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ABSTRACT

Web search logs contain extremely sensitive data, as esédeny
the recent AOL incident. However, storing and analyzingdea
logs can be very useful for many purposes (i.e. investigdtimman
behavior). Thus, an important research question is howitatety
sanitize search logs. Several search log anonymizatidmitgees
have been proposed with concrete privacy models. Howener, i
all of these solutions, the output utility of the techniqugonly
evaluated rather than being maximized in any fashion. lddfe
effective search log anonymization, it is desirable towdethe op-
timal (maximum utility) output while meeting the privacyasdard.
In this paper, we propose utility-maximizing sanitizatioesed on
the rigorous privacy standard of differential privacy, lire tcontext
of search logs. Specifically, we utilize optimization maxie max-
imize the output utility of the sanitization for differerpjalications,
while ensuring that the production process satisfies difféal pri-
vacy. An added benefit is that our novel randomization gjsate
ensures that the schema of the output is identical to thdteoirt-
put. A comprehensive evaluation on real search logs validite
approach and demonstrates its robustness and scalability.
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1. INTRODUCTION

Search engines are used by millions, if not billions, of peop
every day. The queries posed by the users form a large voléime o
data that can give great insight into human behavior via gegirch
intent. Indeed, such data is invaluable for researcherslaredana-
lyzers in numerous field5 [11]. For example, search engimes
selves can use web search logs to identify common spellhogser
to recommend similar queries, or to expand queries. Mangroth
applications also make use of search log data, such as thesiana
of living habits from daily search, and the detection of epnics
[Q]. For this reason, search log data is collected, stored,ama-
lyzed in different ways by all search engines.

However, one problem with the storage and release of seagch |
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data is the potential for privacy breach. The queries thasex u
poses may sometimes reveal their most private intereste@md
cerns. Thus, if search log data is published without satitin or
with trivial anonymization (such as simply replacing usdés by
pseudonyms), many sensitive queries and clicks can becékpli
acquired by adversaries.| [3.]11] demonstrates that it chntake
a couple of hours to breach a particular user’s privacy iratisence
of good anonymization. Thus, it is crucial to anonymize skdng
data appropriately before storing or releasing it.

There has been significant work on database anonymizatitn th
looks at how to anonymize relational data. However, muchnisf t
work is not directly applicable since there are significaiffied
ences between search logs and relational data. Indeedhdegs
pose additional challenges for anonymization. First, eherno
explicit distinction between quasi-identifiers and sewsiinfor-
mation in search logs. Each user may pose hundreds of queries
that involve lots of personal information (i.e. name, addes, liv-
ing habits, .etc) over a short period of time. By combiningsia
queries, adversaries may easily discover an individudEsntity,
and it is difficult to foresee all possible combinations ttam lead
to privacy breaches. For instance, Tdhle 1 illustrates aetudf an
Internet user Alice’s search log (note: the user-IDs candterel
mined by cookies, IP addresses or user accounts; we ignerg qu
time and item rank of search logs in this paper). Althoughréz
user-ID has been replaced by the pseudonymous ID 000101, the
adversaries can still identify Alice’s search log if thewbasome
background knowledge on Alice (i.e. her address, she boaght
second-hand Honda car via autotrader recently, she like=)i
and thus learn more sensitive information (i.e. pregnaest) from
Alice’s complete search log. Second, search logs are spaite
highly-dimensional, thus it is more difficult to guarantégorous
privacy without sacrificing too much utility.

Table 1: An Example of Search Logs
User-ID Query URL Count
000101 | 1 Washington Avenugd  maps.google.com 5
Honda www.honda.com 2
autotrader www.autotrader.com 4
pizza www.pizzahut.com 1
pregnancy test www.medicinenet.com| 1

Inrecent years, several search log anonymization techaiave
been proposed in the literature to resolve the above prab[2fh
5,[17,14] 15, 19, 23]. Several anonymity models have been pro
posed for this domain along with corresponding anonynizasil-
gorithms. However, their basic premise is simply that tigpathm
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must satisfy the privacy requirements without worrying wthitne
tradeoff between privacy and utility. Ideally, what is nedds a
strategy that can maximize the utility while satisfying aegi pri-
vacy requirement. To our knowledge, there is little workusiog
on this challenging and practical problem. In this papertake the
first step towards tackling this problem in the domain of sedog
anonymization by formulating utility-maximizing problenwhile
ensuring a rigorous privacy standard.

1.1 Contribution

Given a particular privacy requirement, the utility-makzing
problem requires finding a way to anonymize search logs inri ma
ner that satisfies the privacy standard and simultaneoasligees
the optimal output utility. This requires deciding on a able pri-
vacy requirement as well as appropriate data utility measivhile
several different anonymity models have been proposedeititth
erature, in this paper, we utilizes the robust privacy dgdiniof
differential privacy [7] (which lowers the privacy breadsk even
if the adversaries hold arbitrary prior knowledge). We alsfine
several different notions of utility and propose diffeiiafly private
sanitization methods that can maximize the output utilityus, the
main contributions of this paper are summarized as follows:

e The differentially private randomization in prior work (Ko
rolova et all[19] and G6tz et &l.[10]) ensures differengpial

2. RELATED WORK

2.1 Search Log Anonymization

Following the AOL search log incident, there has been some
work on user privacy issues related to privately publishéegrch
logs. Adar [1] proposes a secret sharing scheme where a query
must appear at leastimes before it can be decoded. It may poten-
tially remove too many harmless queries, thus reducing uidity.
Kumar et al. [[20] propose an approach that tokenizes eadly tue
ple and hashes the corresponding search log identifiers evaw
inversion cannot be done using just the token frequencidso, A
serious leaks are possible even when the order of tokenddsihi

More recently, some anonymization models| [19]14[ 15, 28¢ha
been developed for search log release. He etlall [14], Hong et
al. [15] and Liu et al. [[2B] anonymized search logs based on k-
anonymity which is not as rigorous as differential prive€@]} Ko-
rolova et al. [[19] first applied the rigorous privacy notiodifferen-
tial privacy to search log release by adding Laplacian ndikmv-
ever, several shortcomings can be discovered in this worlst, F
the released result of this is the statistical informatiémweries
and clicks where all users’ search queries and clicks aneeggted
together (without individual attribution). The data ugilmight be
greatly reduced since the association between query-ird pas
been removed (the published data in G6tz etlal! [10] alsemuff

vacy by adding Laplacian noise to the aggregated query and this constraint). With the released data, we cannot devadogon-

clicked url counts. However, such approaches break the as-

sociation between distinct query-url pairs in the outpotsi

all the user-IDs have been removed, which might be useful
in only a few applications. Therefore, we propose differen-
tially private algorithms based on a different randomizati
strategy:sample user-1Ds for every click-through query-url
pairs using multinomial distributionwhich preserves user-
IDs. This, to our knowledge, is the first randomization strat
egy to generate output with identical schema as the input

alized query suggestion or recommendation for search esgamd
also, we cannot carry out human behavior research sinceutpato
data do not include the information that any two queries g ko
the same user. Second, as addressed by Gotzletial. [10]lakede
differential privacy notion in[[19] is not sufficiently stng. Third,
the utility in [19] is merely evaluated but not shown to be iirax
mized. Adding Laplacian noise to the counts of selectedigser
and urls is straightforward and we cannot directly modeinjzia-
tion problems to maximize the output utility. Alternatiyebur pa-

search log. Thus, the sanitized search log can be analyzedper is to seek the maximum output utility for a novel diffetiatly
in exactly the same fashion and for the same purpose as theprivate search log sanitization mechanism which genenatjguts

input.

e Within our approach, the randomization algorithm also en-
sures the utility-maximized output that is still differeaity
private. To do this, we formally define the utility-maxinmizgj
problem: find an optimal sanitization that maximizes the out
put utility while satisfying differential privacy. Spedifally,
for quantifying the output utility, we define three diffeten
utility notions (measuring the utility of frequent clickibugh
query-url pairs, the query-url pair diversity, etc.) thatutd
benefit different applications (essentially, any utilitgasure
can be coupled into our differentially private sanitizattoy
replacing the utility objective function). We also provath
our sanitization satisfies differential privacy;

e We transform the utility-maximizing problems into stardiar
optimization problems. We can now leverage prior devel-
oped effective solvers and adapt them to our problem. We
experimentally validate the utility using real data sets.

The remainder of this paper is organized as follows. Section
reviews the related literature. In Sect[dn 3, we presentpoid
vacy model and the sanitization process. Sedflon 4 intresltive
constraints that guarantee privacy protection. We themtidate
three different utility-maximizing problems and show thia cor-
responding sanitization methods are differentially geva Sec-
tion[H. Sectiofb evaluates the output utility of the propbsaniti-
zation approaches. Finally, Sect[dn 7 concludes the paper.

with the identical schema as the original search log.

Furthermore, Gotz et all_[10] analyzes algorithms of piiitig
frequent keywords, queries and clicks in search logs andwis
a comparison w.r.t. two relaxations efdifferential privacy (e-
laxations are indispensable in search log publishingour work
utilizes the stronger relaxation efdifferential privacy — proba-
bilistic differential privacy. Since we explore the optimaility
in our differentially private sanitization mechanism whhigutputs
search logs rather than the results of counting queries loicd
urls over the search log, our work has a completely diffefecus,
compared with their work [10].

2.2 Differential Privacy

In the context of relational data anonymization, Dwork ef6al
7] have proposed the rigorous privacy definition of differainpri-
vacy: arandomized algorithm is differentially privatedaffany pair
of neighboring inputs, the probability of generating thengaout-
put, is within a small multiple of each other. This means toaany
two datasets which are close to one another, a differentiailate
algorithm will behave approximately the same on both data. se
This notion provides sufficient privacy protection for useggard-
less of the prior knowledge possessed by the adversariéshag
been extended to data release in various different conlpesisles
search logs (i.e. contingency tables, graph data). Spaityfixiao
et al. [27] introduced a data publishing technique whichuess
e-differential privacy while providing accurate answers fange-
count queries. Hay et al._[13] presented an efficient allgorifor



releasing a provably private estimate of the degree digtdb of
a network where it also satisfies the differential privacyc¥-
erry et al. [25] solved the problem of producing recommeiotiat
from collective user behavior while providing differertivacy
for users. Our work follows the same line of research.

2.3 Tradeoff between Privacy and Utility

For any data modification based anonymization techniquada1
off between privacy and utility naturally holds. Li et al.2Pan-
alyzed the fundamental characteristics of privacy andtytand
proposed a tradeoff framework for discussing privacy ariityut
In microdata disclosure, Bayardo et all [4] and LeFevre .ef2dl]
raised the optimal k-anonymity and the optimal multidinienal
anonymization problem respectively. Kifer et dl. [18] meted a
way to gain additional utility from k-anonymous and |-digerta-
bles. Recently, Ghosh et al.][8] introduced a utility maximg
mechanism for releasing a statistical database. Howdwere tis
little work on this topic in the context of differential paey guar-
anteed search log release. To our knowledge, we takes atéipst s
towards addressing this deficiency.

3. MODEL
3.1 Differential Privacy

Our objective is to privately sanitize the input search It
includes pseudonymous user-IDs, search queries, clickedund
the counts of every user’s click-through query-url pairsenkk,
we ensure that the output has the identical schema as the inpu
every single tuple in the output includes a pseudonymousliise
a click-through query-url pair and its count for this user.

We consider two search logs to be neighbors if they differmy a
arbitrary user’s (all) query tuples. Hence, we define evesr's all
query tuples in a search Idg as its user log.

DEFINITION 1. (USERLOG A;) Given a search logD, we
denote each uset;’s user log A, as all his/her query tuples in
D, where every single tuplésk, gi, uj, ciji] € A includes a
pseudonymous user-I3x), a query(g;), a url (u;) and the count
(cijx) of query-url pair(g;, u;) belonging to uses,.

Clearly, every search lofp consists of numerous individual user
logs (D = UVSkED Ay). Given two neighboring input search logs
D andD’ (w.0.l.g,D = D’ + Ay), ensuringe-differential privacy
for all the outputs might be impossible: for any outgutncluding
items inD but not inD’ (such as user-13;), the probability that
generatingO from D’ is zero but fromD is non-zero, hence the
ratio between the probabilities cannot be boundedbfdue to a
zero denominator). We thus adopt the following relaxedarotf
differential privacy (using our notations):

DEFINITION 2. ((€,8)-PROBABILISTIC DIFFERENTIAL PRIVACY
[241[10]) A randomization algorithrk satisfieqe, §)-probabilistic
differential privacy if for any input search lofp, we can divide the
output space? into two sets€21, Q2 such that

(1) Pr[R(D) € 1] <4, and
for D’s all neighboring search log®’ and for any outpu© € Qo:
(2) ErIRD)=0] _ i gpq PrIRDI=0] e

PrR(D)=0] PrR(D)=0]

The above probabilistic differential privacy ensures tRagatis-
fiese-differential privacy with high probability (no less than- 4)
[1Q]. In this definition, the sef; includes all privacy-breaching
outputs fore-differential privacy where the probability of gener-
ating such outputs is bounded By Specifically in our sanitiza-
tion (w.o.l.g. D = D’ + Ay), since we retairuser IDsin the

output andD’ does not contais,, we can only considef?; as
the output space where all outputs{ii include user-IDsy (be-
causee-differential privacy cannot be achieved whén, D dif-
fering in usersy’s user logAx and the outpu® including sz).
Hence, the probability’r[R(D) € 1] should be no greater than
0 (the probability ofs, existing in the overall output spa€eshould
be bounded by). Moreover, for any outpu® € Q, two ratios
should be bounded yf for achievinge-differential privacy. Def-
inition[2 has been proven to be stronger than the privacyonaif
Korolova et al.’s work[[19] (indistinguishability differgial privacy
[6]) by Gotz et all[10] (as also shown in Sect[onl4.3).

All the sanitization methods addressed in this paper andgined,
to satisfy this robust and rigorous privacy definition. Nottaa
how much prior knowledge is owned by adversaries, we canrlowe
the privacy risk by bounding the probabilities that any ey two
neighboring inputs produce any possible output.

3.2 Search Log Sanitization Process

With a rigorous privacy standard (Definitigh 2), our goalds t
maximize the retained utility for the sanitized search ld4s now
illustrate our search log sanitization process that irtegrthe sat-
isfaction of differential privacy and utility maximizatio

The most sensitive values in search logs are the click-tirduor
formation. Sometimes search queries may be more sendiave t
the clicked urls in search logs (i.e. query “diabetes meditand
click “www.walmart.com”), or vice versa (i.e. query “medie”
and click “www.cancer.gov”). We thus consider each digtatick-
through query-url pair (simply denoted as query-url pasraaom-
bination of the sensitive values in the search logs. In oivapy
model, Definitio 2 ensures that adding any user’s all seiafo-
mation (user-1D, query-url pairs and the counts) in the trgnes
not cause any additional risk.

Table[2 presents some frequently used notations in our model
we denote;; as the input count of any query-url pdiy;, ;) and
the set of these couns/c;;} constitutes thénput query-url his-
togram Similarly, z;; represents the output count @f;, u;) and
the set of these counts= {Vz;; } forms theoutput query-url his-
togram Finally, the output counts of all tripletgy;, u;, sx) form
the output query-url-user histograrwhich is randomly sampled
(the sampling process will be given later on). Similarle teter-
ministic counts of all triplet$g;, u;, sx) in the input form thenput
query-url-user histogram

Table 2: Frequently Used Notations

(gi,uj) an arbitrary query-url pair in the input/output
(qi, uj, Sk) any users’s arbitrary query-url paifg;, u;)
Cij the total count ofd;, u;) in the input
Cijk the count of triplet §;, u;, s;) In the input
T4 the total count of4;, ;) in the output
(variable) (in the optimal solution':c;.*y.)
x;51 (random | the count of triplet §;, u;, s3) in a sample outputq(jjk
variable) is the count of ¢;, u;, sy) if sampling With:c;‘j trials)

Algorithm [ illustrates two steps of our sanitization. Westfir
compute the optimal output counts for all the query-url pairthe
input search logD, and then generate the outpiitby sampling
user-IDs for each of them with multinomial distribution [2he de-
tails of this multinomial sampling are given later on). Megecifi-
cally, the algorithm can be guaranteed to be differentialiyate by
some constraints for the output counts of all query-urlgpfgitc;; }
(we can derive the constraints from the randomization, asvsh
in Sectior{#). Meanwhile, the output utility can be maxincizsy
the utility objective function (some options are given irc&en[3).
Thus, we can formulate the utility-maximizing problem tonco
pute the optimal output counts of all query-url pairs for taedom



Input Search Log Multinomial Sampling Output Search Log
User- Click-through Count | Compute the Click-through Optimal Sampled User- Click-through Count
ID (s,) | query-url pair (q;, w) | (c) | optimal output query-url pair output fount User—ll?s ID () | query-url pair (g, w) | (x;,")
081 pregancy test nyc, 2 counts of a”' the (@5 w) ) (sampled times) 081 pregancy test nyc, 0
medicinenet.com query-url pairs pregancy test nyc, 0 medicinenet.com
book, amazon.com 3 ‘ medicinenet.com book, amazon.com 2
google, google.com 15 | (the santization/ book, amazon.com 3 2081 (2), google, google.com 8
082 | carprice, kbb.com | 2 |randomization 083 (1) 082 | car price, kbb.com | 1
google, google.com 7 algorithm is google, 20 20081 (8), google, google.com 3
: guaranteed to be google.com 082 (3), 083 (9) :
083 | google, google.com | 17 | differentially 083 | google, google.com 9
N N . diabetes medecine, 0 N -
diabetes medecine, 1 private by the diabetes medecine, 0
. walmart.com
walmart.com constraints w.r.t. walmart.com
ice, kbb. 4 3->082 (1
book, amazon.com 1 the output counts| car price, com M, book, amazon.com 1
- of all the query 083 (3) e kb 3
car price, kbb.com 5 -url pairs) (Maximize the output utility with a defined utility measure car pice, \ob-com

for the output counts of all the query-url pairs)

(a) Sanitization with Multinomial Sampling

(b) A Sample Output

Figure 1: An Example of the Sanitization Algorithm

sampling (the optimal solution* = {Vz;;} achieves the optimal
output utility and also satisfies differential privacy coamts).

Algorithm 1 Sanitization Algorithm

Input: search logD and differential privacy parametets, §)

Output: sanitized search lo@

1: Compute the Optimal Output Counts for all query-url pairs in the
search log{V(¢i, u;) € D, zj;}.
[***solve an optimization problem: define a utility objee#i function
w.rt. the output count§Vvz;;} while {Vz;;} subject to some con-
straints that ensures differential privacy for this altor. (the optimal
solution is{Vzx;;}) ***/

2: Generate the Output O: sampling user-IDs for every query-url pair
(gi,wj) with x;‘j times multinomial trials (the probability of every
sampled outcome in one trial is given by the infRit

Figure[d shows an example of Algoritfih 1, particularly thetimu
nomial sampling after computing the optimal output courftalb
query-url pairs{Vz;;} (assume that {0, 3, 20, 0, 4} in the example
is the optimal solution of an optimization problem that irmdgs a
utility objective and some constraints ensuring diffeiargrivacy).
Therefore, our multinomial sampling has following propest

1. The number of multinomial trials fdg;, u;)’s user-ID sam-
pling is given asc}; (optimal solutionz™ = {Vzj;}).

2. In every multlnomlal trial for any query-url paifg;, u;),
the probability that any user-I3;, is sampled, is:;;x/cij.
Specifically, i.e. “car price, kbb.com” in Figufé 1, the pasb
bility that user082 is sampled iﬁ. However, the prob-
ability that usep81 is sampled for this query-url pair is 0. In
addition, the expected value of every random variahlg
can be derived a¥(zijx) = zi; - CCJ’“ Thus, given an
output countz;; (optimal) for any queryurl pair (g, u;),
theshapeof theinput/outputqueryurl-userhistogramsw.r.t.
only query-url pair (¢;, u;) (illustrating theindividual counts
of (¢:, u;) heldby distinct usersshouldbeanabgous(thisis
guarnteedby multinomial distribution). i.e. the input/output
query-url-user histogram w.r.t. “google, google.com”gev
if the output counte;; = 20 < ¢;; = 15+ 7417 = 39, the
shape of histograms {8, 3, 9} (in a randomized output, see
Figure[1(B)) and {15, 7, 17} (in the input) is similar.

3. IfV(gi, u;), thelnput Suppor(denoted as;; / Zv(qi’uj) Cij)s
is close to th@utput Supporfdenoted as;; / ZV(%

) Tij)s

the shape of the output query-url histograzan be maxi-
mally preserved. At this time, after sampling user-IDs with
the above output counts of all query-url pairs (or called out
put query-url histogram}the shape of the output query-url-
user histograntan be maximally preserved as well.

Actually, one of our utility-maximizing problems is to seek
the optimal output utility that minimizes the sum of the sup-
port distances for all frequent query-url pairs (see the- defi
nition and details in Sectidn 8.2, if pursuing the minimum
sum of support distances for all query-url pairs, we can fowe
the minimum support threshold Thus, once the sum of the
support distances are minimized (utility-maximizing prob
lem can do so, i. e it figures out that the distance between
{57} = {0,55, 2,0, 57} and {v=-} = {H5H0,
3+°+1 15”“7 0041 042451 js mlnlmlzed while sat-
|sfy|ng some prlvacy guarantee constraintbg shapeof the
input/outputqueryurl-userhistograms can be analogous (i.e.
see the counts in the left table of Figpire 1(a) and Figuré 1(b)

‘Ll]

To sum up, if we compute the output count of every query-url
pair z = {Vz;;} by solving an optimization problem (for vari-
ablesz = {Vz;;}) that maximizes the output utility and also en-
sures differential privacy for the sanitization algorithtine output

with optimal utility can be generated by sampling user-1Ds4ll

the query-url pairsthe schema of Input/Output is indeed identical
since we can sort the output by the sampled user-IDs, as shown
Figure[1{b) where the association between query-url paird the
shape of query-url-user histogram can be presejved

4. PRIVACY GUARANTEE CONDITIONS

Assume thaRR is a sanitization algorithm that samples user-IDs

for every query-url pair(g;, u;) with its total output counte;;.

Since the sampling procedures for all query-url pairs adepen-
dent, for any inputD ({Vc;;x} is given) and a possible outpu®
({Vzi;1} is also given), the probabilityPr[R(D) = O] can be
computed in terms of the probability mass function of multmal

distribution [2]:
I1 I1

V(gqi,uj) €0 Vs €D

Indeed, Pr[R(D) = O] is determined byx;; and {Vs, €
D, % and ;. Given inputD, {Vsy, %} are constants.

(Cijk/cij)x”k] )

Pr[R(D) =0] = o]

[:Cij! .



Hence, ifV(q:,u;) € D, the output count;; is determined, we
can compute the probabilitr[R (D) = O] for any outputD € Q2
(V451 are fixed inO). Therefore, given any pair of neighboring in-
putsD andD’ that differ in one user log, bounding the probabilities
per Definition[2 for a divided output spa€ecan be transformed
to the problem: determining a feasible solutior= {Vz;;} in the
output that satisfies all the probability bounding condition Def-
inition [Z for an output space sp? = Q; U Q». Using this we
can formulate the constraints (satisfying differentialvgcy) for
variables: the counts of all query-url paits= {Vz;;} in all the
possible output® € Q.

Without loss of generality, we leb = D’ + A, whereD and
D’ differ in an arbitrary uses;’s user logA,. Thus, we first derive
the probabilities in Definitioh]2 for alD in the output spacg, and
then deduce the constraints for satisfying differentialgay.

4.1 Probabilities in Definition[2

Due toD = D’ + Ay, the user-1Ds,. might be sampled into the
output O if starting from D. Thus, for all outputsD which con-
tain s5, we havePr[R(D’) = O] = 0 (sinces, ¢ D'). Recall
that,given A, = D — D’ (or A, = D’ — D), we canonly divide
the output spacef? into two sets(2; and(2, as: (1) ewvery output
O in Q; includessy; (2) every output O in Q- doesnot include
sk, becausé2; should includes all the exceptional outputs that vi-
olatese-differential privacy. We thus bound the probabilities per
Definition[2 for the above output space split of any two neighb
ing inputs ¥O € Q,, user-IDs; € O ands; ¢ Q2) to achieve
differential privacy.

411 foralloe

SinceVO € Q1 wheresy, € O, we havePr[R(D’) = O] = 0.
Thus, the probabilityPr[R(D’) € Q4] is also equal to 0. We now
compute the probabilit’r[R(D) € Q4].

Specifically, to generate any possible outpuincluding user-
ID s from D, the probabilityPr[R(D) = O] (whereO € )
is equal to the probability thdts, is sampled at least once in the
multinomial sampling process of all the query-url pairsAp” . For
every query-url paig;, u;) € Ay, if its total output count in the
sampling isz;;, the probability thats;, is not sampled in a single
multinomial trial (a user-1D inD exceptsy, is sampled) |s%
simply because use, holds (¢;, u;) with the countc;;, and the
total count of(g;, u;) is ¢;; in the inputD. SinceV(q;, u;) € Ag
may lead to that, being sampled and the multinomial sampling
for every query-url pair(g;, ;) includesz;; independent trials,

we havePr (s is not samplep= [T, U‘)EAk(CijZ#)zw. Fi-
iy i

nally, we can obtain the probability that is sampled at least once:
i Cij —Cijk \@;;
P?”[Sk 1S Sampleﬁ: 1- HV(Qi,U«j)EAk( . ]k) 7.

Thus, we can derive the probabilit?r[R(f)) € Q1] as below:
Cij — Cijk \x;;
(5™ )

PT[R(D) c Ql] =1-
V(qi uj) €AY

One important issue is worth noting in multinomial sampling
For any query-url paifg;, u;) € A, wherec;jr = ci; ((¢i, uj) is
unique and only belongs to usey), if its output countz;; > 0, the
probability Pr[R(D) € €] should be equal td which cannot be
bounded. Therefore, we let; = 0 for this case and all the unique
query-url pairs in the input should be removed.

4.1.2 forallo e,

; ioLr[R(D)=0]
For any outpuD € Q», we discuss the ratiog = 57=5; and

Pr[R(D')=0]

Frrpi=o] (sinceO does not include, we havePr[R(D) =

O] > 0 andPr[R(D’) = O] > 0).

Intuitively, for all query-url pairs that belong to both, and
D’, sampling user-IDs fronD involves an additional candidate
(butsi, ¢ O) compared with sampling user-IDs frofd'. We thus

Pr[R(D)=0] Pr[R(D")=0] : :
havem <1 andm > 1. Since the ratio
Fri5A=2) is bounded byl (and obviouslye©), we only need to

: { PrIR(D)=0]
derive the rati P:[R(D):O .

As mentioned in Sectid]m.l, all the query-url pairdirfand
Ayg) but not in D’ should be not be retained in the output. Thus,
to generateO from D, we only sample user-IDs for the common
query-url pairs ofD and D’. Two categories of common query-url
pairs can be identified i’ (D" C D here):(1) query-url pairs in
D’ but notinAy, (2) query-url pairs inD’ and also inAy.

In the first categoryy(q;, u;) in D’ but not in Ay, the probabili-
ties of sampling user-1Ds fdig;, ;) from D and D’ are equivalent
because the query-url-user histogram w.r.t. these quépairs in
D andD’ is identical. We denote the ratio of these two probabili-

ties as%g;:oo]] (ij) that is equal td.

In the second category)(qg;,u;) in D’ and also inAy, we can
consider every sampled user-ID in the procesR6D) — O into
two cases! s is sampled or not” In every multinomial trial for

(¢s,uj), the probability of sampling, is cci while the proba-
*J e
bility of sampling another user-ID i) (also inD’) is 1 — ‘CM
ij
Since the number ofg;, u;) in the output isz;; (x.; times inde-
i i{Br[R(DN=0] (- = 1 _
pendent trials), we have ratigs o 5 =01 (ij)= TR =
y
(Oi%%)xii (sinceO does not containy, s, should not be sam-
(¥l ij

pled inz;; times independent trials when generatmdrom D).
In sum, to generate any outpOt € Q» from D and D’ respec-
tively, it is independent to sample user-IDs for all the abdwo

categories of query-url pairs. ThugOQ € Qs, %g;jgf =

Pr[R(D)=0] . . ;
Hv(qi,uj)epf W(m). SinceV(gs,u;) € D' but¢ Ay,

FARSI=H (i) = 1, we havevO € Qq:

Pr[R(D")=0] _ Cij @i
| ST

Pr[R(D)

c Ciik
V(qiu;)€DNAy, ik

4.2 Differential Privacy Constraints

(&, 8)-probabilistic differential privacy (Definitiohl2) demasid
for any inputD, Pr[R(D) € Q1] < §; for D’s arbitrary neigh-
boring inputD’ andvVO € Q, 1/e¢ < % < ef. We
now show that proving the randomization algorithm to(bgj)-
probabilistic differentially private as per Definiti@h 2eguivalent
to ensuring that the output counts of all query-url pairgséas set
of conditions. Theorerfl 1 is proven in Appenfiik A.

THEOREM 1. The randomization algorithriR achieved(e, d)-
probabilistic differential privacy if for any input seardhg D, the
output counts of query-url pairg = {V(qi, u;) € D, z;;} satisfy:

1. if 3triplet (gi, u;, sk) € D such thate; i, = ¢ij, thenz;; =

0 (do not output unique query-url pairs);
2. forall A, C D: ]‘[qu’uj)eAk( Ci_)wii < e

Cij —Cijk

. Cij —Cijk \x;;

3. forallAy, C D: 11— HV(qi,uj)eAk(JTjjk) i < 6.

As a result, we can utilize these conditions to formulatétyti
maximizing problems in our differentially private seardylsan-
itization. Specifically, we can implement Condition 1 whiee-
processing the input search log (removing all the uniqueygud



pairs), and regard Condition 2 and 3 @#ferential Privacy Con-

straintsin the sanitization. As soon as they are satisfied, the sani-

tization should bée, §)-probabilistic differential private for every
pair of neighboring search logs that differs in only one usgr

Note that while our multinomial sampling process is differe
tially private, the computation of the counts™(= {Vz;;}) is not
necessarily so. To make the whole (end-to-end) sanitizaliifer-
entially private, we must ensure that the count computagtep is
also differentially private. One simple way to do this is &etthe
generic procedure of adding Laplacian noise to the countsedke
from the optimization modek(" = {Vz7;}). Since the count com-
putation can be viewed as a query over the input databasigadd
Laplacian noise will make the computation differentiallyvpate.

Specifically, similar to Korolova et al.[ [19], if the countfdi
ferences of every query-url pafg;, u;) in the optimal solutions
derived from two neighboring inputs/X, D) are bounded by a
constantd, computing optimal counts can be guaranteed te’be
differentially private [19] ¢ is the parameter of ensuring differen-
tial privacy for such step) by adding Laplacian noise to thgmal
count of every query-url paitv(q;, u;), zi; < zi; + Lap(d/€').
Essentially, giveni, we can simply bound the difference of every
query-url pair's optimal count (computed from any two ndigh
ing inputs D, D") by executing the following preprocessing proce-
dure for every user logl, in the input databaseX or D’):

1. formulate two utility-maximizing problems (pick the sam
option as the following sanitization) with neighboring utp
D andD — Ay (or D' andD’ — Ay if D’ is the input) re-
spectively, and solve them.

2. if the count difference of any query-url pair in both opdim
solutions is greater thaf) removeA,, from D (or D') 2.

If applying the above preprocessing procedure to any twgtnei
boring inputsD and D’, and computing the optimal output counts
with the updated) andD’, the difference of every query-url pair's
optimal count can be bounded By Thus, adding nois&ap(d/¢’)
can ensure’-differential privacy [19] for the step of computing
optimal counts in Algorithriill. While adding noise may distbe
optimality to some extent, this is the price of guaranteeimgplete
differential privacy. Since adding Laplacian noise is alvgtlidied
generic approach, we do not discuss this differential pyivguar-
antee due to space limitation, atite saritizaion/randomization
algorithm refersto the sanpling processn this pgper.

4.3 Indistinguishability Differential Privacy
Recall that in Section 3.1, we have noted that probabilidific
ferential privacy|[24, 100] provides stronger privacy guses than
indistinguishability differential privacy [6, 19]. Pactilarly, the
probabilistic differential privacy notion has followinggperty:

PrRopPoOsSITION 1. Probabilistic differential privacy implies in-
distinguishability differential privacy in our search laganitiza-
tion: if all the conditions in Definitiofil2 are satisfied witumme-
ters (e, 0), the following two inequalities also hold:

1. Pr[R(D’) € O] < e - Pr[R(D) € O] + 6;

1The optimization problems result from any two neighboring i
puts (especially the large neighboring inputs) generatdai op-
timal solutions. Thus, il is not too small, the output count differ-
ence can be bounded ldy Otherwise, ifd is required to be suffi-
ciently small (for reducing sensitivity/noise), we rem®ane user
logs (that cause large differences in two optimal solufiori&his
allows us to trade off utility for end-to-end differentiaiyacy.

2. Pr[R(D) € O] < e - Pr[R(D’) € O] + 6.
whereO is an arbitrary set of possible outputs antiC Q.

Gotz et al. prove Propositidd 1 and show that the converse of
it does not hold in[[10] (The proof of Propositiéh 1 is alsoegiv
in Appendix[B). Hence, satisfying Definitidd 2 with the diféa-
tial privacy constraints (Theoreh 1) provides more rigarptivacy
guarantee than the work of Korolova et al.[[19].

5. UTILITY-MAXIMIZING PROBLEMS

While search logs consist of millions of queries and clickatigh
urls, from the perspective of utility, clearly, all are naual. In-
deed, from an application perspective, only a small pontiaty be
useful with regards to a specific purpose. For instance, theljre-
quent query-url pairs are useful for query recommendatitence,
different data usage purposes may result in different requénts
for extracting data from the original search log. To prijyatani-
tize search logs while retaining maximal utility, we neeévaluate
the data utility according to the usage requirement. Ingbigtion,
we introduce three utility-maximizing problems with thrdiéfer-
ent utility definitions.

5.1 Maximizing the Output Size

Before formulating the utility-maximizing problems, westipresent
the differential privacy constraints. As stated in Theof@nour
sanitization algorithm satisfigg, §)-probabilistic differential pri-
vacy if three conditions for the output counts of all querypairs
are satisfied. Specifically, Condition 1 should be impleraérin
the preprocessing steprhile Conditions 2 and 3 give two sets of
constraints for the output counts of all query-url pairss {z;; }:

VA, C Dvnv(qi,uj)e,qk( il

)rii < e€
Cij —Cijk -
Cij—Ciik \Nas:
st.4 VA, C D, 1~ H\f(qi,uj)eAk(JTj”)“] <6

Vz;; > 0andz;; is an integer

Intuitively, the differential privacy constraints can barisformed
into linear constraints: (constantt;;, = %ii__ each user log

Cij—Cijk’

Ay’s two constraints can be combinedmai{e, log 25 })

ot VA, C D, ZV(Q{,,“j)GAk xi; - log tijr < min{e, log 125}
Vas; > 0 andx;; is an integer

4
In the above differential privacy constraints (each usgrden-
erates a constraint): due ;. = c_fg_k > 1, the coefficient
(¥l 3

of all the linear constraints log t; should be greater than 0 (all
unique query-url pairs have been removed). Lettidg < b be
the above differential privacy constraints, all the eleteen the
constraint matrix\/ are non-negative and all the element$ ire
equal tomin{e, log 1 }. Thus, we have:

STATEMENT 1. Differential privacy constraints (Equation] 4)
are always feasible and bounded.

We show the above property from the geometric perspective of
linear constraints. Specifically, linear constraififfz < b,z >
0,b > 0} form aconvex polytope which is always feasible and
bounded ifM,b > 0 [26]. i.e. in Figureg 2(d) (two differential
privacy constraints are generated by two user logs whidclidies
three distinct query-url pairs), the feasible regiod dfz < b,z >

2For all unique query-url pairs, we let the output count bed (f
satisfying Condition 1 in Theorefd 1).



0,b > 0} is formed as polytope OABCDE by two constraints
(the space below planes AFH and GCD). Similarly, in Figume)]2(
(three differential privacy constraints are generatedHvge user
logs which includes two distinct query-url pairs), all tr@ugions

in the feasible region OABC (the region below AD, FC and EH)
satisfy all the differential privacy constraints. For meaiables
and constraints, more hyperplanes would form the polythpeis
still feasible and bounded [26].

2
F
e\

. H

(0) C D Xy

(@) 3 query-url pairs
in 2 user logs

(b) 2 query-url pairs in
3 user logs
Figure 2: Differential Privacy Constraints

One interesting point worth noting is that the size of the- out
put (the total number of all users’ query-url pairs in theputy is
bounded by the differential privacy constraints. If we regthe
output sizezv(%uj)ED x;; as the utility objective function, we
can use the following problem to seek the optimal outpuitytil

>

V(i,u;) €D

: 1
ot VA, C D’ZV(Qi,uj)eAk x5 - logtsj, < min{e, log =5}
Va;; > 0andz;; is an integer

max : Tij

We define the above problem ‘@utput size Utility-Maximizing
Problem” (O-UMP). Since itis an integer linear programming (ILP)

problem, we can solve it using some standard method (such as

simplex algorithm) with linear relaxation [26] (the LP ptetn is
always feasible and bounded). After solving it (optimalusioin
z* = {V|x};]}), for every(qi, u;), we sample user-IDs withe;; |
times multinomial trials (the input query-url-user histag pro-
vides the probability of every sampled outcome in one tridhe
sanitization algorithm satisfies Definitibh 2 (Proof in Appéex[D).

LEMMA 1. The O-UMP based sanitization algorithm satisfies
(e, 0)-probabilistic differential privacy for any pairs of neigbring
input search logs.

Since the optimal solution™ = {Vz7;} satisfies the differential
privacy constraintsthe rardomzation algorithm basedon the lin-
earrelaxedsdution shouldbealsodifferertially private §[«;; | <
x7;, thusV|zj;] strictly satisfies the constrainig/z < b where
M,b > 0). Note that if we require adding Laplacian noise to
{Vz7;} to ensure differential privacy for the step of computing op-
timal counts, we cannot always guarantee that the noiseebop-
timal solution satisfies the differential privacy consttaj though
this is likely (since the mean of added Laplacian noise i¢MBan-
while, since the amount of noisBap(d/¢’) is directly propor-
tional to d (privacy parametet’ is fixed), d can be lowered to
the preferred value (reducing the sensitivity/amount dsepto
gain closer approximation of strict end-to-end differahfrivacy.
These also apply to the following utility-maximizing prebhs.

5.2 Optimal Utility of Frequent query-url Pairs

Top frequent click-through pairs in search logs have beiti&r
ity [12] than abnormal query-url pairs for improving the ¢jtyaof
search results or enforcing the search with recommendatod

suggestions. Retaining frequent query-url pairs in thetiged
search logs can be a basic and practical goal of seeking tire op
mal output utility in the sanitization. We denote this perhl as
“Frequent query-url pair Utility-Maximizing Problem” (RJMP).

First of all, we denot¢D| as the size (the total number of query-
url pairs) of the input search lof. Thus, frequent query-url pairs
can be identified using itSupportin D: given a minimum support
thresholds, if f—g‘ > s, then(g¢;,u;) is a frequent click-through
query-url pair inD. Since the support of a frequent query-url pair
explicitly indicates its importance in the search log, th@gsort
of all the frequent query-url pairs should be preserved ashnas
possible. In other words, the support of every frequent \guer
pair in the outputD should be close to its support in the inpdt
(|D| does not include the number of unique query-url pairs which
should be removed in the preprocessing step).

Thus, we can define the objective function as minimizing the
sum of support distances for all thigequent query-url pairs”in
the input search lo@:

S|

D]

©)

Tij o

V(ql,u])Ethere‘D‘Zs

where|O| = Zv(qi’uj)eD xsj is the size of the outpu®.
With this objective, we formulate the F-UMP using the diéfer
tial privacy constraints as below:

Tij _
> o1

V(qi,u; €D where 4 >
‘hvuj) D1 <%

%)
D]

YAk C D, Ev(g, u)e , Tis - 108 tijr < minfe log 115}
8.9 Xv(q,uy)en Tij =[O
Vx;; > 0 andx;; is an integer

Generally, since every query-url pair's support/inand O are
two ratios, pursuing the minimized sum of support distar{oes
objective in F-UMP) cannot always guarantee an output waitdg
frequent query-url pair utility (i.e. the number of all fuieent query-
url pairs are very small, but the support of them are closedmtig-
inal one). Alternatively, we can specify a fixed output sj@g in
the sanitization and seek the optimal utility for the freuguery-
url pairs. Recall that O-UMP can generate the output withmths-
imum size for any inpuD and fixed parameter, §) (we denote
the maximum output size a$. Thus, to preserve sufficient output
size, we can solve the F-UMP with a specified constant outpet s
|O] € (0, Al

STATEMENT 2. F-UMP can be considered as an integer linear
programming (ILP) problem if we fix the output sizg| as a con-
stant and standardize the absolute values in the objeativetibn.

First, due to|O| = qui,uj)ep x5, if we specify the size of

the output in the sanitizatio% — % can be considered as lin-
ear. Second, we can transform the absolute values in thetvigje

function in a standard way:

1. create a new variablg;; for every frequent query-url pair

V(qi7uj) where ‘Cg‘ > 8l Yij = Tig cig

[orID|?

Cis

2. generate two new constraints for every. v;; > “OJ‘ -5

Cis T
andyij 2 ‘]:L)]‘ — ‘é]‘

As a result, F-UMP can be transformed into an integer linear
programming (ILP) problem as below:



Yij

Cij

V(gi,u;)€D where 5 >s

VAR C D, Yy(q, u;)e 4, Tis - 108 tiji. < minfe,log 15}
Zv(qi,uj)GDxij = |O|

. @i e
s.t. V(qi,uj)whereﬁ > 8, Y > ‘Lg‘ — LLTDJ‘
V(qi,uj)whereﬁ > S, Yij > ‘g‘ — ‘6j‘

Vz;; > 0andz;; is an integer

Similar to O-UMP, we can solve the above ILP problem using
some standard methods such as Simplex algorithm with lireear
laxation [26] (if |O| is specified to be no greater than the ILP
problem should be feasible and bounded).

Overall, in F-UMP based sanitization, we can specify an appr
priate output sizéO| € (0, ], solve the ILP problem (optimal
solutionz™ = {V|xz;;]}) and generate the optimal output utility:
the Input/Output Support of all the frequent query-url paegnds
to be close (only counting the non-unique query-url pairg) the
output size can be assured as well. Finally, we sample thmibut
with the optimal solution of F-UMP: for everfy;, u;) (either fre-
guent or infrequent), we sample user-IDs wjitt]; | times multino-
mial trials (equally, the input query-url-user histograroypdes the
probability of every sampled outcome in one trial). As dissed in
Sectiori 3.2, the shape of query-url-user histogram candsepred
in this problem based sanitization algorithm. Also, theitszation
algorithm satisfies Definitidnl 2 (Proof in AppendiX D).

LEMMA 2. The F-UMP based sanitization algorithm satisfies
(e, 0)-probabilistic differential privacy for any pairs of neigbring
input search logs.

5.3 Maximizing query-url Pair Diversity

Occasionally, more distinct query-url pairs exhibit betiglity,
we can formulate th&Diversity Utility-Maximizing Problem” (D-
UMP) in search log sanitization. The diversity of search logs nor
mally has two facts: the diversity of search queries and iresity
of query-url pairs. Since we investigate the potentialgoivbreach
from every query-url pair (finer-grained than search q®yiee
denote the diversity utility of search logs as the numberistirett
query-url pairs. (Indeed, we can also model search queprsity
maximizing problem in a similar way.)

In our sanitization,x;; represents the count of query-url pair
(i, uy) in the outputO. To evaluate the diversity of the sanitized
search logD, we can introduce another variahlg for everyz;;.

if Tij > 0

yij =1,
{ yij =0, ifzi; =0 (©)
We thus define the utility function asax : > y;;. Moreover,
given a large constarff > max{Vc;; }, EquatiorL 6 is guaranteed
to hold by the following inequalities:

V(qi,uj),

V(gi,uj), Tij > Yij

yij €{0,1}, Va5 > 0, H > max{Vc;;}
As a result, D-UMP can be formally defined as:

zij Sy - H
@)

max : Yij

V(qi,uj)€D
VA, C DvZV(qi,uj)eAk xij - logt;j, < min{e, log ﬁ}
V(qi,uj) € D,xij < yij - H
V(qi,uj) € D,xij > yij

H > max{Vc;;},Vz;; > 0andis an integew;; € {0,1}

s.t.

Essentially, lettingvz;; € {0,1} andz;; = y;, the above
mixed integer programming (MIP) problem can be transforneed
a simplified binary integer programming (BIP) problem (seg&
tion[8). Both problems have the same optimal solution foiades
y = {Vyi; }. (We prove Theoreiil] 2 in AppendiX C)

THEOREM 2. The optimal solutiony™ = {Vy;;} of the BIP
problem is equivalent to the valugsy;; } in the optimal solution
{z",y"} = {Vai;,Yy;;} of the MIP problem.

max : Yij
V(g;,uj)€D
s.t.{VAk Cc D, Zv(qhu]‘)eAk iz log t;5, < min{e, log ﬁ}
H > max{c;;},Vyi; € {0,1}
8

After solving the simpler BIP problem rather than the MIPlpro
lem (both problems are feasible), we thusvé;, u;) € D, z;; =
yi; € {0, 1} be the optimal solution of D-UMP (samplinger-IDs
in only one trial for every query-url pair in the output. Slarly,
the input query-url-user histogram provides the probihif every
sampled outcome in one trial).

However, both BIP and MIP problem are NP-hard|[26]. For
large-scale D-UMP, we propose an effective and efficientibeu
tic algorithm to solve the BIP problem in Algorithiph 2. It seedn
approximate optimal value for the BIP problem. We iterdtive-
move sensitive query-url pairs (let; = 0 if y;; has a maximum
positive coefficient;;, in the sparse constraint matrix). We elim-
inate these query-url pairs since they belong to a certa@nwih
the highest percent in the count histogram of the tripletsyguirl-
user (sensitive to the corresponding user. i.e. if ugdrolds90%
of (¢i,u;), tijx should be large). The algorithm terminates until all
the differential privacy constraints are satisfied.

Algorithm 2 Sensitive query-url Pair Eliminating (SPE) Heuristic

Input: search logD and differential privacy parametets, 9)
Output: optimal solution for D-UMPy* = {vy.}
1: remove all the unique query-url pairs frof (preprocessing).
2: for every(g;,u;) € D do
3: Yij < 1.
4: while truedo

find the maximun, ;;, =

5: —
1]
6: lety;; < 0 forthe maximum,j,.

7. if VA, ZV((]i,Uj)GAk yij logt;jr, < min{e, log Tlé} then
8:

9:

L . from the constraint matrix.
ij

break
returny™ = {vy;;}.

The sanitization algorithm based on D-UMP also satisfies-Defi
nition[2. (Proof in AppendikD)

LEmMMA 3. The D-UMP based sanitization algorithm satisfies

(e, 0)-probabilistic differential privacy for any pairs of neigbring
input search logs.

6. EXPERIMENTAL RESULTS
6.1 Experiment Setup

3Since the published search logs [in1[19] ahdl [10] do not irelud
pseudonymous user-IDs for associating distinct queryaits in
every user's search history, the utility of our sanitizedrsh logs is
incomparable with their work. Moreover, since Laplaciarsedas
been well evaluated in their work, we focus on testing thénaglt
utility w.r.t. the output counts of all query-url pairs.



Dataset. In our experiments, we utilize the AOL real search log
[3l [11] to test our utility-maximizing problems. Our expagn-
tal dateset is extracted from one subset of AOL data. Spatiyfic
we randomly pick 2500 out of over 65000 user logs in the setect
AOL data. We remove all the unique query-url pairs (appeanig
one user log) from the selected dataset in our preprocessipug
Thus, Tabl€B presents the characteristics of the AOL datasky
collect the tuples with clicks), our randomly selected dataand
the preprocessed dataset. 6043 distinct query-url pahsli by
1980 users in the preprocessed dataset (since search lasat
extremely diverse include large number of unique querypaits,
most of the existing work [19, 10] cannot maintain the ertingput
diversity either). Thus, we hawe043 variablesand1980 differen-
tial privacy constraintsn our UMPs.

Table 3: Characteristics of the Data Sets

Exp. Preprocessed Dataset
Dataset | Dataset| (without unique pairs)
# of total tuples (size)| 1,864,860| 237,786 53,067 (D))
# of user logs 51,922 2,500 1,980(Constraints)
# of distinct queries | 583,084 | 83,130 4,971
# of distinct urls 373,837 | 82,076 4,289
# of query-url pairs | 1,190,491| 163,681 6,043(Variables)

Experimental Parameters Setup. To observe the tuning of
differential privacy parameterg, §), we let§ = {107%, 1073
1072,1071,0.2,0.5,0.8} ande® = {1.001,1.01,1.1,1.4, 1.7, 2.0,
2.3} in all three utility-maximizing problems. Furthermore, F-
UMP requires two additional parameters: the minimum suppor
and the output sizgD| (|O] < A andA is glven as the optimal value
of O-UMP). We lets = {m, 555+ m, m, 1000} For every pair
of ¢ andd, we computel in O-UMP and specify an appropriate
output sizgO| in F-UMP.

Experimental Platform. All the experiments are performed on
an HP machine with Intel Core 2 Duo CPU 3GHz and 3G RAM
running Microsoft Windows XP Professional Operating syste
While solving D-UMP, we also submit the AMPL format of the
BIP problems to three NEOS solvers (gsopt_ex, scip and teagp
[16]) running online in addition to locally running our héstic.

6.2 Maximum Output Size x

With the preprocessed datasgb| = 53067 as shown in Table
[B), we can compute the maximum output sixeusing O-UMP
for a given pair of differential privacy parametefs®, §). Table
[ presents the maximum output size (the optimal value of OPYM
for different pairs of(e®, §) where O-UMP is solved by Matlab
function linprog. To generate the outp@®, we can sample user-
IDs for every query-url pair according to the optimal sadut(6043
variables/query-url pairs)|O| can be maximized while the entire
process satisfieg, ¢)-differential privacy. We can obtain 7.08%-
26.2% of the original size with the given parameters. Dueheo t
highly diversity and sparseness of search log data, thisepeof
output size is sufficient good for differential privacy gaateed
sanitization algorithms.

Table 4: Maximum Output Size A on e® and § (| D| = 53067)

eN\d | 107% 1073 1072 107! 0.2 0.5 0.8
1.001| 3759 4007 4007 4007 4007 4007 4007
1.01| 3759 4007 4879 4879 4879 4879 4879
1.1| 3759 4007 4891 8382 8382 8382 8382
1.4 | 3759 4007 4891 8874 10445 11419 11419
1.7 | 3759 4007 4891 8874 10445 12438 12438
2.0 | 3759 4007 4891 8874 10445 13088 13088
23| 3759 4007 4891 8874 10445 13088 13901

6.3 Optimal Utility of Frequent query-url Pairs

Recall that F-UMP based sanitization generates outputsthgt
minimum sum of the support distances of all filequent query-
url pairs. Thus, we examine the maximum frequent query-url pairs
utility with three measures: the optimal value of F-UMP (iminom
sum of the support distances, see Equdiion 5),Pieeisionand
Recallof the frequent query-url pairs in the input/outpBtecision
andRecallare defined as below:
|So N S| [SoN S| ©)

5] |Sol

where Sy and.S denote the set of frequent query-url pairsin
andO respectively, andl- | means the cardinality of the set. Specif-
ically, Precisionis defined to evaluate the fraction of the frequent
query-url pairs in the output that are originally frequemthe in-
put with the same minimum suppoiRecallis defined to evaluate
the fraction of the frequent query-url pairs in the inputttieemains
frequent in the output with the same minimum support.

To evaluate the performance of F-UMP in differentially ptier
search log sanitization, we run two groups of experimeritst,fve
fix the output size and the minimum support &3] = 3000 < A
ands = ﬁ and test the (measurement) results with different
pairs of (¢, ). Second, we fix the differential privacy parameters
as: e = 2,6 = 0.5 (A = 13088, as shown in Tablgl4), and
test the results with different minimum suppereind output size
|O|. One essential point worth noting is that the minimum sum of
support distances is an effective measure in the first gréugx-o
periments because the minimum suppoig fixed and the original
frequent query-url pairs in the input has been determinedlfdlif-
ferent pairs ok andoé (thus the sum of the support distances for all
the frequent query-url pairs in the input is comparable)weler,
in the second group, the set of original frequent query-antspis
varying for differents, hence the objective values of F-UMP is in-
comparable on a varying. Therefore, we use the average of the
support distances for all the frequent query-url pairs aittput in
addition to the sum of them in the second group of experiments

Interestingly, in all our F-UMP experimentBrecisionis always
equal to 1, which means all the frequent query-url pairs éndtit-
put are also frequent in the input with the same minimum sttppo
s. This is quite reasonable: suppose that «;) is not a frequent
query-url pair in the input wheréjg—j‘ < s, ifitis frequent in the
output where“¥. > s, the solution of F-UMP must be not optimal

[O]
(reducing Tg‘ to ‘“” might improve the objective value and does
not violate differential privacy constraints).

In the first group of experiments, Figyre 3(a) 4nd B(b) demon-
strate theRecalland Sum of the Support Distancés all the fre-
quent query-url pairs in the input. Fixing Recallincreases as
increases untié = log 1. Fixing e > log =5, Recallincreases
asd increases; fixing < log ﬁ Recallstays invariant even if
0 is increasing. By contrast, the sum of support distancesahas
inverse increasing trend on varyia@nds.

Precision = , Recall =

Table 5: Recall on Output Size |O| and Minimum Support s
(e =2,8 = 0.5, A = 13088)

s\JO|] 3000 4000 5000 6000 7000 8000
@ 0.8873 0.8189 0.874 0.8661 0.8583 0.8346
750 0.8095 0.8762 0.8571 0.8476 0.8952 0.8667
50 0.9143 0.9143 0.9286 0.9143 0.8857 0.8714
70 0.9116 0.8529 0.8529 0.8529 0.8529 0.8235

100 0.933 0.8667 0.8 0.8 0.8 0.7333

In the second group of experiments, Tdble 5 presentRéwall
on different pairs of outputs size and minimum support. As we
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Figure 3: F-UMP Performance

can see, over 80% of the frequent query-url pairs can benetai

in the output with fixinge® = 2 andd = 0.5 (given more strict

e andd, 30% of them can be retained as shown in Fidure] 3(a)).
In addition, Tablé illustrates the sum of support distarfoeall
frequent query-url pairs in the inpythe samdO| ands as Table

[B). Fixing s, the sum of support distances increases as the output
size increases (they are comparable due to fiyedThis fact is
true: given a fixed minimum suppott for the fixed set of frequent
query-url pairs in the input, it is easier to achieve the mimin
support without violating differential privacy constrénvhen|O)|

is not too large (the ideal output coumi; is |O] - ‘cg‘ and the
output counts are bounded by privacy constraints, thusesLient
query-url pairsvz;; are likely to achievéO| - z; if [O| is small).
Finally, since the set of frequent query-url pairs varieifferent

s, we compare the average support distance instead of the sum o
them for differents. As shown in Figurg 3(E), the average support
distance decreases as the minimum suppioitreases (logarithmic
scale minimum suppor). Therefore, the frequent query-url pairs

in the output is closer to them in the input if a larger minimum
support is given in the F-UMP.

Table 6: Sum of Freq. query-url Pair Support Distances on Out-
put Size|O| and Min. Support s (e€ = 2,6 = 0.5, A = 13088)

s\JO] 3000 4000 5000 6000 7000 8000
quo 0.0551 0.085 0.1058 0.1279 0.1485 0.1785
750 0.0549 0.0854 0.1116 0.1271 0.1477 0.1767
50 0.0559 0.0865 0.1048 0.1247 0.1448 0.1716
250 0.0555 0.086 0.1043 0.1236 0.1393 0.161
100 | 0-0574 0.088 0.1063 0.1246 0.1392 0.1583

6.4 Maximum query-url Pair Diversity

6.4.1 D-UMP Performance

We now look at the performance of D-UMP (maximum diversity
utility). Figure[4 shows the percentage of retained quehypairs
in the output with the same parametéesd) as F-UMP. The maxi-
mum query-url diversity has a similar increasing trend astacall
of F-UMP (Figurg 3(d)). Moreover, the query-url diversigncbe
retained as high as 30%. Note: the input has been preprackgse
removing all the unique query-url pairs, and they are nontexd
in the denominator of the ratio.

6.4.2 BIP Solver Comparison

Since D-UMP is an NP-hard problem, we introduced an effectiv
heuristic algorithm (Algorithni12) for this binary integerqgram-
ming (BIP) problem with a sparse non-negative constrairtrima
We now compare the performance of our Sensitive Pair Elitiriga
heuristic (SPE) with some popular BIP solvers (Matlab biogp
function, Neos gsopt_ex, Neos scip and Neos feaspumnip [16]).

Max Retained query-url Pair (%)

22
Figure 4: Maximum Diversity on (e, &) (Algorithm B)

Table 7: Retained Diversity Utility of Different BIP Solvers

@e =2
BIPSolver\é | 10— 102 10T 0.2 0.5 0.8
SPE (Heuristic) [ 12.8% 18.1% 26.0% 28.1% 29.5% 30.6%
Matlab bintprog | 9.6%  15.2%  23.8% 26.8% 28.9% 29.5%
Neos gsopt_e 9.6% 15.2%  23.4% 26.8% 29.5% 29.5%
Neos scip 9.5% 15.2%  23.7% 26.8% 29.5% 29.5%
Neos feaspump  9.6% 152% 25.8% 29.5% 30.3% 30.3%
(b)s=0.1
BIP Solver\ e* 1.01 1.1 1.4 1.7 2.0 2.3
SPE (Heuristic)| 17.7% 25.7% 26.0% 26.0% 26.0% 26.0%
Matlab bintprog | 14.6% 22.5% 23.8% 23.8% 23.8% 23.8%
Neos gsopt_ex| 15.5%  22.5% 23.4% 23.4% 23.4% 23.4%
Neosscip| 14.6% 21.4% 23.1% 23.1% 23.1% 23.1%
Neos feaspump 15.5% 25.8% 25.8% 25.8% 25.8% 25.8%

As shown in Tabl€]7, we collected the maximum percent of re-
tained distinct query-url pairs using all the solvers witle same
experimental inputs. We observe that our heuristic algoriper-
forms better than other solvers in most cases and the optahags
by all the solvers have quite similar varying tendency. Sjoadly,
Algorithm[2 generates sanitized search logs with greatenygurl
pair diversity than Matlab bintprog, NEOS gsopt and Neog.sci
NEOS feaspump performs slightly better than Algorithm 2yonl
when(e® = 2,6 = 0.5) and(e® = 1.1,6 = 0.1).

Finally, we plot the computational costs for solving a tghib-
UMP by all solvers in Figur€lge® = 1.7,6 = 1072)). Since
our Sensitive query-url Pair Eliminating (SPE) algorithmstthe
complexityO(n? log mn) (constraint matrix sizem x n), it out-
performs other solvers for our D-UMP in time complexity adlwe

6.5 Difference of Input/Output Histograms

As described in Sectidn_3.2, our multinomial sampling, ipart
ularly the F-UMP based sanitization can retain the shapéef t
histograms in the output (generate similar count histogremndis-
tinct triplets: query-url-userg, u;, sx)). We now examine this by
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comparing two histograms.

Specifically, we generate 10 randomized outputs according t

the optimal solution of F-UMP for two different output sige| =
4000 and6000 respectively (fixinge® = 2,6 = 0.5, s = 1/500),

and plot two bar plots in Figullgl 6: the X-axis varies from 0% to

100% while the Y-axis representise average number of distinct

triplets (g:, u;, sx)* whose difference ratio of the input/output his-

tograms (defined in Equatiénil0) equals the values in theiX-ax
both Figuré¢ 6(3) ar[d 6(b), the percent of most triplets«;, sx) in
the input/output varies within a tolerable boun@®( = 4000, the
difference ratio of about 75% triplets is below 40%0)| = 6000,
the difference ratio of about 90% triplets is below 40%).

235/ |0] — iz /| Dl
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7. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the important practichlgro
of retaining the maximum utility while the search log sadtion
satisfies differential privacy and generates outputs \kigtidentical

vacy breach-minimizing problem which asks for minimal pady
loss while satisfying a certain utility. Third, since we banodeled
the utility-maximizing problems in the optimization framerk, it
should be possible to leverage the significant work in thel fadl
operations research to solve these problems. We intendptorex
these in the future.
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APPENDIX
A. PROOF OF THEOREM 1

PRoOF Assume thatD and D’ differ in an arbitrary uses;’s
user logAx. In Sectio 4.1, we discussed two sets of output spaces
Q = Q1 U Qq: all the possible outputs if2; include s, whereas
all the possible outputs if2, does not includes;,. Hence, if the
probabilities inequalities in Definitidd 2 hold for the aled; , 22,
(e, 0)-probabilistic differential privacy can be guaranteed tioe
randomization algorithm with this output space split.

First, according to Equatidd 2,%A, C D, 1 — Hv(qi,uj)eAk

(%)xﬂ < ¢ (Condition 3) holds, we havér[R(D) €
Q1] < ¢ for any inputD. Meanwhile, Condition 1 guarantees
that Pr[R(D) € ] can be effectively bounded ly Otherwise,

if a unique query-url pailg;, u;), givenz;; > 0, Pr[R(D) € (]
should be equal to 1 with such output space split (no otherespa
split available for any pair of neighboring input searchdpg

Second, for all0 € 2, we havePr[R(D') = O] > 0 and
Pr[R(D) = O] > 0.1f D' C D, Condition 2 ensureg (=0l

<1< %g))zoo]] < €. On the contrary, ifD ¢ D’, Condi-

tion 2 derived fromD’ can also guarantee%% <1<
Pr(R(D)=0] e
PriR(D)=0] =

Thus, the randomization algorithR satisfiege, §)-probabilistic
differential privacy (by dividing output space as abovehite con-
ditions in the theorem hold. Note that the violation of anpdition
would result in unbounded multiplicative and/or additivelpabil-
ity difference (givere andd) for at least one inpub and/or one of
its neighboring inputD’ (Differential privacy will not be guaran-
teed), then the upper boundsndd are tight. [

B. PROOF OF PROPOSITION 1

PrROOF W.0.l.g., assume that two arbitrary neighboring search
logs D and D’ differing in one user logD = D’ + A, andO C Q
is an arbitrary set of possible outputs. For any inpytwe can
divide the output spac® into two sets(2; and (22, such that (1)
Pr[R(D) € O4] < 4, and forD,D’' (2) VO € g, 1/e® <

Pr[R(D")=0]
PriR(D)=0] =€ -

LetO; = O N andOy = O N Qy, thus: Pr[R(D) € O] =
Pr[R(D) = 0dO + [, 5, PrIR(D) = 0]dO

< fvoeszl Pr[R(D) = 0]dO + ¢ fvoeéz Pr[R(D") = 0]dO
S (5 —+ 66 fVOeaz PT[R(D/) = O]dO

<5+ e Pr[R(D') € Os] <6+ e Pr[R(D') € O).

fvoeél

Similarly, we can prove thabr[R(D') € O] < § +
e‘Pr[R(D) € O].
This completes the proof.[]

C. PROOF OF THEOREM 2

PROOF To distinguish two optimal solutiong® in the BIP and
the MIP problem, we denotg" for the BIP and the MIP problem
as(y*)s = {V(yi;)s} and(y")nr = {V(yij)m }-

e Suppose that(y;;)s =0, (yi;)m = 1andvz # ij, (y2)p =
(y2)m ((y*)B and (y*)a differ in one variable). Due to
(y;;)m = landzj; > (yi;)um, all the constraint¥/Ax C
D, ZV(qi,uj)eAk (yij) s - logtijr < min{e, log ﬁ} must
be satisfied fofy™)ar.

Inaddition, (yi;)a > (¥i5)B = 2 v(g,,u;)ep Yii)r >
2 (g uy)enWij) B- ASV(yi;) 5 satisfies the constraints

VA C D, ZW%U]‘)E‘AIC (yi;)B-log tijr < min{e, log ﬁ}

in the BIP problem,>=, . . ¢ p(vi;)a should be the op-
timal value for the BIP problem if other constraints are the
same for two problems (due ¥, ., e p (¥ij)ar >

> v(aruyyep(Ui) B)- Hence, itis a contradiction.

Suppose thal(y;;)s = 1, (yi;)m = 0andvz # ij, (y2)s =
(yz)m ((y*)m and (y*)a differ at one variable). Hence,
the constraint§/A, C D, Zv(qi’u]‘)eAk(yij)B log tijr <
min{e, log 15 } are satisfied in the BIP problem. In the MIP
problem, if lettingz;; be 1 for all (y;)s = 1, VAx C D,
Zv-(ql;,uj)EAk zij log ti;x < min{e,log =5} can be equally
satisfied. In this case, we haY€, , . cp(¥i;)n

= Zv(qi,uj)gp Tij = Zv(qi,uj)GD(yij)lVI

> ZV(qi,uj)GD(yij)NI

(sinceV(qi,uj) € D,zi; = (yi;)m). Hence,(y™)as is not
the optimal solution of the MIP problem. Itis a contradictio

Therefore, Theorem 2 has been provefl

D. PROOF OF LEMMA 1,2 AND 3

PROOF It is similar and straightforward to prove Lemma 1, 2
and 3 (probabilistic differential privacy) using TheorEinwie thus
prove them together.

The sanitized search lo@ is generated in terms of the opti-
mal solution of O-UMP, F-UMP or D-UMP. We sample the output
based on the linear relaxed optimal solutich= {|z;|} (gives
the total count) and the query-url-user histograms in apytib
(gives the individual outcome probabilities). Duesthe?; | < z7;,
we can infer that{V(q:,u;) € O, |zj;]} satisfies the Condition
2 and 3 of Theorer] 1 (differential privacy constraivtd, C D,
ZV(qi,uj)eAk x5 logtijr < min{e,log 15} in O-UMP, F-UMP
or D-UMP are satisfied). Moreover, Condition 1 of Theofgm 1 is
also guaranteed in the preprocessing step.

Thus, while sampling user-IDs for any input search lgand
its arbitrary neighboring inpub’ with the optimal counts (given
by the optimization problem), we can divide the multinongain-
pling output spacé (derived fromD and D’) into Q; and€2; as
described in Sectidd 4 where all the probabilities in Deifini are
bounded by andd in such space split (refer Theorémh 1). There-
fore, the O/F/D-UMP based sanitization (randomizatiogpathm
satisfieqe, §)-probabilistic differential privacy (we can add Lapla-
cian noise to ensure differential privacy for the step of pating
the optimal counts if necessary).

This completes the proof. ]
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