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Abstract

We have extended an existing HPF compiler with language fea-

tures designed for the parallelization of unstructured computations
on multicomputers. The language extensions include block-general

distributions and dynamic data distributions specified through user-
defined mapping arrays and finctions. A prototype compiler has

been implemented which features dlfherent run-time preprocessing

mechanisms and also allows clean integration of explicit message-

passing primitives. The compiler is developed as part of a complete

multicomputer programming environment being used by a group
of application developers in the framework of the Joint CSCS–
ETH/NEC Collaboration in Parallel Processing. As such, it is sup-

ported by a high-level debugger andpe~oimance monitoc and the
usability and efficiency of generated parallel programs is validated

by the application developers.
In this pape~ we summarize the programming paradigm imple-

mented through HPF extensions, and detail the respective compiler

directives. We describe the implemented run-time preprocessing

mechanisms and evaluate the efjlciency of compiler-generated code
on an NEC Cenju-3 multicomputez

1 Introduction

Recent progress in VLSI and communication technologies enable
the construction of large-scale Distributed Memory Parallel Proces-

sors (DMPPs or simply mzdticomputers), which offer a better price-
performance ratio than traditional shared-memory vector supercom-

puters. A wide range of applications have already been parallelized

on such machines and experience shows that sustained high per-

formance can be achieved provided the underlying system follows

some basic architectural constraints, such as balanced communica-

tion and computation resources. Various research groups have not
only implemented “embarrassingly parallef” programs, but have

also parallelized less structured computations like finite-element
and irregular mesh based solutions of partial differential equations.
Most of these parallel codes have been written using message-
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passing libraries, similar in functionality to the Message-Passing

Interface standard (MPI) [1].

It has also been recognized, however, that the use of message
passing is tedious and error-prone. This is particularly true for un-

structured computations. In addition, programming tools offered
by vendors hardly give the required support for the development
of message-passing programs for massively parallel machines. A

multicomputer debugger, for instance, would ideal] y feature race-

condition and deadlock-detection mechanisms, as well as the pos-
sibility to deterministically replay erroneous message-passing pro-
grams.

Several new programming languages have been proposed to
simplify program development by providing a glot)al name space

along with a single-threaded program image. With these languages,
inter-processor communication is handled by the compiler and un-

derlying run-time system transparently to the user. The compiler
generates deadlock and race-condition free parallel programs which

are easier to develop and easier to debug. Currently, the most

promising such language for data-parallel programming is High

Performance Fortran (HPF) [2]. The user of HPF can expect porta-
bility across a variety of platforms because HPF has been accepted
as a language standard by most DMPP vendors.

Experience with the first HPF compilers has shown that high
parallel efficiency can only be achieved with regular computations,
such as dense linear algebra or image processing. The High Per-
formance Fortran Forum is currently discussing extensions for bet-
ter support of unstructured computations. The language features

considered base on the run-time preprocessing ancl irregular data
distributions featured by some research compilers, such as Arf [3],

Fortran D [4], Kali [5] and Oxygen [6].

As part of the Joint CSCS-ETHLVEC Collabora~ion in Parallel
Processing [7], we have extended an existing HPF subset compiler
(built by NEC Corporation) with language primitives for the sup-

port of unstructured computations. The language extensions are
on the one hand based on our previous experience with the Oxy-
gen compiler. On the other hand, we have taken into account the
requirements of a group of application developers who work on
the parallelization of unstructured problems as an integral part of
the collaboration (see for instance [8]). Our language extensions

include three dynamic data distribution methods, and the compiler
features a general mechanism for run-time preprocessing.

After summarizing the background of our work, we describe
our language extensions and the above mentioned pre-processing
method. Then, we demonstrate the efficiency of generated par-
allel code for a simple test algorithm and for a full application.
Performance numbers were collected on a NEC Cenju-3.
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2 Background

2.1 The Annai Tool Environment

The software described in this report is developed as part of the inte-

grated multicomputer programming environment Armai [9]. Since
our compiler accepts as input not only extended HPF, but also For-

tran and C with message-passing primitives, it serves as the main
language processor for Annai, and is generically called the Paral-
lelization Support Tool (PST). Annai also includes a Performance
Monitor and Analyzer (PMA), a Parallel Debugging Tool (PDT),

and a common graphical User Interface (UI). As a component of

Annai, PST follows the environment’s general design objectives,

while support for both high-level performance monitoring and de-

bugging is also included in PST. More details on PMA and PDT can

be found in [10] and [1 1], respectively. Below, we only summarize
Annai’s design objectives:

● Design and implementation of tools for the development of

parallel programs in a high-level data-parallel MIMD lan-

guage and also with low-level message passing. To ease

portability of the tool environment we use standards: HPF at
the high level and MPI at the low level. Both levels can be
mixed since PST allows integration of message passing into

high-level data-parallel code.

● parallelization, monitoring, and debugging support for ap-

plications considered today dificult toparallelize on DMPPs.

We believe that only extensive support for unstructured prob-
lems. such as finite-element based solutions of partial differ-

ential equations using irregular meshes, can m&e DMPPs as
versatile as today’s common scientific-computing platforms,
the shared-memory vector supercomputers. Since HPF lacks
suitable language features, we defined a set of HPF extensions
and implemented them in PST.

● Application-driven and user-oriented tool design: The tools
are developed as a sequence of prototypes; a team of appli-

cation developers use and test these prototypes and provide
feedback. This objective is particularly important for PST

the application developers strongly influence PST’s develop-

ment during the design of the HPF language extensions as
well as through critical evaluation of the parallel efficiency
of compiler-generated code.

2.2 Related Work

As part of the K2 project[12] we developed the Oxygen compiler for
DMPPs. The compiler supports a global name space at run-time,

through a mechanism called run-time data consistency analysis.
Oxygen was ported to a variety of platforms, among others the In-

tel Paragon and iWARP, Fujitsu APIOOO and Parsytec SC256 [13].

We used Oxygen to parallelize PILS [14, 15], a Package of It-
erative Linear Solvers. That library was applied to systems of

equations stemming from two and three-dimensional finite-element
based semiconductor device simulations and performance results
were collected on Intel Paragon and Fujitsu AP 1000.

Our application developers currently use PST to implement
PLUMP [8], a Parallel Library for Unstructured Mesh Problems.
For this class of problems, PLUMP provides a high-level interface
to basic linear algebra operations on several different data formats.
The library also supports local refinement and dynamic repartition-
ing of meshes on DMPPs.

From the requirements of our application developers, and from
the experience with Oxygen and PILS, we can draw several conclu-

sions for the design of HPF language extensions for unstructured
computations like the operations on sparse matrices implemented
in PILS and PLUMP:

Replicated Variables and Shared-Memory Semantics HPF

enforces sequential semantics on any Fortran statement. That is, un-
less the user explicitly specifies that two statements are independent
(which is only possible in HPF if the statements are surrounded by

a loop), any data dependence between two statements in HPF code
enforces either execution of the two statements on the same proces-
sor, or inter-processor communication. For this purpose, the first
HPF compilers we have experience with, from NEC and Applied
Parallel Research (APR) replicate sequential code execution and
introduce many broadcasts. In contrast to this technique, Oxygen

supports a programming paradigm more like typical shared-memory
paradigms: by default data are private and can only be accessed by

one processor. Explicit declarations allow sharing of data between

processors, and only interprocessor consistency of shared data is
ensured.

User-Defined Data Distributions PILS’ main data structure
(the matrix) is stored in a “colored jagged diagonals” format [16]

and no assumption can be made about its structure. PLUMP sup-
ports several different data formats and mesh refinement is one
of its major features. Typically an application adds elements to
a mesh for local refinement until load imbalance becomes large

enough to justify the costs of data repartitioning. Local refinement
increases the local partitions of the main data structures on only a

few processors. For both PILS and PLUMP efficient distributions

of matrices and vectors are irregular and depend on run-time infor-

mation. Therefore they cannot be expressed using HPF BLOCK or

CYCLIC primitives.

Redistribution and Remapping of Dynamically Distributed
Data PLUMP’s mesh refinement and repartition mechanisms re-
quire additional support from the compiler: repartitioning has to
be supported by extending HPF’s REDISTRIBUTE directive to
dynamic distributions, and by adding a generic data permutation
feature.

User-Defined Loop Distributions In both PILS and PLUMP,

the most compute-intensive loops access matrix and vectors indi-

rectly, and compile-time distribution strategies (such as the “owner

computes rule”) cannot be applied for loop parallelization. There-

fore, distribution of loops is best left to the user, and the compiler
must support both remote data fetches and updates in the global
name space.

Run-Time Data Consistency Analysis Since data distribu-

tions can be irregular, communication patterns must be computed
at run-time. As is typical for the iterative solvers supported by both
PILS and PLUMP, the most compute intensive code segments are

start-time schedrdable [17], i.e. access patterns depend on run-time

information but never change. In such cases, run-time global name
space maintenance is not expensive, since communication patterns

need to be computed only once. In PILS, the same compute-
intensive code segments (matrix-vector operations) are applied to
different data structures (’<colors” of the matrix). Hence, several
communication patterns must be saved for the same code segment.

Since detection of run-time schedulability at compile-time is
difficult, we leave specification of start-time schedulable code seg-
ments to the user.

3 Input Language

PST supplements an NEC HPF compiler by providing an extended

input language, and a different underlying programming paradigm

and compilation technique. To achieve a clear separation, routines
that use PST extensions and rely on PST’s programming model have

128



to be declared EXTRINSIC ( PSTLOCAL ). The two compilers are

integrated by a driving program that selects routines and uses either
the HPF compiler or PST for compiling the respective routines.

PST_LOCAL routines can be called from HPF programs and vice-

versa, and data conversion is handled transparently at subroutine

boundaries.
Although PST extends HPF, the programming model is slightly

different and similar to a shared-memory model: by default data
are private, i.e. the compiler does not enforce consistency of non-
distributed data across processors. Distributed data are part of the

global name space which is supported by run-time analysis. Also

code is replicated and, by default, executed by all processors. Where
users want only selected processors to execute parts of the code, they
must specify that explicitly by using loop distribution directives, or

by executing code depending on the processor identifier (that is, by
using the Single Program Multiple Data paradigm). Since replicated
execution is part of the semantics of PST programs, routines of

the underlying message-passing library can be called. PST uses
MPI communicators to avoid that user-inserted message-passing

primitives interfere with compiler-generated code.

By default, a global name space is not enforced, but distributed

array elements can be accessed as long as they are allocated locally.
The user can specify certain code segments to be public, and inside

such segments remote data accesses to elements of distributed arrays

are supported through data consistency analysis: for public code
segments, PST generates a run-time pre-processing phase, called

symbol handler, and an executions phase, called executor. The

symbol handler initializes the data transfers necessary to execute
statements with references to distributed arrays in the executor.

LOOP

b

Fork Sequence

Figure 1: The three possible ways of decomposing a bin-graph with
n + 1 nodes into two bin-graphs with < n nodes.

We have designed and implemented a more complicated pre-
processing method than the so-called inspector/executor mecha-
nism [18]. We compile public code segments into symbol-handler
and executor. Depending on the nesting of distributed-array ac-

cesses, the symbol-handler consists of one or more slices of the

segment (see also Section 4). Such a preprocessing strategy was
first implemented and described with Oxygen [12], and has also

been investigated recently by other research groups [19, 20].
PST cannot generate symbol handlers for arbitrary input code: a

public block’s control-flow graph must be a bin-graph. A bin-graph
can be recursively decomposed into a sequence, branch or loop of
smaller bin-graphs as shown in Figure 1. This makes recursive
generation of program slices possible.

An executor consists of computational chunks and communica-
tion checkpoints in between. Remote data are fetched or updated in
the checkpoints and the computational chunks operate on buffers to
access remote data. These buffers are loaded by receives in a pre-
vious checkpoint for fetches and they are used in a send in the next

checkpoint for data updates. To define the ordering of computation
chunks, a virtual time stamp (so-called serial time) is introduced.
By default this time stamp is initialized to zero and increased by
one after every checkpoint. However, a directive exists which al-
lows the user to control the serial time. This feature can be used to

parallelize loops with data dependencies.

3.1 Directives

3.1.1 Subroutine Specifiers

EXTRINSIC (PST_LOCAL ) subroutine . . .

As mentioned above, routines to be compiled by PST instead of

the HPF compiler are identified as EXTRINSIC routines. Inside
EXTRINSIC ( PST-LOCAL) routines, the PST programming par-
adigm can be used. The following directives are part of the decla-

rations in subroutine heads:

! PST$ SUB_SPEC LOCAL
!PST$ SUB_SPEC PUBLIC { SAVECOM(keY) }

Bydefault, PSTcompiles itsinput tolocalcode, i.e. no symbol

handler is created. Code segments that contain remote accesses and
therefore require a symbol handler have to be enclosed in separate
routines, which are declared PUBLIC.

WhhSAVECOM( key), anEXTRINSIC( PSTl,OCAL) sub-

routine can be declared to be start-time schedulable and run-time

generated communication patterns are saved and reused in later in-
vocations of the routine. The communication patterns are saved
symbolically, i.e., even if different routine arguments are used, the
execution will be correct, as long as the arguments have the same

shape (i.e., same size and distribution) as the arguments used for
theroutine’s first invocation. Theinteger expression key is used

for the generation of multiple communication patterns for the same

start-time schedulable EXTRINSIC (PST-LOCAL) subroutine.

3.1.2 Data Distributions

Arrays can be distributed using all regular HPF distribution and
alignment directives. Inaddition, theuser hasthechoice todistrib-

ute an array var dynamically with the following three directives:

!PST$ DISTRIBUTE var(BLOCK_GENERAL (BGMaPArraY) )
!PST$ DISTRIBUTE var(DYNAMIC (MaPArraY) )
!PST$ DISTRIBUTE var(DYNAMIC(G2L, L2G, IG2PE, SZ))

~efirst directive defines ablock-general distribution. That is,

the distributed array is partitioned into contiguous blocks of possi-

blydifferentsizes. Incontrast toasimilar distribution describedby
Chapman,Mehrotra andZima[21], PST BLOCK.GENERAL distri-
butions permit gaps: i.e. extra space isadded when sucb an array

is allocated, to provide dynamic support for an increasing number
of array elements during program execution. This featureis used
in PLUMP to implement mesh-refinement. Array BSMapArray

contains 2 x p integers (where p is the number of processors) which
defmethe start andsize ofeachprocessor’s block. Global Fortran
indices of multi-dimensional arrays are mapped (or’’linearized’)

into a single integer by using reverse lexicographic ordering (for
instance column-wise order for two-dimensional arrays).

The second directive defines the distribution of an array via a

mapping array (MapArray). This array has as many elements as
the distributed array, each element defining the processor owning
therespective element ofvar. MapArray must be allocated and
initialized explicitly by the user in the program.

The third directive uses mapping functions as an alternative
to mapping arrays, which introduce significant mem{ory overhead.
G2L, L2G, G2PE and Sz are integer valued functions which
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respectively map global to local indices, local to global ind]ces,
global indices to processors, and define the size of the local array

which may be different on each processor.

3.1.3 Data Redistribution and Remapping

llvofeatures of PSTsupport PLUMP’s mesh refinement: data re-

distribution and data remapping. Data redistribution corresponds
to the HPF REDISTRIBUTE primitive expanded to irregular dis-

tributions. That is, thedistribution ofanarray can be changedby
an executable statement to any other distribution allowed by the
extended language. Data remapping isunique to PST. Anydistrib-

uted array can be remapped if the user defines a permutation array

ofglobal indices. Consider forinstance the following statements:

integer p(m)
double precision a(m,n)

!HPF$ DISTRIBUTE (BLOCK) : : P
!HPF$ DISTRIBUTE (BLOCK,*) : : a

!PST$ REMAP_lD (a,p,l)

The array a is remapped along its first dimension using a user-
defined permutation arrayp. Effectively aismapped into anew

array a’ with a’ (i) = a(p (i) ). Note thatp is distributed
identically to the dimension of a which is to be permuted. 1

3.1.4 Loop Alignments

!PST$ ALIGN L1,L2, . . . WITH var
do L1 il=minl,maxl

do L2 i2=min2,max2

. . . = var(il,i2, .

. . . = var(jl,j2, . .

il,i2 ,... )

.)

.)

var(kl,k2, ...) = . . .

L2 end do

L1 end do

Figure 2: Aligning loops with variables using PST

Nested Fortran DO loops can be parallelized using the ALIGN
directive asshownin Figure2. Thesemantics ofaligned loops are
defined such that theaccess toarray element var(il, i2, . . .)

inside theloop nesting (using the loop indices as array indices) is
local.

Alignedloopsare compiledintonew loops with different index

minima, maxima, andstrides. Whenaligning withstatically distrib-
utedHPFarrays (usingcombinations ofBLOCKandCYCLI Q,the
problem of computing these minima, maxima, and strides can be

reduced tothesolution oflinear Diophantine equations [22]. Loops
aligned with dynamically distributed arrays are transformed into
loops over thelocal index range. The first statement intheir body
computes the respective global indices using the local to global
index mapping.

3.1.5 Checkpoints

The semantics of public code segments depend on the ordering of

the computational chunks in the executor, and how the serial time

is defined. Thecompiler generates acheckpoint at the beginning
and end of a public code segment as well as before and after every

‘Note also, that in the current PSTvemion, data remapping kcumently not sup-
pofiedtkough theabove drective butttiou@ asitilm subroutine cdl, Wepkmto
add the REMAPJD directive m the PST front-endin the new future,

aligned loop. To account for data dependence inside parallel loops,

additional checkpoints can be inserted with the following directive:

!PST$ CHECKPOINT

By default, the serial time is set to zero whena public code
segment is entered and incremented by one after every checkpoint.
In due course, we plan to add a directive to explicitly set the serial

time to any Fortran integer expression.

3.2 An Example Code Segment

We explain some of PST’s annotations with one of the basic linear

algebra operations supported by PLUMP: the sparse matrix-vector

product shown in Figure 3 operates on a sparse matrix data format
similar to the ITPACK format [23] and has been parallelized using
PST directives.

EXTRINSIC (PST_LOCAL) subroutine matvec(
& mx_nrcols, mx_nrrowsr COIS, mat-,

& x, y, nrcols, vector_map, mat_map)
! PST$

! PST$
! HP’F$

! PST$

! HPF$

! PST$

5

! PST$

20
10

SUB_SPEC PUBLIC

integer mx_nrcols, mx_nrrOws
double precision mat(mx_nrrows, mx_nrcols)

double precision x(mx_nrrows), y(mx_nrrows)
integer cols(mx_nrrOws, mx_nrcols)

integer nrcols(mx_nrrows) , map(*)

DISTRIBUTE x(BLOCK_GENERAL(map))

ALIGN WITH x :: y, nrcols

DISTRIBUTE mat(BLOCK_GENERAL(map) ,*)

ALIGN WITH mat :: COIS

ALIGN 5 WITH y(i)

do 5 i = 1, mx_nrrows

y(i) = O.

end do

ALIGN 10 WITH y(i)

do 10 i = 1, mx_nrrows

do 20 j = 1, nrcols(i)

y(i) = y(i) + mat(i,j) * x(cols(i,j))
end do

end do

Figure3: Asparse matrti-vector multiplication parallelized with
PSTHPFextensions.

Thematrix isstored inthree arrays: matcontains thenon-zero

elements, COIS the column indices, and nrcols the number of
non-zeros ineachcolumn of the matrix. xandyare theinput and

output vectors of the product, respectively.
We assume that for an efficient parallelization of the product,

both x and y need identical distributions. Figure 3 shows how
PST is used to assign block-general distributions to the matrix and
vectors used inthe product. Colurnrrs of thematrix arealigned with
xand ytoreduce the amount of communication. The index space

of the main loop 10 is distributed and aligned with the distributed
vectors andthecolumns of the matrix. Asaconsequence, accesses

toy are local while accesses to x may be non-local, depending on

thestrncture of thematrix. Theallocation gapsinthe matrix andin
the vectors (which reserve space for future mesh refinements) are
not visible to the implementor of the parallel matrix-vector product:
thedistributed iteration space of loop 10 only includes iterations
which correspond to defined elements of vector y.
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4 Symbol-Handler Code Generation

The symbol handler preprocesses code segments to determine where
non-local data are accessed, and prepares executor data transfers on

both data requesting and owning processors. So-called envelopes

are set up, which are later interpreted in executor checkpoints to
perform actual data exchanges. An envelope consists of (1) a logical

time stamp which identifies the checkpoint in which the envelope

is used, (2) a destination- or source-processor identification, (3) a

flag specifying whether remote data are fetched or updated, and

(4) an identification of the data item to be communicated. This
identification is not an address but symbolic information, i.e. an
array symbol and a (linearized) array index.

The executor consists of the parallel code as specified by the
user (including explicit parallelism in the form of aligned DO loops)
but with all references to non-local elements of distributed arrays
replaced by references to the communication cache. The commu-

nication cache buffers data communicated in previous checkpoints
(for remote data fetches) or updates of non-local data to be commu-

nicated in future checkpoints. All numbers presented in Section 5

were collected using communication caches to avoid the expensive

data replication often employed by HPF compilers.
In simple cases, symbol handler code looks similar to executor

code with references to distributed data replaced by macros which

construct envelopes. However, the contents of an envelope may
depend on non-local data itself. Such a dependence is either ex-
plicit, for instance, when a non-local data reference is enclosed
in an IF statement with a non-local reference in the controlling

boolean expression, or implicit, when the index expression in the
reference depends on non-local data. In both cases, PST resolves

non-local data dependence by generating multiple symbol handler
iterations. The first iteration computes envelopes for remote data

accesses with no further dependence on non-local data. All state-

ments (and control flow constructs) with nested dependence are

ignored. The second iteration uses envelopes computed in the first
iteration to resolve first order dependence and compute another

level of envelopes. This process continues until envelopes for all
non-local references are computed. Such preprocessing is similar

to the program slicing [24] typically used for static performance
prediction. That is, each symbol handler iteration computes en-
velopes for another slice of the executable code, where each slice

adds a nesting level of non-local data dependence.

For the computation of non-local data dependence, the data
flow in the executable code must be analyzed. This can be done at

run time by adding tags (or guards) to each data element which store
the number of symbol handler iterations required for the complete
computation of a respective envelope. Alternatively, a less accurate

data-flow analysis can be performed at compile time. Symbol han-
dlers that are generated using compile-time analysis are typically

faster and more memory-efficient, but there are also cases where the
guard-based run-time mechanism is superior. For instance, for the

subroutine in Figure 3 an analyzer which is based on compile-time
analysis consists of two iterations because the compiler will assume

that the upper bound of 20 (nrcols ( i ) ) is non-local. An ana-
lyzer which performs guard-based analysis, however, detects that an
access to nrcols ( i ) is always local within loop 10 and analyze

the whole subroutine including loop 20 in only one iteration.
PST supports both symbol-handling mechanisms and allows the

user to choose (with a command line flag) between the more precise
guard-based (or dynamic) symbol handler and the faster and less
memory consuming static symbol handler, generated with compile-
time data-flow analysis. For the generation of static symbol han-
dlers, PST uses the same algorithms as Oxygen; for a detailed
explanation, the interested reader is referred to [6]. In Section 4.1,
we describe how dynamic symbol handlers—which are original to

PST—are generated. In Section 4.2, we explain how adding of

compiler optimization and a simpler data-flow analysis can lead to
a more memory-efficient hybrid preprocessing strategy.

4.1 Generating the Dynamic Symbol Handler

Void

1:

2:

3:

4’

5:

6:

7:

SYMBOLHANDLER(CFGC)

Integer iteration;

Boolean cent:= true;

while cent

INtTL4L1zEImRAm0N()

conl := pARTIALEXECUTECFG(iteration, c);

ENDOFITERATION(}

end while

Figure 4: SYMBOLHANDLER repeatedly executes symbol-handler

slices. INITIALIZEITERATION mainly allocates copies of data ref-

erenced in the respective iteration. ENDOFITERATION interprets

envelopes to initialize actual data transfers in the executor

Boolean PARTIALEXECU’tECFG(hrteger iteration, CFG c)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

if c is assignment a

return PARTIALEXECuTEASGN(iteration, a);

else

Symbol Jag;

CFG Cl , c2;

Boolean TI, T2;

decompose CFG into two sub-graphs q and c2,

as shown in Figure 1.

if (Ioop(cI, cz,jiag) or fork(cl, cz,jlag)) and

GuARD(/fag) > iteration

return true;

end if

TI := pARTIALEXECUTECFG(iteration, c] );

T2 := pARmALEXECUTECFG(iteration, c.2);

return TI or TZ;

eud if

Figure 5: PARTIALEXECUTECFG recursively decomposes a control-

jiow graph into subgraphs. As an example, in Figure 6 we depict
how this decomposition is pe~onned for the matrix-vector product
of Section 3.2.

In Figures 4, 5, 7 and 8 we formally describe tbe structure of

the dynamic symbol handler generated by PST. The structure is

outlined as a set of algorithms written in a PASCAL-like language.
The following data types are used in the description:

CFG: this type describes the control-flow graph of the subrou-
tine, for which a symbol-handler is generated, Note that al-
though algorithms SYMBOLHANDLER and PARIMALEXECUTE-

CFG (Figures 4 and 5) include parameters of type CFG,
for any given control-flow, the two algorithms are inline-

expanded by PST, the parameters are includecl in the figures
to maintain generality of the description.

Expression: a valid Fortran expression. It may contain arithmetic
operators, and side-effect-free function calls.

Assignment: a valid Fortran assignment statement.

Symbol: a variable or a routine parameter specifier.

131



....--------””-” -”-”--”” -----. ....-..-.. . . . . . . . ----- -------- .

Figure 6: Control-flow graph of the matrix-vector product of Sec-
tion 3.2, recursively decomposed into loops, forks and sequences.

Integer, Boolean: equivalent to the respective PASCAL types.

Algorithm SYMBOLHANDLER in Figure 4 describes the iterative

execution of symbol-handler slices in PST-generated code. Each
iteration executes statements which depend either on local informa-

tion, or on non-local data fetched in previous iterations. lNlTIAL-

IZEITERATION performs initializations required for each symbol-
handler iteration: for instance copies of data written in the symbol-

handler must be allocated. The main task of ENDOFITERATION (“the

router”) is to route envelopes from data-requesting to data-owning
processors. Both the symbol handler and the executor run in paral-

lel, and therefore a data owner must be notified about data fetches

or updates on another processor, such that sendlreceive communi-
cation pairs can be executed on both processors at the respective

checkpoint in the executor.
PARTIALEXECUTECFG (Figure 5, “the analyzer”) recursively

decomposes a given control-flow graph and computes communica-
tion envelopes. Depending on the symbol-handler iteration number
(iteration), the control-flow of a loop or fork with two subgraphs
is only entered if all necessary information is available (@g in

Figure 5, line 10). As an example, we show in Figure 6 how the
control-flow graph of the PLUMP matrix-vector product (see also

Figure 3) is decomposed into subgraphs.

Given the iteration number, PARTIALEXECUTEASGN decides
(Figure 7) whether data referenced on either the left or the right-

hand side of an assignment are available to a processor (because
they are allocated locally, or because corresponding envelopes were
created in the previous iteration). If data are not locally available,
either an update or fetch envelope is created with routines CRT-

UPDATEENVELOPE (Figure 7) or CRTFETCHENVELOPE (Figure 8),
respectively. If all data are available, the assignment is executed
with routine EXECUTEASSIGNMENT.

In contrast to the depth vectors computed by PST to generate the

static symbol handler [6] the dynamic symbol handler allocates a
guard for each referenced data element. A guard defines the earliest
iteration number at which the respective data element becomes
available on a given processor. In PARTIALEXECUTEASGN and in

GUARDEXP (Figure 8), guard values are accessed via the function
GUARD. Note that for arrays, a guard for each element is allocated,
as well as a collective guard for the whole array (which is equal
to the maximum of the element guards). For a given array z, the
latter is denoted as GuARD(x(*)). Routine SETGUARD is used to
set guards for arrays and their elements. At a given iteration, the
guard of the left-hand side is determined by both the guard of the
right-hand side (computed with GUARDEXP) and by the explicit and
implicit control-flow dependence on non-local data. A processor

Boolean pARTIALEXECUrEASGN(lnteger iteration, Assignment a)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

Integer g~,gr;

Symbol z;

Expression lhs, r-b;

decompose a into lhs = rhs;

9, := GU.ARDEXp(iferation, rhs);
if lhs is array x with index expression, UI.S= m(index)

hrteger g, := GUARDEXP(iferation, index);

9r := m~(9i,9r);

if z is local array

if g; < iteration

SETGUARD(z(index), g~);

else

SETGUARD(z(*),g/ );

end if

else x is distributed

if g~ < iteration

if ISREMOTE(z(index))

91 := max(9, + 1,9,);
if gl < iteration + 1

CRTUPDATEENVELOPE(X(index));

end if

end if

SETGuARD(z(inde.r), gl);

else

91:= max(9i + 1,9,);

SETGUARD(X(*), 9?);

end if

end if

eke lhs is scalar symbol z

g{ := SETGUARD(Z, g, );

end if

if gl < iteration

EXECUTEASSIGNMENT(a}

return false;

else

return true;

end if

return g~;

Figure 7: PARTIALEXECUTEASGN computes the guards of both
the left and the right-hand side of an assignment. If no non-local

dependence exist, the assignment is executed.

computes whether or not a data item is locally accessible with
function ISREMOTE. If both guards of left and right-hand sides are
less than or equal to the iteration number, the assignment can be
executed.

4.2 Additional Compile-Time Optimization

The above described symbol-handler introduces fairly large over-
head both in execution time, because complete data-flow analysis
is done at run-time, and in memory consumption, because a guard
is allocated for each array element. To reduce overhead, we imple-
mented two classes of optimizations: compile-time optirnizations

which do not change the semantics of the symbol-handler, and op-
timization which result in a less accurate data-flow analysis.
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hrt GUARDEXP(hrteger iteration, Expression e)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

Integer ret := O;

if e is operation

foreach operand expression op in e

ret := max (ret, GUARDEXP(Meratkm, op));

end foreach

else if e is array accessz(index)

Integer g~ := GUARDEXP(iferatM, kiex);

if z is Iocat array

if g, < iteration

ret := max (g,, GUARD(z(kfex)));

etse

ret := GuARD(z(*)~

end if

eke z is distributed array

if g~ < iteration

ret:= max (g;, GUARD(z(inrfex)));

if ISREMOTE(z(index))

ret:= ret + 1;

end if

else

ret := GuARD(z(*)) + 1;

end if

if iteration + 1 ~ ret

CRTFETCHENVELOPE(Z(index));

end if

end if

else e is scalar x

n?t:= GUARD(Z);

end if

return re~

Figure 8: GUARDEXP computes the guard of an expression. If non-
local data accesses are encountered during this recursive guard
computation, a communication envelope is created.

Semantic-Preserving Optimizations The compiler can assist

the above described run-time mechanism mainly through static data-
flow analysis. The described symbol-handler executes all assign-
ments (if the operands are available) and computes guards for every

symbol in the critical code segment. However, only assignments
to variables on which implicit (index expressions of distributed ar-
rays) or explicit control-flow (if statements and loop expressions)

depends have to be performed; and only for those variables guards
have to be computed. In addition, the compiler can predict that
guards of some variables are zero or remain constant in a certain

code segment. For instance, Fortran does not allow a loop index

to be changed during the execution of a DO loop, and therefore

guards for a loop index need only be computed and checked be-
fore a loop is entered. The compiler can also predict locality of

data-accesses to eliminate calls to ISREMOTE. For instance, all ac-
cesses tovar(il, i2, . . . ) in Figure 2 are local. Many other

well-known compile-time optimizations such as constant propaga-
tion and common subexpression elimination are also applicable for
accelerating the symbol-handler.

Since the symbol handler performs assignments, the values of
variables must be saved before and restored after each symbol-
handler iteration. Here, the compiler can assist by statically com-
puting a list of symbols which are not written in the symbol-handler

and need not to be saved.

Relaxing the Accuracy of the Data-Flow Analysis In Fig-
ure 4, we associate one guard with each array element. Both mem-
ory and execution-time overhead can often be significantly reduced
by allocating only one guard for the whole array, Practically this

can be done by replacing expressions like SETGUARD(z(index), g)

with generic SETGUARD(Z(*), g) calls (Figure 7, lines 11 and 23,

and F]gure 8 lines 10 and 16). For many simple loops, the compiler

needs to generate only symbol-handler code for one iteration.

In general, the above simplifications may also )result in less
efficient code, because for some expressions the guiird computa-

tion may be too conservative and cause additional symbol-handler
iterations. In many practical cases even with conservative and

completely static data-flow analysis, the number of sylmbol-handler
iterations is not affected. Our strategy is to also build optirnizations
of the second type into PST, but to leave their choice to the user
through compiler command-line flags. In addition to the fully static

and dynamic symbol handlers, the flags also allow for choosing hy-
brid mechanisms, which combine the virtues of the two approaches.

5 Evaluation of Compiler-Generated Code

The NEC Cenju-3 installed at CSCS is configured with 128 process-
ing nodes, each comprising a 75 MHz VR4400SC RISC processor,
32 Kbytes primary on-chip cache, 1 Mbyte of secondary cache and
64 Mbytes main dynamic memory. Processors communicate via
a packet-switched multi-stage interconnection network. For more

details see [25]. We use the GNU gcc compiler version 2.5.7 as

back-end for PST.

For the remainder of this section we collected performance re-
sults of two PST-compiled parallel programs: LAPLACE and PILS.

The two examples serve different purposes. With LAPLACE we

illustrate the overhead introduced by a user-defined dynamic dis-

tribution in contrast to a static distribution. With P[LS however,

the emphasis is on presenting a full application which could not

be efficiently parallelized without PST’s language extensions and
run-time support. In both cases, sequential executicm times were
obtained by compiling with PST for one processor, i.e., all paral-
lelization and data distribution directives were ignored.

5.1 LAPLACE

LAPLACE is based on a simple Successive Over Relaxation (SOR)

algorithm that solves a discretized two-dimensional second order
elliptic equation of the form

au
—= Au-p.
&

As test problem we consider the two-dimensional function

p(x, y) = sin(z) * sin(y)

over [0; 1] x [0; 1] with periodic boundary conditions dlscretized

on a 1024 x 1024 grid; u{) is initialized as O. In every iteration

all points of the underlying grid U,,l are recalculated using a five-
point stencil operator. To respect data dependencies, a “red-black”

coloring strategy is used: in a first step all (“red”) grid points with
even i + j are computed; the second step computes all (“black”)
points with odd i + j. Both steps are enclosed in the same public
PST SUB.SPEC PUBLIC routine. The routine’s s:~mbol-handler
runs twice and generates and saves two communication patterns.

The algorithm described above can be efficiently parallelized
using standard HPF features. For instance, the matrices u and p can
be distributed in blocks of columns. A mature HPF compiler is able
to parallelize all loops statically using the “owner computes rule”

and derive the communication pattern. Our point is however, to

measure the overhead introduced by dynamic data distributions in a
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Figure 9; Execution time of static analyze~ executor and router

on several Cenju-3 configurations accumulated over the jirst SOR
iteration for different data distributions, all emulating a block-wise

distribution. One iteration consists of two steps, which all call the
same routine to first compute “red” and then “black” gn’d points.

The router is based on an MPI all-to-all global broadcast and

its pe~ormance is independent of the actual distribution directive.
Analyzer and router are only invoked during the jirst iteration.
For the computation of speedups executor pe~ormance can be
compared to the sequential execution time of the main routine.

I block I block-gen. I dyn. array I dyn. function J

static 0.06 0.11 0.07 0.37

dynamic II 0.20 0.24 0.21 0.49

Table 1: Thepe~owrranceo fstatica nddynamica nalyzeron32
Cenju-3 processors is compared by showing analyzer execution
times in seconds during the jirst I!.APLACE iteration.

@4

rF32

p=16

P=8

H

less time than three SOR iterations. Since convergence istypi-

cally achieved after many more iterations, symbol-handler overhead

hardly influences the overall execution time.

5.2 PILS

PILS was originally designed for vector supercomputers, and it

is mainly implemented in C++. However, the most time-critical,
vectorizable parts of the package are implemented in 50 Fortran

subroutines which handle alllinear algebra operations. In atypical

application, they account for more than 9970 of the run-time. In
theparallelized version, the C++part is executed sequentially on
processor zero. Forthemeasurements presented inthispaper, we

have used our HPF extensions to parallelize the Fortran routines.

well-known iterative algorithm. Forthis purpose, we implemented
LAPLACE in four different ways: using a standard HPF BLOCK

distribution, using PST’s BLOCK-GENERAL distribution and using

DYNAMIC distributions (using both mapping array and mapping
functions). In all four cases the physical distribution of the ma-
trices u and p is the same. Figure 9 summarizes our LAPLACE
measurements on several Cenju-3 configurations.

Performance of both executor and analyzer strongly depend on
the chosen data distribution. For instance, on 64 Cenju-3 proces-
sors, the use of mapping functions results in more than eight times
slower executor code compared to the BLOCK distribution. This

is primarily due to the implementation of distributed arrays. Be-
cause we want to avoid data replication and use the communication

cache, every access to an array element requires the calculation of

it’s owner and local index. For the fastest distribution (BLOCK)

this involves the computation of some shift and mask operations.

For the slowest (dynamic functions), mapping functions must be
called. In addition, PST detects that parts of ownership and local
index calculations are loop-invariant with the BLOCK distribution,

whereas no optimizations can be applied in all other cases.

As shown in Table 1, on 32 processors, depending on the data
distribution, the dynamic analyzer is between 2.4 and 4.3 times
slower than the static analyzer. In all cases, however, it consumes

Figure 10: Finite-elemenl discretization grid for the 3-D model of
a bipolar transistor (BPOIJ.

The parallelized library is applied to solve equation systems

originating from the 3D finite-element simulation of two semicon-
ductor devices. The sparse matrix of the first system (BIPOL, see
Figure 10) stems from a bipolar transistor and has 20,412 rows,

263,920 non-zeros and, on the average, 13 non-zeros per row. The
matrix of the second system (DRAM) stems from the coupled solu-
tion of a sub-micron DRAM cell with 46,692 matrix rows, 986,042
non-zeros, and on the average 21 non-zeros per matrix row. We
use BiCGSTAB as the iterative solution method, preconditioned by
a D-ILU preconditioned in split position. Note that the solution
of both systems with the same solution method and preconditioned
were among the benchmark problems presented in [15].

Parallelization Strategy We have chosen two different mecha-

nisms to distribute the vectors and matrix used in PILS. Vectors are
declared as distributed arrays but the matrix is declared local since
no changes occur once the array elements have been initialized at

the beginning of the iteration. All vector-vector operations (such
as daxp y and ddo t) are parallelized in local PST routines. In
some vector-vector operations, MPI global reductions are added for
the efficient parallel~zation of reduc~ion loops (such as in ddot).
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Figure 11; Execution times on several Cenju-3 configurations of
different PILS components during one preconditioned BiCGSTAB

iteration of the solution of BIPOL (left) and DRAM (right). The left-
most columns show total time spent in PST routines in the iteration’s

steady state. This is broken down into time spent in PST local

routines and in time spent in the executor of public routines. In the

jirst iteration, analyzer and router account for additional execution

time overhead and several communication patterns are saved (20

for BIPOL and 32 for DRAM). For large machine configurations, the
major pe~ormance bottleneck is the execution of communication

checkpoints in the executor

Matrix-vector operations are declared public and their read and

write accesses to distributed vectors are managed by the compiler’s

global name space. The vectors are distributed using mapping
arrays (see also Section 3). These arrays are initialized at the begin-
ning of the iteration using a two-dimensional geometric mapping

heuristic [26].

PILS includes coloring heuristics for the extraction of paral-

lelism when solving triangular systems (which arise due to precon-

ditioning). Depending on the number of colors, the same Fortran
routines implementing matrix-vector operations are applied to dif-

ferent parts of the linear system. Hence, for the respective PST

routines, several different communication patterns must be stored.

Results Figure 11 summarizes our measurements on the Cenju-3

when solving the two equation systems BIPOL and DRAM. A closer
look at the figures let us make the following observations:

● The comparison of execution times on one and four proces-

sors allows us to estimate the cost of introducing an additional
level of indirect addressing when accessing vectors in main
memory via the mapping array and communication cache

(which is not necessary in sequential code). We estimate that
on our machines, accessing vector elements mapping arrays
and cache accounts for a performance loss of approximately
a factor two to three.

● Both the costs of analyzer and router are negligible if one

considers that for achieving a relative norm of the residual

of 10– 10for BIPOL around 80 and for DRAM 65 iterations are
required. If the computation of several linear systems of the

same structure is required (which is the case for typical PILS
client applications), the overhead is reduced even more.

● With increasing numbers of processors, the analyzer’s per-
formance scales almost as well as the local vector-vector

operations. The router, however, becomes more expensive

because in our current implementation, it requires the execu-

tion of an MPI all-to-all global communication operation.

The main performance bottlenecks when rttnnin~ PILS on
large DMPPs, are the executor checkpoints. Det~iled mea-
surements show that most of the checkpoint execution time

is spent in MPI send and receive primitives. Since message
packaging is done by PST optimally at run-time, we con-
clude that without major changes in the underlying algorithm
or data structures, performance could only minimally be im-
proved through additional compiler optimizations. Note that
we expect higher performance on DMPPs with smaller com-

munication startup latency because messages are short (for

instance, for DRAM and 16 processors in the average 34 data

items are communicated in each checkpoint).

analyzer P=4 8 16 32 64

static 0.17

:5

0.10 0.06 0.04 0.03
dynamic 0.66 0.52 0.43 0.36 0,49

Table 2: Execution times of static and dynamic analyzer (in seconds)

for the solution of DRAM running on several Cenju-3 corrjlgurations.

Table 2 provides a performance comparison of static and dy-

namic analyzers measured when solving DRAM. For large machine

configurations, the static analyzer outperforms the dynamic ana-

lyzer by roughly an order of magnitude.

6 Summary and Conclusions

Based on the collaboration with application developers, we have

identified weaknesses in the current definition of HPF which inhibit

the efficient parallelization of similar codes on DMPPs. We have
defined language extensions to HPF and built a prototype com-

piler for these extensions which has been integrated into an existing

HPF compiler. The compiler features three directives for dynam-

ically distributing data, and several mechanisms for the run-time

preprocessing of critical code segments.

We have put emphasis on the clean integration of our new

directives and programming paradigm at the high level into HPFand
at the low level with MPI. The programmer specifies code segments
which include PST directives as HPF extrinsic routines, with all
regular HPF distributions allowed in these routines, and parameter

passing handled transparently independent of para~eter shapes. On
the other hand, and in contrast to HPF, the expl,..t replication of
local computations as defined in the PST programming paradigm,
enables clean integration of message-passing primitives into PST
code segments.

PST has been integrated into the DMPP programming envi-
ronment Annai, which also features parallel debugging and perfor-

mance monitoring support. The parallel debugger assists the PST
programmer for instance through visualization of dynamically dis-

tributed arrays, and we envisage performance monitoring support
such as relating communication operations back to movement of
non-local array elements. The combined high-level data-parallel

and low-level message-passing support of all three tools gives both
comfort and access to the full potential power of the underlying
machine.

The existence of our compiler prototype and its usability and
performance experienced by our pilot users show that HPF exten-
sions like the ones described in this paper are both indispensable

for the parallelization of important applications, and efficiently im-
plementable. We are currently including further opti mizations into
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PST, increasing the support of the other components of Annai, and
considering the port of PST to other platforms. In addition we plan
to open access to PST to other users of our computing center, to
receive more feedback and work towards making PST a powerful

and versatile program development tool for DMPPs.
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