from the tree
height. In our case, this is not an actual drawback because
a primary aim of the Weber and Penn approach is to get a
plausible result with a few parameters. However, we con-
sider a subset of the parameters needed to render a tree,
thus affecting its shape (trunk and foliage) according to the
main characteristics of the class the tree represents. The in-
terested reader can read the paper by Weber and Penn [20]
to get a deep description of the algorithm and to knw how
each parameter affects the creation and the shape of a tree.

3.2 Mapping Between Tree Properties and
Source Metrics

We identified the following set of visual properties of trees
that can give information about the system to analyze (or to
comprehend in case of maintenance tasks): height, branch
number, branch direction, leaf number, leave color, leaves
size, and base size (i.e., the part of trunk whithout branches).

The considered metrics used to influence the appearance
of a tree are: lines of code (LOCs), lines of comment (CLOCs),
number of attributes (NOAs), number of public methods
(NEMs), number of private methods (NOMs), and the total
number of methods (NEOMs). Although there many other
design metrics available in the literature [21], we considered
only the most widely known (e.g., [21]). The rationale for
this choice relies on the fact that more complex and badly
known metrics may complicate the metaphor. However, the
use of different metrics is subject of future work.

The mappings between the properties of a tree and the
selected metrics were based on the experience we gained
in the program comprehension, software visualization, and
development. We tried as much as possible to find intuitive
mappings to ease the comprehension of a class.

Similarly to [14], we mapped the height of a tree with the
LOCs metric to denote the size of a class (without take into
account CLOCs). The number of branches that sprout from
the trunk corresponds to NEOMs. A tree with few branches
represents a class with few methods. To highlight the num-
ber of public methods we use branch orientation. In case
the value NEMs/NEOMs is close to one, the class has many
public methods and its tree has branches pointing out. Con-
versely, if NEMs/NEOMs tends to zero, the class has many
private methods and its tree has branches oriented paral-
lel to ground. We mapped the total number of leaves with
NOAs and the size of the leaves results from 1/NOAs. In
such way, a class with few attributes is represented as a tree
with large leaves, so resulting more visible. While, a dense
tree will represent a class with many attributes. We map
the color of leaves as the ratio between the LOCs and the
CLOCs. The color ranges from the green to brown. Thus,
a class with lines of comments greater than lines of code is
represented as a tree with a green foliage, brown otherwise.
Finally, to visualize the amount of private methods we used
the ratio NOMs/NEOMs that is visually represented as the
base size of a tree. Then, if the value NOMs/NEOMs is close
to one, the class has many private methods and the tree has
a large base size. Conversely, if NOMs/NEOMs tends to
zero, the class has many public methods and its tree has a
small base size.

In Table 1, we summarize the mapping between metrics
and visual properties. It is worth mentioning that some
visual properties highlight the local characteristic of a given
class (e.g., NOMs/NEOMs), while others make sense only
in case trees are analyzed together (e.g. LOCs).

To illustrate how the mapping changes the appearance of
a tree, we illustrate some sample classes. Figure 1 shows a
tree of a possible class where the number of line of codes is
large (the foliage is stretched out), there are huge number
of line of comments, and the total number of methods (both
public and private) can be considered large. We show in
Figure 2 a tree of a class with: a small lines of codes (see the
foliage), a number of lines of comments much smaller than
the lines of source codes, a small number of methods, and a
few attributes. Figure 3 depicts a tree of a class where the

Figure 1: jEdit 4.3::JarBundler. The tree repre-
sents a class with: a high number of lines of code, a
huge number of lines of comment, a high number of
methods (both public and private).

Figure 2: jEdit 4.3::BrowserIORequest. The tree
represents a class with: a low number of lines of
code, a small number of lines of comment, a small
number of total methods, and few attributes.

number of lines of code is high (see the foliage), the number
of lines of comment is high, there are a considerable number
of methods both public and private, but public methods are
prevalent. Figure 4 shows a class with a high number of
public methods and few attributes. This mostly happens
when we are dealing with façade patters. Finally, Figure 5
depicts a tree of a class with a huge number of methods.
Many of these methods are public. The class also contains
a large number of lines of comment.

The metrics extracted from the sample classes are shown
in Table 2. Although the variability of the values for each
metric, the tree of of each class maintains a good visual
plausibility and naturalism.

3.3 A Forest of Trees
We represent a package as a sub-forest of the whole for-

est of trees. All the trees which represent classes inside a
package are placed in a land square whose size is function of
number of trees. To provide visibility to the smaller trees,
we place theme in front of the highest trees using a spiral
pattern. In this way, highest trees will be placed in the cen-

Figure 3: FileZilla 3.0::sshbn. The tree represents a
class with: a high number of lines of code, a high
number of lines of comment, a number of public
methods greater that private methods.

Figure 4: ArtOfIllusion 2.4.1::CustomDistortion-
Track. The tree represents a class with: a large
number of public methods, few private methods, and
few attributes.

Metrics Visual Properties

LOCs Tall
NEOMs Branches
NOAs Number of leaves
NEMs/NEOMs Branches orientation
1/NOAs Size of leaves
LOCs/CLOCs Color of the leaves (from green to brown)
NOMs/NEOMs Base size

LOCs = Lines of Code
CLOCs = Lines of Comment
NOAs = Number of Attributes
NEOMs = Total Number of Methods
NEMs = Number of Public Methods
NOMs = Nmber of Private Methods

Table 1: Metrics and visual properties mapping.

Figure 5: jEdit 4.2::jEdit. The tree represents a
class with: a high number of public methods greater
than private methods, a large number of lines of
comment, a large number of attributes, and few pri-
vate methods.

LOCs CLOCs NOAs NEMs NOMs NEOMs
JarBundler 713 465 35 50 22 72
BrowserIORequest 248 71 11 2 4 6
sshbn 732 246 75 3 11 14
CustomDistortionTrack 362 51 0 34 1 35
jEdit 2488 1043 28 94 24 118

Table 2: Metrics of the sample classes.

ter of land square and they will be always visible regardless
the user’s point of view. It is also important to point out
that we have considered the packages structure in terms of
contained classes. The use of relationships between classes
(e.g., inheritances and method invocations) in the visualiza-
tion of a forest is not considered. This could be subject of
future work.

An example of forest as depicted within CodeTrees is
shown in Figure 6. The forest represents a software sys-
tem composed of 7 packages. Some trees have no leaves,
thus indicating that no attributes are present. Some trees
have the branches that point out. When trees do not have
leaves and the branches point out it is possible that we are
in the case of a façade pattern. The leaves of some trees
are brown, while others are green. In the first case, we can
deduce that these classes are not properly commented, while
the source code is commented in the latter case. The for-
est also contains a few trees whose branches are parallel to
the ground. These trees have brown leaves, thus suggest-
ing that the classes have a large number of private methods
and are scarcely commented. Therefore, we can deduce that
the greater part of the functionality implemented by these
classes is only accessible through a few public methods.

3.4 Navigating within a Forest
The forest is visualized in real-time and the maintainer

can navigate around the forest using a free-fly 3D camera.
The maintainer can move inside the forest without limited
movement capabilities and then it is possible also to pass
through trees. The maintainer can then enlarges the tree

Figure 6: A Sample Forest composed of 7 packages.

of interest. The name of the class is also associated to the
corresponding tree and visualized if required.

3.5 CodeTrees Implementation
The metaphor has been implemented in a prototype of

a supporting system, named CodeTrees2. The prototype is
composed of three main software components. The former
extracts the metrics for a given software system and then
produces an XML file with all the information needed for
the visualization. The design rationale for this choice relies
on the fact that the extraction of the measures can be per-
formed once for all. Further, this makes independent the
extraction of the measures from the rendering of a forest
and its trees. This component is implemented in Java.

The second component is aimed at graphically maps the
tree parameters defined in the algorithm proposed in [20]
and the extracted metrics. The component is implemented
in Java and produces an XML file that is then used to make
the rendering of a forest by our 3D engine.

To implement the 3D engine, we used the OpenTree li-
brary. This library provides 3D tree generation for real
time applications such as games and visualization software.
OpenTree is a cross-platform, engine-independent library
written in C++. It implements the tree generation algo-
rithm described in [20]. The library uses an array of vertex
to generate mesh data necessary to render trees. Vertex can
be used by any graphics library. We used in our implemen-
tation the OpenGL [22] graphics library.

4. EVALUATION
To validate CodeTrees and the underlying metaphor, we

conducted a preliminarly case study on three object oriented
software systems: JEdit, Art of Illusion, and FileZilla. The
former two systems were implemented in Java, while the
third in C++. We selected these systems: (i) to verify
whether the validity of our proposal is affected by the pro-
gramming language; (ii) because they have been widely used

2A sample video of the application of our metaphor and the
prototype is available at http://www.unibas.it/utenti/
erra/sac2012.wmv

JEdit Art of Illusion FileZilla

Classes 532 453 153
Packages 42 26 0
LOCs 102680 103404 71510
CLOCs 49743 18367 9976
NEMs 4920 5110 884
NOMs 1001 1010 332
NOAs 2994 2353 2299
Language JAVA JAVA C++
Software Version 4.3 2.4.1 3.0

Table 3: Metrics of the three software systems.

in the past to assess the validity of tools for supporting main-
tenance tasks. Another motivation for selecting these sys-
tems relies on the fact that they are very different in terms
of implemented functionality:

• JEdit is a programmer’s text editor with an extensible
plug-in architectures;

• Art of Illusion is a 3D modeling and rendering soft-
ware system;

• FileZilla is a cross platform client for FTP, FTPS,
and SFTP.

Some statistics of these systems are reported in Table 3.
In particular, the table shows the numbers of classes and
packages for JEdit, Art of Illusion, and FileZilla. For each
system, the number of line of code and comment is shown
as well. The latter rows report the number of methods (to-
tal, public, and private), the number of attributes, and the
programming language used to implement each system, and
the analyzed version.

Figure 7 shows the forests of the three software systems.
On the top there is the JEdit forest, while in the middle the
one for Art of Illusion. The forest of FileZilla is on the bot-
tom. In the following, we discuss the findings achieved by
applying the metaphor and the tool only from a quantitative
perspective. In fact, the metaphor is based on the proper-
ties of trees and the metrics for each class in the forest. A
qualitative analysis of the results is subject of future work.

Figure 7: From up to bottom the forest of JEdit, Art of Illusion, and FileZilla.

The big picture of the three forests shows that among the
tree systems FileZilla has a smaller number of lines of com-
ments. Further, this system contains the lowest number of
classes and the majority of these classes contain a low num-
ber of lines of code. Further, the trees are sparse (i.e., sub-
forests are not present) since the classes are not organized
in packages being this system implemented in C++.

With regards to JEdit, we can observe that there are some
classes that contained a high number of lines of comments.
Among these classes, there are some classes with a larger
number of public methods and with a few attributes. On
the other hand, there are few classes with a large number of
attributes and a few number of public methods. In the first
case, the classes provide services to other classes and to make
easy how to use these services the developers commented the
code. In the latter case, the trees represent property classes.

The forest of Art of Illusion contain a big class with a
large number of lines of code, attributes, and methods. A
few lines of comment are present. Each sub-forest contains
a tree without leaves and with branches that point out.

4.1 Further Results
The use of CodeTrees on the systems JEdit, Art of Illu-

sion, and FileZilla leads also to the following considerations:

• Scalability. CodeTrees scales up well in terms of the
size of the software systems to be visualized. However,
for very large software systems (e.g., Eclipse 3.0) the
tool slowed down, thus affecting the interactivity and
the navigability of the forest. Several directions for our
future work have been planned to improve scalability.
For example, we will implement a GPU (Graphics Pro-
cessing Unit) based version of CodeTrees.

• Navigation and Interactivity. Similarly to many
3D environments [14], CodeTrees allows the maintainer
to move back or forward, hover left or right, orbit
around the city, and change altitude. CodeTrees also
enables the visualization of the name of each class
through a label associated to the corresponding tree.
A further feature to make the forest more realistic con-
cerns the ground. In particular, the type (e.g., grass
or stone) and the color (e.g., green or brown) of the
ground can be changed if needed.

• Completeness. The defined metaphor and imple-
mented 3D environment provide a fair amount of infor-
mation for an overview of the system. They also offer
a proper representation for methods, attributes, and
comments. These characteristics make our approach
different from the ones available in the literature (e.g.,
[14], [10]).

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a 3D software visualization

approach based on a forest of trees. The classes are rep-
resented as trees and the packages as sub-forests. The ap-
proach provides a general overview of the software giving a
maintainer the possibility of carrying out a large-scale rea-
soning on it. Further, the classes within packages are rep-
resented as trees. The visual properties of each tree (e.g.,
trunks, branches, and leaves) are used to represents metrics
of the class it represents. In this way, the maintainer has a
large-grained representation of each class.

The metaphor has been implemented in prototype of a
supporting tool, named CodeTrees. It provides features
to navigate in the forest as a free fly 3D virtual camera.
CodeTrees also implements zoom features and visualizes the
names of the classes to promote the comprehension at fine-
grained level. Although the metaphor is for any object ori-
ented programming language, the current implementation
of the prototype supports Java and C++. The prototype
can be however easily extended to visualize software sys-
tems implemented with different programming languages.
It is only needed to implement a tool for extracting the con-
sidered metrics from code implemented with those program-
ming languages.

In order to assess the validity of the approach and Code-
Trees, we have conducted a preliminary empirical investiga-
tion as a case study. We used medium open source software
systems. Two of these systems were implemented in Java
and one in C++. The results seem encouraging, but due to
the preliminary nature of our investigation caution is needed
and replications are required to increase our awareness on
the achieved findings.

There are several future directions for our work. We plan
to conduct users’ studies to evaluate the effectiveness of our
proposal in the execution of maintenance or software com-
prehension tasks. We will use recent guidelines [23] for such
a kind of studies. We also plan to improve the tool support
in terms of interactions between the maintainers and the vir-
tual natural environment using the idea of Visual Informa-
tion Seeking Mantra “Overview, zoom and filter, details-on-
demand” [24]. We are also going to investigate our metaphor
in the visualization of evolving software systems as growing
forests. Finally, future work will be devoted to increase the
realism of the forest and to assess whether users perform
maintenance tasks in a more efficient fashion in case of more
realistic forests. The assessment of efficiency will represent
another key factor in that investigation.

Acknowledgment
We would like to thank the Manuela Viggiani and Nicola
Capece, who developed some of the software modules of the
prototype implementing the metaphor presented here.

6. REFERENCES
[1] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon.

Principles of software engineering and design. 1979.

[2] Len Erlikh. Leveraging legacy system dollars for
e-business. IT Professional, 2:17–23, May 2000.

[3] M. M. Lehman. Program evolution. 19(1):19–36, 1984.

[4] Anneliese Von Mayrhauser. Program comprehension
during software maintenance and evolution. IEEE
Computer, 28:44–55, 1995.

[5] John Stasko, John Domingue, Blaine A. Price, and
H Marc. Brown: software visualization: programming
as a multimedia experience. 1998.

[6] Stephan Diehl, editor. Software Visualization,
International Seminar Dagstuhl Castle, Germany,
May 20-25, 2001, Revised Lectures, volume 2269 of
Lecture Notes in Computer Science. Springer, 2002.

[7] Richard Wettel and Michele Lanza. Program
comprehension through software habitability. In
ICPC, pages 231–240, 2007.

[8] Stéphane Ducasse and Michele Lanza. The class
blueprint: Visually supporting the understanding of
classes. IEEE Trans. Software Eng., 31(1):75–90, 2005.

[9] Andrian Marcus, Louis Feng, and Jonathan I. Maletic.
Comprehension of software analysis data using 3d
visualization. In IWPC, pages 105–114, 2003.

[10] C. Knight and M. Munro. Virtual but visible software.
In Information Visualization, 2000. Proceedings. IEEE
International Conference on, pages 198 –205, 2000.

[11] Stuart M. Charters, Claire Knight, Nigel Thomas, and
Malcolm Munro. Visualisation for informed decision
making; from code to components. In Proceedings of
the 14th international conference on Software
engineering and knowledge engineering, SEKE ’02,
pages 765–772, New York, NY, USA, 2002. ACM.

[12] Thomas Panas, Rebecca Berrigan, and John Grundy.
A 3d metaphor for software production visualization.
In Proceedings of the Seventh International Conference
on Information Visualization, pages 314–,
Washington, DC, USA, 2003. IEEE Computer Society.

[13] Blazej Kot, Burkhard Wuensche, John Grundy, and
John Hosking. Information visualisation utilising 3d
computer game engines case study: a source code
comprehension tool. In Proceedings of the 6th ACM
SIGCHI New Zealand chapter’s international
conference on Computer-human interaction: making
CHI natural, CHINZ ’05, pages 53–60, New York, NY,
USA, 2005. ACM.

[14] Richard Wettel and Michele Lanza. Codecity: 3d
visualization of large-scale software. In Companion of
the 30th international conference on Software
engineering, ICSE Companion ’08, pages 921–922,
New York, NY, USA, 2008. ACM.

[15] Richard Wettel, Michele Lanza, and Romain Robbes.
Software systems as cities: A controlled experiment.
In Proceedings of ICSE 2011 (33rd International
Conference on Software Engineeering), page to be
published, 2011.

[16] Hamish Graham, Hong Yul Yang, and Rebecca
Berrigan. A solar system metaphor for 3d visualisation
of object oriented software metrics. In Proceedings of
the 2004 Australasian symposium on Information
Visualisation - Volume 35, APVis ’04, pages 53–59,
Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

[17] Amaia Aguirregoitia Mart́ınez, J. Javier Dolado
Cośın, and Concepción Presedo Garćıa. A landscape
metaphor for visualization of software projects. In
Proceedings of the 4th ACM symposium on Software
visualization, SoftVis ’08, pages 197–198, New York,
NY, USA, 2008. ACM.

[18] Adam Ghandar, A. S. M. Sajeev, and Xiaodi Huang.
Pattern puzzle: a metaphor for visualizing software
complexity measures. In Proceedings of the 2006
Asia-Pacific Symposium on Information Visualisation
- Volume 60, APVis ’06, pages 221–224, Darlinghurst,
Australia, Australia, 2006. Australian Computer
Society, Inc.

[19] Ernst Kleiberg, Huub van de Wetering, and Jarke J.
Van Wijk. Botanical visualization of huge hierarchies.
In Proceedings of the IEEE Symposium on Information
Visualization 2001 (INFOVIS’01), pages 87–,

Washington, DC, USA, 2001. IEEE Computer Society.

[20] Jason Weber and Joseph Penn. Creation and
rendering of realistic trees. In Proceedings of the 22nd
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’95, pages
119–128, New York, NY, USA, 1995. ACM.

[21] Michele Lanza and Radu Marinescu. Object-Oriented
Metrics in Practice. Using Software Metrics to
Characterize, Evaluate, and Improve the Design of
Object-oriented Systems. Springer Verlag, 2010.

[22] Mason Woo, Jackie Neider, Tom Davis, and Dave
Shreiner. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.2.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3rd edition, 1999.

[23] Mariam Sensalire, Patrick Ogao, and Alexandru Telea.
Evaluation of software visualization tools: Lessons
learned. In VISSOFT, pages 19–26, 2009.

[24] Ben Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In
Proceedings of the 1996 IEEE Symposium on Visual
Languages, page 336, Washington, DC, USA, 1996.
IEEE Computer Society.

