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ABSTRACT
Web search logs contain extremely sensitive data, as evidenced by
the recent AOL incident. However, storing and analyzing search
logs can be very useful for many purposes (i.e. investigating human
behavior). Thus, an important research question is how to privately
sanitize search logs. Several search log anonymization techniques
have been proposed with concrete privacy models. However, in
all of these solutions, the output utility of the techniquesis only
evaluated rather than being maximized in any fashion. Indeed, for
effective search log anonymization, it is desirable to derive the op-
timal (maximum utility) output while meeting the privacy standard.
In this paper, we propose utility-maximizing sanitizationbased on
the rigorous privacy standard of differential privacy, in the context
of search logs. Specifically, we utilize optimization models to max-
imize the output utility of the sanitization for different applications,
while ensuring that the production process satisfies differential pri-
vacy. An added benefit is that our novel randomization strategy
ensures that the schema of the output is identical to that of the in-
put. A comprehensive evaluation on real search logs validates the
approach and demonstrates its robustness and scalability.

Keywords: Search Logs, Differential Privacy, Optimization

1. INTRODUCTION
Search engines are used by millions, if not billions, of people

every day. The queries posed by the users form a large volume of
data that can give great insight into human behavior via their search
intent. Indeed, such data is invaluable for researchers anddata ana-
lyzers in numerous fields [11]. For example, search engines them-
selves can use web search logs to identify common spelling errors,
to recommend similar queries, or to expand queries. Many other
applications also make use of search log data, such as the analysis
of living habits from daily search, and the detection of epidemics
[9]. For this reason, search log data is collected, stored, and ana-
lyzed in different ways by all search engines.

However, one problem with the storage and release of search log
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data is the potential for privacy breach. The queries that a user
poses may sometimes reveal their most private interests andcon-
cerns. Thus, if search log data is published without sanitization or
with trivial anonymization (such as simply replacing user ids by
pseudonyms), many sensitive queries and clicks can be explicitly
acquired by adversaries. [3, 11] demonstrates that it can only take
a couple of hours to breach a particular user’s privacy in theabsence
of good anonymization. Thus, it is crucial to anonymize search log
data appropriately before storing or releasing it.

There has been significant work on database anonymization that
looks at how to anonymize relational data. However, much of this
work is not directly applicable since there are significant differ-
ences between search logs and relational data. Indeed, search logs
pose additional challenges for anonymization. First, there is no
explicit distinction between quasi-identifiers and sensitive infor-
mation in search logs. Each user may pose hundreds of queries
that involve lots of personal information (i.e. name, addresses, liv-
ing habits, .etc) over a short period of time. By combining these
queries, adversaries may easily discover an individual’s identity,
and it is difficult to foresee all possible combinations thatcan lead
to privacy breaches. For instance, Table 1 illustrates a subset of an
Internet user Alice’s search log (note: the user-IDs can be deter-
mined by cookies, IP addresses or user accounts; we ignore query
time and item rank of search logs in this paper). Although thereal
user-ID has been replaced by the pseudonymous ID 000101, the
adversaries can still identify Alice’s search log if they have some
background knowledge on Alice (i.e. her address, she boughta
second-hand Honda car via autotrader recently, she likes pizza),
and thus learn more sensitive information (i.e. pregnancy test) from
Alice’s complete search log. Second, search logs are sparseand
highly-dimensional, thus it is more difficult to guarantee rigorous
privacy without sacrificing too much utility.

Table 1: An Example of Search Logs
User-ID Query URL Count
000101 1 Washington Avenue maps.google.com 5

Honda www.honda.com 2
autotrader www.autotrader.com 4

pizza www.pizzahut.com 1
pregnancy test www.medicinenet.com 1

... ... ...

In recent years, several search log anonymization techniques have
been proposed in the literature to resolve the above problems [20,
5, 17, 14, 15, 19, 23]. Several anonymity models have been pro-
posed for this domain along with corresponding anonymization al-
gorithms. However, their basic premise is simply that the algorithm
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must satisfy the privacy requirements without worrying about the
tradeoff between privacy and utility. Ideally, what is needed is a
strategy that can maximize the utility while satisfying a given pri-
vacy requirement. To our knowledge, there is little work focusing
on this challenging and practical problem. In this paper, wetake the
first step towards tackling this problem in the domain of search log
anonymization by formulating utility-maximizing problems while
ensuring a rigorous privacy standard.

1.1 Contribution
Given a particular privacy requirement, the utility-maximizing

problem requires finding a way to anonymize search logs in a man-
ner that satisfies the privacy standard and simultaneously achieves
the optimal output utility. This requires deciding on a suitable pri-
vacy requirement as well as appropriate data utility measure. While
several different anonymity models have been proposed in the lit-
erature, in this paper, we utilizes the robust privacy definition of
differential privacy [7] (which lowers the privacy breach risk even
if the adversaries hold arbitrary prior knowledge). We alsodefine
several different notions of utility and propose differentially private
sanitization methods that can maximize the output utility.Thus, the
main contributions of this paper are summarized as follows:

• The differentially private randomization in prior work (Ko-
rolova et al.[19] and Götz et al.[10]) ensures differentialpri-
vacy by adding Laplacian noise to the aggregated query and
clicked url counts. However, such approaches break the as-
sociation between distinct query-url pairs in the output since
all the user-IDs have been removed, which might be useful
in only a few applications. Therefore, we propose differen-
tially private algorithms based on a different randomization
strategy:sample user-IDs for every click-through query-url
pairs using multinomial distribution, which preserves user-
IDs. This, to our knowledge, is the first randomization strat-
egy to generate output with identical schema as the input
search log. Thus, the sanitized search log can be analyzed
in exactly the same fashion and for the same purpose as the
input.

• Within our approach, the randomization algorithm also en-
sures the utility-maximized output that is still differentially
private. To do this, we formally define the utility-maximizing
problem: find an optimal sanitization that maximizes the out-
put utility while satisfying differential privacy. Specifically,
for quantifying the output utility, we define three different
utility notions (measuring the utility of frequent click-through
query-url pairs, the query-url pair diversity, etc.) that could
benefit different applications (essentially, any utility measure
can be coupled into our differentially private sanitization by
replacing the utility objective function). We also prove that
our sanitization satisfies differential privacy;

• We transform the utility-maximizing problems into standard
optimization problems. We can now leverage prior devel-
oped effective solvers and adapt them to our problem. We
experimentally validate the utility using real data sets.

The remainder of this paper is organized as follows. Section
2 reviews the related literature. In Section 3, we present our pri-
vacy model and the sanitization process. Section 4 introduces the
constraints that guarantee privacy protection. We then formulate
three different utility-maximizing problems and show thatthe cor-
responding sanitization methods are differentially private in Sec-
tion 5. Section 6 evaluates the output utility of the proposed saniti-
zation approaches. Finally, Section 7 concludes the paper.

2. RELATED WORK

2.1 Search Log Anonymization
Following the AOL search log incident, there has been some

work on user privacy issues related to privately publishingsearch
logs. Adar [1] proposes a secret sharing scheme where a query
must appear at leastt times before it can be decoded. It may poten-
tially remove too many harmless queries, thus reducing datautility.
Kumar et al. [20] propose an approach that tokenizes each query tu-
ple and hashes the corresponding search log identifiers. However,
inversion cannot be done using just the token frequencies. Also,
serious leaks are possible even when the order of tokens is hidden.

More recently, some anonymization models [19, 14, 15, 23] have
been developed for search log release. He et al. [14], Hong et
al. [15] and Liu et al. [23] anonymized search logs based on k-
anonymity which is not as rigorous as differential privacy [10]. Ko-
rolova et al. [19] first applied the rigorous privacy notion –differen-
tial privacy to search log release by adding Laplacian noise. How-
ever, several shortcomings can be discovered in this work. First,
the released result of this is the statistical information of queries
and clicks where all users’ search queries and clicks are aggregated
together (without individual attribution). The data utility might be
greatly reduced since the association between query-url pairs has
been removed (the published data in Götz et al. [10] also suffers
this constraint). With the released data, we cannot developperson-
alized query suggestion or recommendation for search engines, and
also, we cannot carry out human behavior research since the output
data do not include the information that any two queries belong to
the same user. Second, as addressed by Götz et al. [10], the relaxed
differential privacy notion in [19] is not sufficiently strong. Third,
the utility in [19] is merely evaluated but not shown to be maxi-
mized. Adding Laplacian noise to the counts of selected queries
and urls is straightforward and we cannot directly model optimiza-
tion problems to maximize the output utility. Alternatively, our pa-
per is to seek the maximum output utility for a novel differentially
private search log sanitization mechanism which generate outputs
with the identical schema as the original search log.

Furthermore, Götz et al. [10] analyzes algorithms of publishing
frequent keywords, queries and clicks in search logs and conducts
a comparison w.r.t. two relaxations ofǫ-differential privacy (re-
laxations are indispensable in search log publishing). Our work
utilizes the stronger relaxation ofǫ-differential privacy – proba-
bilistic differential privacy. Since we explore the optimal utility
in our differentially private sanitization mechanism which outputs
search logs rather than the results of counting queries and clicked
urls over the search log, our work has a completely differentfocus,
compared with their work [10].

2.2 Differential Privacy
In the context of relational data anonymization, Dwork et al.[6,

7] have proposed the rigorous privacy definition of differential pri-
vacy: a randomized algorithm is differentially private if for any pair
of neighboring inputs, the probability of generating the same out-
put, is within a small multiple of each other. This means thatfor any
two datasets which are close to one another, a differentially private
algorithm will behave approximately the same on both data sets.
This notion provides sufficient privacy protection for users regard-
less of the prior knowledge possessed by the adversaries. This has
been extended to data release in various different contextsbesides
search logs (i.e. contingency tables, graph data). Specifically, Xiao
et al. [27] introduced a data publishing technique which ensures
ǫ-differential privacy while providing accurate answers for range-
count queries. Hay et al. [13] presented an efficient algorithm for



releasing a provably private estimate of the degree distribution of
a network where it also satisfies the differential privacy. McSh-
erry et al. [25] solved the problem of producing recommendations
from collective user behavior while providing differential privacy
for users. Our work follows the same line of research.

2.3 Tradeoff between Privacy and Utility
For any data modification based anonymization technique, a trade-

off between privacy and utility naturally holds. Li et al. [22] an-
alyzed the fundamental characteristics of privacy and utility, and
proposed a tradeoff framework for discussing privacy and utility.
In microdata disclosure, Bayardo et al. [4] and LeFevre et al. [21]
raised the optimal k-anonymity and the optimal multidimensional
anonymization problem respectively. Kifer et al. [18] presented a
way to gain additional utility from k-anonymous and l-diverse ta-
bles. Recently, Ghosh et al. [8] introduced a utility maximizing
mechanism for releasing a statistical database. However, there is
little work on this topic in the context of differential privacy guar-
anteed search log release. To our knowledge, we takes a first step
towards addressing this deficiency.

3. MODEL

3.1 Differential Privacy
Our objective is to privately sanitize the input search logsthat

includes pseudonymous user-IDs, search queries, clicked urls and
the counts of every user’s click-through query-url pairs. Hence,
we ensure that the output has the identical schema as the input:
every single tuple in the output includes a pseudonymous user-ID,
a click-through query-url pair and its count for this user.

We consider two search logs to be neighbors if they differ by an
arbitrary user’s (all) query tuples. Hence, we define every user’s all
query tuples in a search logD as its user log.

DEFINITION 1. (USER LOG Ak) Given a search logD, we
denote each usersk ’s user logAk as all his/her query tuples in
D, where every single tuple[sk, qi, uj , cijk] ∈ Ak includes a
pseudonymous user-ID(sk), a query(qi), a url (uj) and the count
(cijk) of query-url pair(qi, uj) belonging to usersk.

Clearly, every search logD consists of numerous individual user
logs (D =

⋃
∀sk∈D

Ak). Given two neighboring input search logs
D andD′ (w.o.l.g,D = D′ + Ak), ensuringǫ-differential privacy
for all the outputs might be impossible: for any outputO including
items inD but not inD′ (such as user-IDsk), the probability that
generatingO from D′ is zero but fromD is non-zero, hence the
ratio between the probabilities cannot be bounded byeǫ (due to a
zero denominator). We thus adopt the following relaxed notion of
differential privacy (using our notations):

DEFINITION 2. ((ǫ, δ)-PROBABILISTIC DIFFERENTIAL PRIVACY

[24, 10]) A randomization algorithmR satisfies(ǫ, δ)-probabilistic
differential privacy if for any input search logD, we can divide the
output spaceΩ into two setsΩ1, Ω2 such that

(1)Pr[R(D) ∈ Ω1] ≤ δ, and
for D’s all neighboring search logsD′ and for any outputO ∈ Ω2:

(2) Pr[R(D)=O]
Pr[R(D′)=O]

≤ eǫ and Pr[R(D′)=O]
Pr[R(D)=O]

≤ eǫ.

The above probabilistic differential privacy ensures thatR satis-
fiesǫ-differential privacy with high probability (no less than1− δ)
[10]. In this definition, the setΩ1 includes all privacy-breaching
outputs forǫ-differential privacy where the probability of gener-
ating such outputs is bounded byδ. Specifically in our sanitiza-
tion (w.o.l.g. D = D′ + Ak), since we retainuser IDs in the

output andD′ does not containsk, we can only considerΩ1 as
the output space where all outputs inΩ1 include user-IDsk (be-
causeǫ-differential privacy cannot be achieved whenD′, D dif-
fering in usersk’s user logAk and the outputO including sk).
Hence, the probabilityPr[R(D) ∈ Ω1] should be no greater than
δ (the probability ofsk existing in the overall output spaceΩ should
be bounded byδ). Moreover, for any outputO ∈ Ω2, two ratios
should be bounded byeǫ for achievingǫ-differential privacy. Def-
inition 2 has been proven to be stronger than the privacy notion of
Korolova et al.’s work [19] (indistinguishability differential privacy
[6]) by Götz et al.[10] (as also shown in Section 4.3).

All the sanitization methods addressed in this paper are required
to satisfy this robust and rigorous privacy definition. No matter
how much prior knowledge is owned by adversaries, we can lower
the privacy risk by bounding the probabilities that any arbitrary two
neighboring inputs produce any possible output.

3.2 Search Log Sanitization Process
With a rigorous privacy standard (Definition 2), our goal is to

maximize the retained utility for the sanitized search logs. We now
illustrate our search log sanitization process that integrates the sat-
isfaction of differential privacy and utility maximization.

The most sensitive values in search logs are the click-through in-
formation. Sometimes search queries may be more sensitive than
the clicked urls in search logs (i.e. query “diabetes medicine” and
click “www.walmart.com”), or vice versa (i.e. query “medicine”
and click “www.cancer.gov”). We thus consider each distinct click-
through query-url pair (simply denoted as query-url pair) as a com-
bination of the sensitive values in the search logs. In our privacy
model, Definition 2 ensures that adding any user’s all searchinfor-
mation (user-ID, query-url pairs and the counts) in the input does
not cause any additional risk.

Table 2 presents some frequently used notations in our model:
we denotecij as the input count of any query-url pair(qi, uj) and
the set of these counts{∀cij} constitutes theinput query-url his-
togram. Similarly, xij represents the output count of(qi, uj) and
the set of these countsx = {∀xij} forms theoutput query-url his-
togram. Finally, the output counts of all triplets(qi, uj , sk) form
the output query-url-user histogramwhich is randomly sampled
(the sampling process will be given later on). Similarly, the deter-
ministic counts of all triplets(qi, uj , sk) in the input form theinput
query-url-user histogram.

Table 2: Frequently Used Notations
(qi, uj) an arbitrary query-url pair in the input/output

(qi, uj , sk) any usersk ’s arbitrary query-url pair(qi, uj)
cij the total count of (qi, uj) in the input
cijk the count of triplet (qi, uj , sk) in the input
xij the total count of (qi, uj) in the output

(variable) (in the optimal solution:x∗
ij )

xijk (random the count of triplet (qi, uj , sk) in a sample output (x∗
ijk

variable) is the count of (qi, uj , sk) if sampling withx∗
ij trials)

Algorithm 1 illustrates two steps of our sanitization. We first
compute the optimal output counts for all the query-url pairs in the
input search logD, and then generate the outputO by sampling
user-IDs for each of them with multinomial distribution [2](the de-
tails of this multinomial sampling are given later on). Morespecifi-
cally, the algorithm can be guaranteed to be differentiallyprivate by
some constraints for the output counts of all query-url pairs{∀xij}
(we can derive the constraints from the randomization, as shown
in Section 4). Meanwhile, the output utility can be maximized by
the utility objective function (some options are given in Section 5).
Thus, we can formulate the utility-maximizing problem to com-
pute the optimal output counts of all query-url pairs for therandom
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Figure 1: An Example of the Sanitization Algorithm

sampling (the optimal solutionx∗ = {∀x∗
ij} achieves the optimal

output utility and also satisfies differential privacy constraints).

Algorithm 1 Sanitization Algorithm
Input: search logD and differential privacy parameters(ǫ, δ)
Output: sanitized search logO
1: Compute the Optimal Output Counts for all query-url pairs in the

search log:{∀(qi, uj) ∈ D,x∗
ij}.

/*** solve an optimization problem: define a utility objective function
w.r.t. the output counts{∀xij} while {∀xij} subject to some con-
straints that ensures differential privacy for this algorithm. (the optimal
solution is{∀x∗

ij}) ***/
2: Generate the OutputO: sampling user-IDs for every query-url pair

(qi, uj) with x∗
ij times multinomial trials (the probability of every

sampled outcome in one trial is given by the inputD).

Figure 1 shows an example of Algorithm 1, particularly the multi-
nomial sampling after computing the optimal output counts of all
query-url pairs{∀x∗

ij} (assume that {0, 3, 20, 0, 4} in the example
is the optimal solution of an optimization problem that includes a
utility objective and some constraints ensuring differential privacy).
Therefore, our multinomial sampling has following properties:

1. The number of multinomial trials for(qi, uj)’s user-ID sam-
pling is given asx∗

ij (optimal solutionx∗ = {∀x∗
ij}).

2. In every multinomial trial for any query-url pair(qi, uj),
the probability that any user-IDsk is sampled, iscijk/cij .
Specifically, i.e. “car price, kbb.com” in Figure 1, the proba-
bility that user082 is sampled is 2

0+2+5
. However, the prob-

ability that user081 is sampled for this query-url pair is 0. In
addition, the expected value of every random variablexijk

can be derived asE(xijk) = xij ·
cijk
cij

. Thus, given an

output count x∗
ij (optimal) for any query-url pair (qi, uj),

theshapeof theinput/outputquery-url-userhistogramsw.r.t.
only query-url pair(qi, uj) (il lustrating theindividualcounts
of (qi, uj) heldby distinct users)shouldbeanalogous(this is
guaranteedby multinomial distribution). i.e. the input/output
query-url-user histogram w.r.t. “google, google.com”, even
if the output countx∗

ij = 20 < cij = 15+7+17 = 39, the
shape of histograms {8, 3, 9} (in a randomized output, see
Figure 1(b)) and {15, 7, 17} (in the input) is similar.

3. If ∀(qi, uj), theInput Support(denoted ascij/
∑

∀(qi,uj)
cij ),

is close to theOutput Support(denoted asxij/
∑

∀(qi,uj)
xij),

the shape of the output query-url histogramcan be maxi-
mally preserved. At this time, after sampling user-IDs with
the above output counts of all query-url pairs (or called out-
put query-url histogram),the shape of the output query-url-
user histogramcan be maximally preserved as well.

Actually, one of our utility-maximizing problems is to seek
the optimal output utility that minimizes the sum of the sup-
port distances for all frequent query-url pairs (see the defi-
nition and details in Section 5.2, if pursuing the minimum
sum of support distances for all query-url pairs, we can lower
theminimum support threshold). Thus, once the sum of the
support distances are minimized (utility-maximizing prob-
lem can do so, i.e. it figures out that the distance between
{∀

xij∑
xij
} = {0, 3

27
, 20
27
, 0, 4

27
} and{∀

cij∑
cij
} = { 2+0+0

53
,

3+0+1
53

, 15+7+17
53

, 0+0+1
53

, 0+2+5
53
} is minimized while sat-

isfying some privacy guarantee constraints),theshapeof the
input/outputquery-url-userhistograms can be analogous (i.e.
see the counts in the left table of Figure 1(a) and Figure 1(b)).

To sum up, if we compute the output count of every query-url
pair x = {∀xij} by solving an optimization problem (for vari-
ablesx = {∀xij}) that maximizes the output utility and also en-
sures differential privacy for the sanitization algorithm, the output
with optimal utility can be generated by sampling user-IDs for all
the query-url pairs (the schema of Input/Output is indeed identical
since we can sort the output by the sampled user-IDs, as shownin
Figure 1(b) where the association between query-url pairs and the
shape of query-url-user histogram can be preserved).

4. PRIVACY GUARANTEE CONDITIONS
Assume thatR is a sanitization algorithm that samples user-IDs

for every query-url pair(qi, uj) with its total output countxij .
Since the sampling procedures for all query-url pairs are indepen-
dent, for any inputD ({∀cijk} is given) and a possible outputO
({∀xijk} is also given), the probabilityPr[R(D) = O] can be
computed in terms of the probability mass function of multinomial
distribution [2]:

Pr[R(D) = O] =
∏

∀(qi,uj)∈O

[xij ! ·
∏

∀sk∈D

(cijk/cij)
xijk

xijk!
] (1)

Indeed,Pr[R(D) = O] is determined byxij and {∀sk ∈
D,

cijk
cij

and xijk}. Given inputD, {∀sk,
cijk
cij
} are constants.



Hence, if∀(qi, uj) ∈ D, the output countxij is determined, we
can compute the probabilityPr[R(D) = O] for any outputO ∈ Ω
(∀xijk are fixed inO). Therefore, given any pair of neighboring in-
putsD andD′ that differ in one user log, bounding the probabilities
per Definition 2 for a divided output spaceΩ can be transformed
to the problem: determining a feasible solutionx = {∀xij} in the
output that satisfies all the probability bounding conditions in Def-
inition 2 for an output space splitΩ = Ω1 ∪ Ω2. Using this we
can formulate the constraints (satisfying differential privacy) for
variables: the counts of all query-url pairsx = {∀xij} in all the
possible outputsO ∈ Ω.

Without loss of generality, we letD = D′ + Ak whereD and
D′ differ in an arbitrary usersk ’s user logAk. Thus, we first derive
the probabilities in Definition 2 for allO in the output spaceΩ, and
then deduce the constraints for satisfying differential privacy.

4.1 Probabilities in Definition 2
Due toD = D′ +Ak, the user-IDsk might be sampled into the

outputO if starting fromD. Thus, for all outputsO which con-
tain sk, we havePr[R(D′) = O] = 0 (sincesk /∈ D′). Recall
that,givenAk = D −D′ (or Ak = D′ −D), we canonly divide
the output spaceΩ into two setsΩ1 andΩ2 as: (1) every output
O in Ω1 includessk; (2) every output O in Ω2 doesnot include
sk, becauseΩ1 should includes all the exceptional outputs that vi-
olatesǫ-differential privacy. We thus bound the probabilities per
Definition 2 for the above output space split of any two neighbor-
ing inputs (∀O ∈ Ω1, user-IDsk ∈ O andsk /∈ Ω2) to achieve
differential privacy.

4.1.1 for allO ∈ Ω1

Since∀O ∈ Ω1 wheresk ∈ O, we havePr[R(D′) = O] = 0.
Thus, the probabilityPr[R(D′) ∈ Ω1] is also equal to 0. We now
compute the probabilityPr[R(D) ∈ Ω1].

Specifically, to generate any possible outputO including user-
ID sk from D, the probabilityPr[R(D) = O] (whereO ∈ Ω1)
is equal to the probability that“ sk is sampled at least once in the
multinomial sampling process of all the query-url pairs inAk” . For
every query-url pair(qi, uj) ∈ Ak, if its total output count in the
sampling isxij , the probability thatsk is not sampled in a single
multinomial trial (a user-ID inD exceptsk is sampled) is

cij−cijk
cij

simply because usersk holds(qi, uj) with the countcijk and the
total count of(qi, uj) is cij in the inputD. Since∀(qi, uj) ∈ Ak

may lead to thatsk being sampled and the multinomial sampling
for every query-url pair(qi, uj) includesxij independent trials,
we havePr[sk is not sampled] =

∏
∀(qi,uj)∈Ak

(
cij−cijk

cij
)xij . Fi-

nally, we can obtain the probability thatsk is sampled at least once:
Pr[sk is sampled] = 1−

∏
∀(qi,uj)∈Ak

(
cij−cijk

cij
)xij .

Thus, we can derive the probabilityPr[R(D) ∈ Ω1] as below:

Pr[R(D) ∈ Ω1] = 1−
∏

∀(qi,uj)∈Ak

(
cij − cijk

cij
)xij (2)

One important issue is worth noting in multinomial sampling.
For any query-url pair(qi, uj) ∈ Ak wherecijk = cij ((qi, uj) is
unique and only belongs to usersk), if its output countxij > 0, the
probabilityPr[R(D) ∈ Ω1] should be equal to1 which cannot be
bounded. Therefore, we letxij = 0 for this case and all the unique
query-url pairs in the input should be removed.

4.1.2 for allO ∈ Ω2

For any outputO ∈ Ω2, we discuss the ratiosPr[R(D)=O]
Pr[R(D′)=O]

and
Pr[R(D′)=O]
Pr[R(D)=O]

(sinceO does not includesk, we havePr[R(D) =

O] > 0 andPr[R(D′) = O] > 0).
Intuitively, for all query-url pairs that belong to bothAk and

D′, sampling user-IDs fromD involves an additional candidatesk
(but sk /∈ O) compared with sampling user-IDs fromD′. We thus
have Pr[R(D)=O]

Pr[R(D′)=O]
≤ 1 and Pr[R(D′)=O]

Pr[R(D)=O]
≥ 1. Since the ratio

Pr[R(D)=O]
Pr[R(D′)=O]

is bounded by1 (and obviouslyeǫ), we only need to

derive the ratioPr[R(D′)=O]
Pr[R(D)=O]

.
As mentioned in Section 4.1.1, all the query-url pairs inD (and

Ak) but not inD′ should be not be retained in the output. Thus,
to generateO from D, we only sample user-IDs for the common
query-url pairs ofD andD′. Two categories of common query-url
pairs can be identified inD′ (D′ ⊂ D here):(1) query-url pairs in
D′ but not inAk (2) query-url pairs inD′ and also inAk.

In the first category,∀(qi, uj) in D′ but not inAk, the probabili-
ties of sampling user-IDs for(qi, uj) fromD andD′ are equivalent
because the query-url-user histogram w.r.t. these query-url pairs in
D andD′ is identical. We denote the ratio of these two probabili-
ties asPr[R(D′)=O]

Pr[R(D)=O]
(ij) that is equal to1.

In the second category,∀(qi, uj) in D′ and also inAk, we can
consider every sampled user-ID in the process ofR(D) → O into
two cases:“ sk is sampled or not”. In every multinomial trial for
(qi, uj), the probability of samplingsk is

cijk
cij

while the proba-

bility of sampling another user-ID inD (also inD′) is 1 −
cijk
cij

.

Since the number of(qi, uj) in the output isxij (xij times inde-

pendent trials), we have ratioPr[R(D′)=O]
Pr[R(D)=O]

(ij)= 1

(1−
cijk
cij

)
xij

=

(
cij

cij−cijk
)xij (sinceO does not containsk, sk should not be sam-

pled inxij times independent trials when generatingO from D).
In sum, to generate any outputO ∈ Ω2 from D andD′ respec-

tively, it is independent to sample user-IDs for all the above two

categories of query-url pairs. Thus,∀O ∈ Ω2, Pr[R(D′)=O]
Pr[R(D)=O]

=
∏

∀(qi,uj)∈D′
Pr[R(D′)=O]
Pr[R(D)=O]

(ij). Since∀(qi, uj) ∈ D′ but /∈ Ak,
Pr[R(D′)=D]
Pr[R(D)=D]

(ij) = 1, we have∀O ∈ Ω2:

Pr[R(D′) = O]

Pr[R(D) = O]
=

∏

∀(qi,uj)∈D′∩Ak

(
cij

cij − cijk
)xij (3)

4.2 Differential Privacy Constraints
(ǫ, δ)-probabilistic differential privacy (Definition 2) demands:

for any inputD, Pr[R(D) ∈ Ω1] ≤ δ; for D’s arbitrary neigh-
boring inputD′ and∀O ∈ Ω2, 1/eǫ ≤ Pr[R(D)=O]

Pr[R(D′)=O]
≤ eǫ. We

now show that proving the randomization algorithm to be(ǫ, δ)-
probabilistic differentially private as per Definition 2 isequivalent
to ensuring that the output counts of all query-url pairs satisfy a set
of conditions. Theorem 1 is proven in Appendix A.

THEOREM 1. The randomization algorithmR achieves(ǫ, δ)-
probabilistic differential privacy if for any input searchlog D, the
output counts of query-url pairsx = {∀(qi, uj) ∈ D, xij} satisfy:

1. if ∃ triplet (qi, uj , sk) ∈ D such thatcijk = cij , thenxij =
0 (do not output unique query-url pairs);

2. for all Ak ⊂ D:
∏

∀(qi,uj)∈Ak
(

cij
cij−cijk

)xij ≤ eǫ;

3. for all Ak ⊂ D: 1−
∏

∀(qi,uj)∈Ak
(
cij−cijk

cij
)xij ≤ δ.

As a result, we can utilize these conditions to formulate utility-
maximizing problems in our differentially private search log san-
itization. Specifically, we can implement Condition 1 whilepre-
processing the input search log (removing all the unique query-url



pairs), and regard Condition 2 and 3 asDifferential Privacy Con-
straints in the sanitization. As soon as they are satisfied, the sani-
tization should be(ǫ, δ)-probabilistic differential private for every
pair of neighboring search logs that differs in only one userlog.

Note that while our multinomial sampling process is differen-
tially private, the computation of the counts (x∗ = {∀x∗

ij}) is not
necessarily so. To make the whole (end-to-end) sanitization differ-
entially private, we must ensure that the count computationstep is
also differentially private. One simple way to do this is to use the
generic procedure of adding Laplacian noise to the counts derived
from the optimization model (x∗ = {∀x∗

ij}). Since the count com-
putation can be viewed as a query over the input database, adding
Laplacian noise will make the computation differentially private.

Specifically, similar to Korolova et al. [19], if the count dif-
ferences of every query-url pair(qi, uj) in the optimal solutions
derived from two neighboring inputs (D,D′) are bounded by a
constantd, computing optimal counts can be guaranteed to beǫ′-
differentially private [19] (ǫ′ is the parameter of ensuring differen-
tial privacy for such step) by adding Laplacian noise to the optimal
count of every query-url pair:∀(qi, uj), x

∗
ij ← x∗

ij + Lap(d/ǫ′).
Essentially, givend, we can simply bound the difference of every
query-url pair’s optimal count (computed from any two neighbor-
ing inputsD,D′) by executing the following preprocessing proce-
dure for every user logAk in the input database (D or D′):

1. formulate two utility-maximizing problems (pick the same
option as the following sanitization) with neighboring inputs
D andD − Ak (or D′ andD′ − Ak if D′ is the input) re-
spectively, and solve them.

2. if the count difference of any query-url pair in both optimal
solutions is greater thand, removeAk from D (or D′) 1.

If applying the above preprocessing procedure to any two neigh-
boring inputsD andD′, and computing the optimal output counts
with the updatedD andD′, the difference of every query-url pair’s
optimal count can be bounded byd. Thus, adding noiseLap(d/ǫ′)
can ensureǫ′-differential privacy [19] for the step of computing
optimal counts in Algorithm 1. While adding noise may distort the
optimality to some extent, this is the price of guaranteeingcomplete
differential privacy. Since adding Laplacian noise is a well-studied
generic approach, we do not discuss this differential privacy guar-
antee due to space limitation, andthe sanitization/randomization
algorithm refersto thesampling processin this paper.

4.3 Indistinguishability Differential Privacy
Recall that in Section 3.1, we have noted that probabilisticdif-

ferential privacy [24, 10] provides stronger privacy guarantee than
indistinguishability differential privacy [6, 19]. Particularly, the
probabilistic differential privacy notion has following property:

PROPOSITION 1. Probabilistic differential privacy implies in-
distinguishability differential privacy in our search logsanitiza-
tion: if all the conditions in Definition 2 are satisfied with parame-
ters (ǫ, δ), the following two inequalities also hold:

1. Pr[R(D′) ∈ Ô] ≤ eǫ · Pr[R(D) ∈ Ô] + δ;
1The optimization problems result from any two neighboring in-
puts (especially the large neighboring inputs) generate similar op-
timal solutions. Thus, ifd is not too small, the output count differ-
ence can be bounded byd. Otherwise, ifd is required to be suffi-
ciently small (for reducing sensitivity/noise), we removesome user
logs (that cause large differences in two optimal solutions). This
allows us to trade off utility for end-to-end differential privacy.

2. Pr[R(D) ∈ Ô] ≤ eǫ · Pr[R(D′) ∈ Ô] + δ.

whereÔ is an arbitrary set of possible outputs and̂O ⊆ Ω.

Götz et al. prove Proposition 1 and show that the converse of
it does not hold in [10] (The proof of Proposition 1 is also given
in Appendix B). Hence, satisfying Definition 2 with the differen-
tial privacy constraints (Theorem 1) provides more rigorous privacy
guarantee than the work of Korolova et al. [19].

5. UTILITY-MAXIMIZING PROBLEMS
While search logs consist of millions of queries and click-through

urls, from the perspective of utility, clearly, all are not equal. In-
deed, from an application perspective, only a small portionmay be
useful with regards to a specific purpose. For instance, onlythe fre-
quent query-url pairs are useful for query recommendation.Hence,
different data usage purposes may result in different requirements
for extracting data from the original search log. To privately sani-
tize search logs while retaining maximal utility, we need toevaluate
the data utility according to the usage requirement. In thissection,
we introduce three utility-maximizing problems with threediffer-
ent utility definitions.

5.1 Maximizing the Output Size
Before formulating the utility-maximizing problems, we first present

the differential privacy constraints. As stated in Theorem1, our
sanitization algorithm satisfies(ǫ, δ)-probabilistic differential pri-
vacy if three conditions for the output counts of all query-url pairs
are satisfied. Specifically, Condition 1 should be implemented in
the preprocessing step2 while Conditions 2 and 3 give two sets of
constraints for the output counts of all query-url pairs,x = {xij}:

s.t.















∀Ak ⊂ D,
∏

∀(qi,uj)∈Ak
(

cij
cij−cijk

)xij ≤ eǫ

∀Ak ⊂ D, 1−
∏

∀(qi,uj)∈Ak
(
cij−cijk

cij
)xij ≤ δ

∀xij ≥ 0 andxij is an integer

Intuitively, the differential privacy constraints can be transformed
into linear constraints: (constanttijk =

cij
cij−cijk

; each user log

Ak ’s two constraints can be combined asmin{ǫ, log 1
1−δ
})

s.t.

{
∀Ak ⊂ D,

∑
∀(qi,uj)∈Ak

xij · log tijk ≤ min{ǫ, log 1
1−δ
}

∀xij ≥ 0 andxij is an integer
(4)

In the above differential privacy constraints (each user log gen-
erates a constraint): due to∀tijk =

cij
cij−cijk

> 1, the coefficient

of all the linear constraints∀ log tijk should be greater than 0 (all
unique query-url pairs have been removed). LettingMx ≤ b be
the above differential privacy constraints, all the elements in the
constraint matrixM are non-negative and all the elements inb are
equal tomin{ǫ, log 1

1−δ
}. Thus, we have:

STATEMENT 1. Differential privacy constraints (Equation 4)
are always feasible and bounded.

We show the above property from the geometric perspective of
linear constraints. Specifically, linear constraints{Mx ≤ b, x ≥
0, b > 0} form a convex polytope, which is always feasible and
bounded ifM, b ≥ 0 [26]. i.e. in Figure 2(a) (two differential
privacy constraints are generated by two user logs which includes
three distinct query-url pairs), the feasible region of{Mx ≤ b, x ≥

2For all unique query-url pairs, we let the output count be 0 (for
satisfying Condition 1 in Theorem 1).



0, b > 0} is formed as polytope OABCDE by two constraints
(the space below planes AFH and GCD). Similarly, in Figure 2(b)
(three differential privacy constraints are generated by three user
logs which includes two distinct query-url pairs), all the solutions
in the feasible region OABC (the region below AD, FC and EH)
satisfy all the differential privacy constraints. For morevariables
and constraints, more hyperplanes would form the polytope that is
still feasible and bounded [26].
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Figure 2: Differential Privacy Constraints

One interesting point worth noting is that the size of the out-
put (the total number of all users’ query-url pairs in the output) is
bounded by the differential privacy constraints. If we regard the
output size

∑
∀(qi,uj)∈D

xij as the utility objective function, we

can use the following problem to seek the optimal output utility:

max :
∑

∀(qi,uj)∈D

xij

s.t.

{

∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∀xij ≥ 0 andxij is an integer

We define the above problem as“Output size Utility-Maximizing
Problem” (O-UMP). Since it is an integer linear programming (ILP)
problem, we can solve it using some standard method (such as
simplex algorithm) with linear relaxation [26] (the LP problem is
always feasible and bounded). After solving it (optimal solution
x∗ = {∀⌊x∗

ij⌋}), for every(qi, uj), we sample user-IDs with⌊x∗
ij⌋

times multinomial trials (the input query-url-user histogram pro-
vides the probability of every sampled outcome in one trial). The
sanitization algorithm satisfies Definition 2 (Proof in Appendix D).

LEMMA 1. The O-UMP based sanitization algorithm satisfies
(ǫ, δ)-probabilistic differential privacy for any pairs of neighboring
input search logs.

Since the optimal solutionx∗ = {∀x∗
ij} satisfies the differential

privacy constraints,the randomization algorithm basedon the lin-
earrelaxedsolution shouldbealsodifferentially private (∀⌊x∗

ij⌋ ≤
x∗
ij , thus∀⌊x∗

ij⌋ strictly satisfies the constraintsMx ≤ b where
M, b ≥ 0). Note that if we require adding Laplacian noise to
{∀x∗

ij} to ensure differential privacy for the step of computing op-
timal counts, we cannot always guarantee that the noise-added op-
timal solution satisfies the differential privacy constraints, though
this is likely (since the mean of added Laplacian noise is 0).Mean-
while, since the amount of noiseLap(d/ǫ′) is directly propor-
tional to d (privacy parameterǫ′ is fixed), d can be lowered to
the preferred value (reducing the sensitivity/amount of noise) to
gain closer approximation of strict end-to-end differential privacy.
These also apply to the following utility-maximizing problems.

5.2 Optimal Utility of Frequent query-url Pairs
Top frequent click-through pairs in search logs have betterutil-

ity [12] than abnormal query-url pairs for improving the quality of
search results or enforcing the search with recommendations and

suggestions. Retaining frequent query-url pairs in the sanitized
search logs can be a basic and practical goal of seeking the opti-
mal output utility in the sanitization. We denote this problem as
“Frequent query-url pair Utility-Maximizing Problem” (F-UMP).

First of all, we denote|D| as the size (the total number of query-
url pairs) of the input search logD. Thus, frequent query-url pairs
can be identified using itsSupportin D: given a minimum support
thresholds, if

cij
|D|
≥ s, then(qi, uj) is a frequent click-through

query-url pair inD. Since the support of a frequent query-url pair
explicitly indicates its importance in the search log, the support
of all the frequent query-url pairs should be preserved as much as
possible. In other words, the support of every frequent query-url
pair in the outputO should be close to its support in the inputD
(|D| does not include the number of unique query-url pairs which
should be removed in the preprocessing step).

Thus, we can define the objective function as minimizing the
sum of support distances for all the“frequent query-url pairs” in
the input search logD:

min :
∑

∀(qi,uj)∈D where
cij

|D|
≥s

||
xij

|O|
−

cij
|D|
|| (5)

where|O| =
∑

∀(qi,uj)∈D
xij is the size of the outputO.

With this objective, we formulate the F-UMP using the differen-
tial privacy constraints as below:

min :
∑

∀(qi,uj)∈D where
cij

|D|
≥s

||
xij

|O|
−

cij

|D|
||

s.t.











∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∑

∀(qi,uj)∈D xij = |O|

∀xij ≥ 0 andxij is an integer

Generally, since every query-url pair’s support inD andO are
two ratios, pursuing the minimized sum of support distances(our
objective in F-UMP) cannot always guarantee an output with good
frequent query-url pair utility (i.e. the number of all frequent query-
url pairs are very small, but the support of them are close to the orig-
inal one). Alternatively, we can specify a fixed output size|O| in
the sanitization and seek the optimal utility for the frequent query-
url pairs. Recall that O-UMP can generate the output with themax-
imum size for any inputD and fixed parameters(ǫ, δ) (we denote
the maximum output size asλ). Thus, to preserve sufficient output
size, we can solve the F-UMP with a specified constant output size
|O| ∈ (0, λ].

STATEMENT 2. F-UMP can be considered as an integer linear
programming (ILP) problem if we fix the output size|O| as a con-
stant and standardize the absolute values in the objective function.

First, due to|O| =
∑

∀(qi,uj)∈D
xij , if we specify the size of

the output in the sanitization,
xij

|O|
−

cij
|D|

can be considered as lin-
ear. Second, we can transform the absolute values in the objective
function in a standard way:

1. create a new variableyij for every frequent query-url pair
∀(qi, uj) where

cij
|D|
≥ s: yij =

xij

|O|
−

cij
|D|

;

2. generate two new constraints for everyyij : yij ≥
xij

|O|
−

cij
|D|

andyij ≥
cij
|D|
−

xij

|O|
.

As a result, F-UMP can be transformed into an integer linear
programming (ILP) problem as below:



min :
∑

∀(qi,uj)∈D where
cij

|D|
≥s

yij

s.t.































∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∑

∀(qi,uj)∈D xij = |O|

∀(qi, uj) where
cij
|D|
≥ s, yij ≥

xij

|O|
−

cij
|D|

∀(qi, uj) where
cij
|D|
≥ s, yij ≥

cij
|D|
−

xij

|O|

∀xij ≥ 0 andxij is an integer

Similar to O-UMP, we can solve the above ILP problem using
some standard methods such as Simplex algorithm with linearre-
laxation [26] (if |O| is specified to be no greater thanλ, the ILP
problem should be feasible and bounded).

Overall, in F-UMP based sanitization, we can specify an appro-
priate output size|O| ∈ (0, λ], solve the ILP problem (optimal
solutionx∗ = {∀⌊x∗

ij⌋}) and generate the optimal output utility:
the Input/Output Support of all the frequent query-url pairs tends
to be close (only counting the non-unique query-url pairs) and the
output size can be assured as well. Finally, we sample the output
with the optimal solution of F-UMP: for every(qi, uj) (either fre-
quent or infrequent), we sample user-IDs with⌊x∗

ij⌋ times multino-
mial trials (equally, the input query-url-user histogram provides the
probability of every sampled outcome in one trial). As discussed in
Section 3.2, the shape of query-url-user histogram can be preserved
in this problem based sanitization algorithm. Also, the sanitization
algorithm satisfies Definition 2 (Proof in Appendix D).

LEMMA 2. The F-UMP based sanitization algorithm satisfies
(ǫ, δ)-probabilistic differential privacy for any pairs of neighboring
input search logs.

5.3 Maximizing query-url Pair Diversity
Occasionally, more distinct query-url pairs exhibit better utility,

we can formulate the“Diversity Utility-Maximizing Problem” (D-
UMP) in search log sanitization. The diversity of search logs nor-
mally has two facts: the diversity of search queries and the diversity
of query-url pairs. Since we investigate the potential privacy breach
from every query-url pair (finer-grained than search queries), we
denote the diversity utility of search logs as the number of distinct
query-url pairs. (Indeed, we can also model search query diversity
maximizing problem in a similar way.)

In our sanitization,xij represents the count of query-url pair
(qi, uj) in the outputO. To evaluate the diversity of the sanitized
search logO, we can introduce another variableyij for everyxij .

{
yij = 1, if xij > 0
yij = 0, if xij = 0

(6)

We thus define the utility function asmax :
∑

yij . Moreover,
given a large constantH ≥ max{∀cij}, Equation 6 is guaranteed
to hold by the following inequalities:







∀(qi, uj), xij ≤ yij ·H
∀(qi, uj), xij ≥ yij
yij ∈ {0, 1}, ∀xij ≥ 0,H ≥ max{∀cij}

(7)

As a result, D-UMP can be formally defined as:

max :
∑

∀(qi,uj)∈D

yij

s.t.




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











∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∀(qi, uj) ∈ D,xij ≤ yij ·H

∀(qi, uj) ∈ D,xij ≥ yij

H ≥ max{∀cij}, ∀xij ≥ 0 and is an integer, yij ∈ {0, 1}

Essentially, letting∀xij ∈ {0, 1} and xij = yij , the above
mixed integer programming (MIP) problem can be transformedto
a simplified binary integer programming (BIP) problem (see Equa-
tion 8). Both problems have the same optimal solution for variables
y = {∀yij}. (We prove Theorem 2 in Appendix C)

THEOREM 2. The optimal solutiony∗ = {∀y∗
ij} of the BIP

problem is equivalent to the values{∀y∗
ij} in the optimal solution

{x∗, y∗} = {∀x∗
ij ,∀y

∗
ij} of the MIP problem.

max :
∑

∀(qi,uj)∈D

yij

s.t.

{

∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
yij log tijk ≤ min{ǫ, log 1

1−δ
}

H ≥ max{cij},∀yij ∈ {0, 1}

(8)
After solving the simpler BIP problem rather than the MIP prob-

lem (both problems are feasible), we thus let∀(qi, uj) ∈ D,xij =
yij ∈ {0, 1} be the optimal solution of D-UMP (samplinguser-IDs
in only one trial for every query-url pair in the output. Similarly,
the input query-url-user histogram provides the probability of every
sampled outcome in one trial).

However, both BIP and MIP problem are NP-hard [26]. For
large-scale D-UMP, we propose an effective and efficient heuris-
tic algorithm to solve the BIP problem in Algorithm 2. It seeks an
approximate optimal value for the BIP problem. We iteratively re-
move sensitive query-url pairs (letyij = 0 if yij has a maximum
positive coefficienttijk in the sparse constraint matrix). We elim-
inate these query-url pairs since they belong to a certain user with
the highest percent in the count histogram of the triplets query-url-
user (sensitive to the corresponding user. i.e. if usersk holds90%
of (qi, uj), tijk should be large). The algorithm terminates until all
the differential privacy constraints are satisfied.

Algorithm 2 Sensitive query-url Pair Eliminating (SPE) Heuristic
Input: search logD and differential privacy parameters(ǫ, δ)
Output: optimal solution for D-UMPy∗ = {∀y∗ij}

1: remove all the unique query-url pairs fromD (preprocessing).
2: for every(qi, uj) ∈ D do
3: yij ← 1.
4: while truedo
5: find the maximumtijk =

cij
cij−cijk

from the constraint matrix.

6: let yij ← 0 for the maximumtijk .
7: if ∀Ak,

∑

∀(qi,uj)∈Ak
yij log tijk ≤ min{ǫ, log 1

1−δ
} then

8: break
9: returny∗ = {∀y∗ij}.

The sanitization algorithm based on D-UMP also satisfies Defi-
nition 2. (Proof in Appendix D)

LEMMA 3. The D-UMP based sanitization algorithm satisfies
(ǫ, δ)-probabilistic differential privacy for any pairs of neighboring
input search logs.

6. EXPERIMENTAL RESULTS

6.1 Experiment Setup3

3Since the published search logs in [19] and [10] do not include
pseudonymous user-IDs for associating distinct query-urlpairs in
every user’s search history, the utility of our sanitized search logs is
incomparable with their work. Moreover, since Laplacian noise has
been well evaluated in their work, we focus on testing the optimal
utility w.r.t. the output counts of all query-url pairs.



Dataset. In our experiments, we utilize the AOL real search log
[3, 11] to test our utility-maximizing problems. Our experimen-
tal dateset is extracted from one subset of AOL data. Specifically,
we randomly pick 2500 out of over 65000 user logs in the selected
AOL data. We remove all the unique query-url pairs (appear inonly
one user log) from the selected dataset in our preprocessingstep.
Thus, Table 3 presents the characteristics of the AOL dataset (only
collect the tuples with clicks), our randomly selected dataset and
the preprocessed dataset. 6043 distinct query-url pairs isheld by
1980 users in the preprocessed dataset (since search logs which are
extremely diverse include large number of unique query-urlpairs,
most of the existing work [19, 10] cannot maintain the entireoutput
diversity either). Thus, we have6043 variablesand1980 differen-
tial privacy constraintsin our UMPs.

Table 3: Characteristics of the Data Sets
AOL Exp. Preprocessed Dataset

Dataset Dataset (without unique pairs)
# of total tuples (size) 1,864,860 237,786 53,067 (|D|)

# of user logs 51,922 2,500 1,980(Constraints)
# of distinct queries 583,084 83,130 4,971
# of distinct urls 373,837 82,076 4,289

# of query-url pairs 1,190,491 163,681 6,043(Variables)

Experimental Parameters Setup. To observe the tuning of
differential privacy parameters(ǫ, δ), we let δ = {10−4, 10−3,
10−2, 10−1, 0.2, 0.5, 0.8} andeǫ = {1.001, 1.01, 1.1, 1.4, 1.7, 2.0,
2.3} in all three utility-maximizing problems. Furthermore, F-
UMP requires two additional parameters: the minimum support s
and the output size|O| (|O| ≤ λ andλ is given as the optimal value
of O-UMP). We lets = { 1

100
, 1
250

, 1
500

, 1
750

, 1
1000
}. For every pair

of ǫ andδ, we computeλ in O-UMP and specify an appropriate
output size|O| in F-UMP.

Experimental Platform. All the experiments are performed on
an HP machine with Intel Core 2 Duo CPU 3GHz and 3G RAM
running Microsoft Windows XP Professional Operating system.
While solving D-UMP, we also submit the AMPL format of the
BIP problems to three NEOS solvers (qsopt_ex, scip and feaspump
[16]) running online in addition to locally running our heuristic.

6.2 Maximum Output Sizeλ

With the preprocessed dataset (|D| = 53067 as shown in Table
3), we can compute the maximum output sizeλ using O-UMP
for a given pair of differential privacy parameters(eǫ, δ). Table
4 presents the maximum output size (the optimal value of O-UMP)
for different pairs of(eǫ, δ) where O-UMP is solved by Matlab
function linprog. To generate the outputO, we can sample user-
IDs for every query-url pair according to the optimal solution (6043
variables/query-url pairs).|O| can be maximized while the entire
process satisfies(ǫ, δ)-differential privacy. We can obtain 7.08%-
26.2% of the original size with the given parameters. Due to the
highly diversity and sparseness of search log data, this percent of
output size is sufficient good for differential privacy guaranteed
sanitization algorithms.

Table 4: Maximum Output Sizeλ on eǫ and δ (|D| = 53067)
eǫ�δ 10−4 10−3 10−2 10−1 0.2 0.5 0.8
1.001 3759 4007 4007 4007 4007 4007 4007
1.01 3759 4007 4879 4879 4879 4879 4879
1.1 3759 4007 4891 8382 8382 8382 8382
1.4 3759 4007 4891 8874 10445 11419 11419
1.7 3759 4007 4891 8874 10445 12438 12438
2.0 3759 4007 4891 8874 10445 13088 13088
2.3 3759 4007 4891 8874 10445 13088 13901

6.3 Optimal Utility of Frequent query-url Pairs
Recall that F-UMP based sanitization generates outputs with the

minimum sum of the support distances of all thefrequent query-
url pairs. Thus, we examine the maximum frequent query-url pairs
utility with three measures: the optimal value of F-UMP (minimum
sum of the support distances, see Equation 5), thePrecisionand
Recallof the frequent query-url pairs in the input/output.Precision
andRecallare defined as below:

Precision =
|S0 ∩ S|

|S|
, Recall =

|S0 ∩ S|

|S0|
(9)

whereS0 andS denote the set of frequent query-url pairs inD
andO respectively, and| · |means the cardinality of the set. Specif-
ically, Precisionis defined to evaluate the fraction of the frequent
query-url pairs in the output that are originally frequent in the in-
put with the same minimum support.Recallis defined to evaluate
the fraction of the frequent query-url pairs in the input that remains
frequent in the output with the same minimum support.

To evaluate the performance of F-UMP in differentially private
search log sanitization, we run two groups of experiments. First, we
fix the output size and the minimum support as:|O| = 3000 < λ
and s = 1

500
, and test the (measurement) results with different

pairs of(ǫ, δ). Second, we fix the differential privacy parameters
as: eǫ = 2, δ = 0.5 (λ = 13088, as shown in Table 4), and
test the results with different minimum supports and output size
|O|. One essential point worth noting is that the minimum sum of
support distances is an effective measure in the first group of ex-
periments because the minimum supports is fixed and the original
frequent query-url pairs in the input has been determined for all dif-
ferent pairs ofǫ andδ (thus the sum of the support distances for all
the frequent query-url pairs in the input is comparable). However,
in the second group, the set of original frequent query-url pairs is
varying for differents, hence the objective values of F-UMP is in-
comparable on a varyings. Therefore, we use the average of the
support distances for all the frequent query-url pairs in the input in
addition to the sum of them in the second group of experiments.

Interestingly, in all our F-UMP experiments,Precisionis always
equal to 1, which means all the frequent query-url pairs in the out-
put are also frequent in the input with the same minimum support
s. This is quite reasonable: suppose that(qi, uj) is not a frequent
query-url pair in the input where

cij
|D|

< s, if it is frequent in the

output where
xij

|O|
≥ s, the solution of F-UMP must be not optimal

(reducing
xij

|O|
to

cij
|D|

might improve the objective value and does
not violate differential privacy constraints).

In the first group of experiments, Figure 3(a) and 3(b) demon-
strate theRecallandSum of the Support Distancesfor all the fre-
quent query-url pairs in the input. Fixingδ, Recall increases asǫ
increases untilǫ = log 1

1−δ
. Fixing ǫ ≥ log 1

1−δ
, Recallincreases

asδ increases; fixingǫ < log 1
1−δ

, Recallstays invariant even if
δ is increasing. By contrast, the sum of support distances hasan
inverse increasing trend on varyingǫ andδ.

Table 5: Recall on Output Size |O| and Minimum Support s
(eǫ = 2, δ = 0.5, λ = 13088)

s�|O| 3000 4000 5000 6000 7000 8000
1

1000
0.8873 0.8189 0.874 0.8661 0.8583 0.8346

1
750

0.8095 0.8762 0.8571 0.8476 0.8952 0.8667
1

500
0.9143 0.9143 0.9286 0.9143 0.8857 0.8714

1
250

0.9116 0.8529 0.8529 0.8529 0.8529 0.8235
1

100
0.933 0.8667 0.8 0.8 0.8 0.7333

In the second group of experiments, Table 5 presents theRecall
on different pairs of outputs size and minimum support. As we
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Figure 3: F-UMP Performance

can see, over 80% of the frequent query-url pairs can be retained
in the output with fixingeǫ = 2 andδ = 0.5 (given more strict
eǫ andδ, 30% of them can be retained as shown in Figure 3(a)).
In addition, Table 6 illustrates the sum of support distances for all
frequent query-url pairs in the input(the same|O| ands as Table
5). Fixing s, the sum of support distances increases as the output
size increases (they are comparable due to fixeds). This fact is
true: given a fixed minimum supports, for the fixed set of frequent
query-url pairs in the input, it is easier to achieve the minimum
support without violating differential privacy constraints when|O|
is not too large (the ideal output countxij is |O| ·

cij
|D|

and the
output counts are bounded by privacy constraints, thus all frequent
query-url pairs∀xij are likely to achieve|O| ·

cij
|D|

if |O| is small).
Finally, since the set of frequent query-url pairs varies for different
s, we compare the average support distance instead of the sum of
them for differents. As shown in Figure 3(c), the average support
distance decreases as the minimum supports increases (logarithmic
scale minimum supports). Therefore, the frequent query-url pairs
in the output is closer to them in the input if a larger minimum
support is given in the F-UMP.

Table 6: Sum of Freq. query-url Pair Support Distances on Out-
put Size|O| and Min. Support s (eǫ = 2, δ = 0.5, λ = 13088)

s�|O| 3000 4000 5000 6000 7000 8000
1

1000
0.0551 0.085 0.1058 0.1279 0.1485 0.1785

1
750

0.0549 0.0854 0.1116 0.1271 0.1477 0.1767
1

500
0.0559 0.0865 0.1048 0.1247 0.1448 0.1716

1
250

0.0555 0.086 0.1043 0.1236 0.1393 0.161
1

100
0.0574 0.088 0.1063 0.1246 0.1392 0.1583

6.4 Maximum query-url Pair Diversity

6.4.1 D-UMP Performance
We now look at the performance of D-UMP (maximum diversity

utility). Figure 4 shows the percentage of retained query-url pairs
in the output with the same parameters(ǫ, δ) as F-UMP. The maxi-
mum query-url diversity has a similar increasing trend as theRecall
of F-UMP (Figure 3(a)). Moreover, the query-url diversity can be
retained as high as 30%. Note: the input has been preprocessed by
removing all the unique query-url pairs, and they are not counted
in the denominator of the ratio.

6.4.2 BIP Solver Comparison
Since D-UMP is an NP-hard problem, we introduced an effective

heuristic algorithm (Algorithm 2) for this binary integer program-
ming (BIP) problem with a sparse non-negative constraint matrix.
We now compare the performance of our Sensitive Pair Eliminating
heuristic (SPE) with some popular BIP solvers (Matlab bintprog
function, Neos qsopt_ex, Neos scip and Neos feaspump [16]).

1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

25

30

35

40

eε

M
ax

 R
et

ai
ne

d 
qu

er
y−

ur
l P

ai
r 

(%
)

 

 

δ=0.01
δ=0.1
δ=0.5
δ=0.8

Figure 4: Maximum Diversity on (ǫ, δ) (Algorithm 2)

Table 7: Retained Diversity Utility of Different BIP Solver s
(a) eǫ = 2

BIP Solver�δ 10
−3

10
−2

10
−1 0.2 0.5 0.8

SPE (Heuristic) 12.8% 18.1% 26.0% 28.1% 29.5% 30.6%
Matlab bintprog 9.6% 15.2% 23.8% 26.8% 28.9% 29.5%

Neos qsopt_ex 9.6% 15.2% 23.4% 26.8% 29.5% 29.5%
Neos scip 9.5% 15.2% 23.7% 26.8% 29.5% 29.5%

Neos feaspump 9.6% 15.2% 25.8% 29.5% 30.3% 30.3%

(b) δ = 0.1

BIP Solver�e
ǫ 1.01 1.1 1.4 1.7 2.0 2.3

SPE (Heuristic) 17.7% 25.7% 26.0% 26.0% 26.0% 26.0%
Matlab bintprog 14.6% 22.5% 23.8% 23.8% 23.8% 23.8%

Neos qsopt_ex 15.5% 22.5% 23.4% 23.4% 23.4% 23.4%
Neos scip 14.6% 21.4% 23.1% 23.1% 23.1% 23.1%

Neos feaspump 15.5% 25.8% 25.8% 25.8% 25.8% 25.8%

As shown in Table 7, we collected the maximum percent of re-
tained distinct query-url pairs using all the solvers with the same
experimental inputs. We observe that our heuristic algorithm per-
forms better than other solvers in most cases and the optimalvalues
by all the solvers have quite similar varying tendency. Specifically,
Algorithm 2 generates sanitized search logs with greater query-url
pair diversity than Matlab bintprog, NEOS qsopt and Neos scip.
NEOS feaspump performs slightly better than Algorithm 2 only
when(eǫ = 2, δ = 0.5) and(eǫ = 1.1, δ = 0.1).

Finally, we plot the computational costs for solving a typical D-
UMP by all solvers in Figure 5(eǫ = 1.7, δ = 10−3)). Since
our Sensitive query-url Pair Eliminating (SPE) algorithm has the
complexityO(n2 logmn) (constraint matrix size:m × n), it out-
performs other solvers for our D-UMP in time complexity as well.

6.5 Difference of Input/Output Histograms
As described in Section 3.2, our multinomial sampling, partic-

ularly the F-UMP based sanitization can retain the shape of the
histograms in the output (generate similar count histograms for dis-
tinct triplets: query-url-user (qi, uj , sk)). We now examine this by
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comparing two histograms.
Specifically, we generate 10 randomized outputs according to

the optimal solution of F-UMP for two different output size|O| =
4000 and6000 respectively (fixingeǫ = 2, δ = 0.5, s = 1/500),
and plot two bar plots in Figure 6: the X-axis varies from 0% to
100% while the Y-axis representsthe average number of distinct
triplets (qi, uj , sk)4 whose difference ratio of the input/output his-
tograms (defined in Equation 10) equals the values in the X-axis. In
both Figure 6(a) and 6(b), the percent of most triplets (qi, uj , sk) in
the input/output varies within a tolerable bound (|O| = 4000, the
difference ratio of about 75% triplets is below 40%;|O| = 6000,
the difference ratio of about 90% triplets is below 40%).

DiffRatio(x∗
ijk, cijk) = ||

x∗
ijk/|O| − cijk/|D||

cijk/|D|
|| (10)

7. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the important practical problem

of retaining the maximum utility while the search log sanitization
satisfies differential privacy and generates outputs with the identical
schema as the original search log. As a necessary step, we have
defined three different notions of utility that are useful for various
applications. We have implemented our approach and validated it
on several real data sets.

We can extend our work in several directions. First, additional
notions of utility can be considered and corresponding optimization
models created. We also need to explore ways of combining differ-
ent utility notions to create a single joint objective. Thiswould be
akin to a multi-objective optimization. Second, corresponding to
the utility-maximizing problem, one can similarly define the pri-

4The triplets w.r.t. infrequent query-url pairs can be ignored in
general. Ifs is sufficiently small, the shape of the query-url-user
histogram w.r.t.all query-url pairscan be optimally retained.

vacy breach-minimizing problem which asks for minimal privacy
loss while satisfying a certain utility. Third, since we have modeled
the utility-maximizing problems in the optimization framework, it
should be possible to leverage the significant work in the field of
operations research to solve these problems. We intend to explore
these in the future.
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APPENDIX

A. PROOF OF THEOREM 1
PROOF. Assume thatD andD′ differ in an arbitrary usersk ’s

user logAk. In Section 4.1, we discussed two sets of output spaces
Ω = Ω1 ∪ Ω2: all the possible outputs inΩ1 includesk whereas
all the possible outputs inΩ2 does not includesk. Hence, if the
probabilities inequalities in Definition 2 hold for the aboveΩ1,Ω2,
(ǫ, δ)-probabilistic differential privacy can be guaranteed forthe
randomization algorithm with this output space split.

First, according to Equation 2, if∀Ak ⊂ D, 1−
∏

∀(qi,uj)∈Ak

(
cij−cijk

cij
)xij ≤ δ (Condition 3) holds, we havePr[R(D) ∈

Ω1] ≤ δ for any inputD. Meanwhile, Condition 1 guarantees
thatPr[R(D) ∈ Ω1] can be effectively bounded byδ. Otherwise,
if a unique query-url pair(qi, uj), givenxij > 0, Pr[R(D) ∈ Ω1]
should be equal to 1 with such output space split (no other space
split available for any pair of neighboring input search logs).

Second, for allO ∈ Ω2, we havePr[R(D′) = O] > 0 and
Pr[R(D) = O] > 0. If D′ ⊂ D, Condition 2 ensuresPr[R(D)=O]

Pr[R(D′)=O]

≤ 1 ≤ Pr[R(D′)=O]
Pr[R(D)=O]

≤ eǫ. On the contrary, ifD ⊂ D′, Condi-

tion 2 derived fromD′ can also guaranteesPr[R(D′)=O]
Pr[R(D)=O]

≤ 1 ≤
Pr[R(D)=O]
Pr[R(D′)=O]

≤ eǫ.
Thus, the randomization algorithmR satisfies(ǫ, δ)-probabilistic

differential privacy (by dividing output space as above) ifthree con-
ditions in the theorem hold. Note that the violation of any condition
would result in unbounded multiplicative and/or additive probabil-
ity difference (givenǫ andδ) for at least one inputD and/or one of
its neighboring inputD′ (Differential privacy will not be guaran-
teed), then the upper boundsǫ andδ are tight.

B. PROOF OF PROPOSITION 1
PROOF. W.o.l.g., assume that two arbitrary neighboring search

logsD andD′ differing in one user log:D = D′+Ak andÔ ⊆ Ω
is an arbitrary set of possible outputs. For any inputD, we can
divide the output spaceΩ into two setsΩ1 andΩ2, such that (1)
Pr[R(D) ∈ Ω1] ≤ δ, and forD,D′ (2) ∀O ∈ Ω2, 1/eǫ ≤
Pr[R(D′)=O]
Pr[R(D)=O]

≤ eǫ.

Let Ô1 = Ô ∩ Ω1 andÔ2 = Ô ∩ Ω2, thus:Pr[R(D) ∈ Ô] =∫
∀O∈Ô1

Pr[R(D) = O]dO +
∫
∀O∈Ô2

Pr[R(D) = O]dO

≤
∫
∀O∈Ω1

Pr[R(D) = O]dO + eǫ
∫
∀O∈Ô2

Pr[R(D′) = O]dO

≤ δ + eǫ
∫
∀O∈Ô2

Pr[R(D′) = O]dO

≤ δ + eǫPr[R(D′) ∈ Ô2] ≤ δ + eǫPr[R(D′) ∈ Ô].

Similarly, we can prove thatPr[R(D′) ∈ Ô] ≤ δ +

eǫPr[R(D) ∈ Ô].
This completes the proof.

C. PROOF OF THEOREM 2
PROOF. To distinguish two optimal solutionsy∗ in the BIP and

the MIP problem, we denotey∗ for the BIP and the MIP problem
as(y∗)B = {∀(y∗

ij)B} and(y∗)M = {∀(y∗
ij)M}.

• Suppose that∃(y∗
ij)B = 0, (y∗

ij)M = 1 and∀z 6= ij, (y∗
z)B =

(y∗
z )M ((y∗)B and (y∗)M differ in one variable). Due to

(y∗
ij)M = 1 andx∗

ij ≥ (y∗
ij)M , all the constraints∀Ak ⊂

D,
∑

∀(qi,uj)∈Ak
(yij)M · log tijk ≤ min{ǫ, log 1

1−δ
} must

be satisfied for(y∗)M .
In addition,(y∗

ij)M > (y∗
ij)B =⇒

∑
∀(qi,uj)∈D

(y∗
ij)M >∑

∀(qi,uj)∈D
(y∗

ij)B . As∀(y∗
ij)B satisfies the constraints

∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
(yij)B·log tijk ≤ min{ǫ, log 1

1−δ
}

in the BIP problem,
∑

∀(qi,uj)∈D
(y∗

ij)M should be the op-
timal value for the BIP problem if other constraints are the
same for two problems (due to

∑
∀(qi,uj)∈D

(y∗
ij)M >∑

∀(qi,uj)∈D
(y∗

ij)B). Hence, it is a contradiction.

• Suppose that∃(y∗
ij)B = 1, (y∗

ij)M = 0 and∀z 6= ij, (y∗
z)B =

(y∗
z )M ((y∗)B and (y∗)M differ at one variable). Hence,

the constraints∀Ak ⊂ D,
∑

∀(qi,uj)∈Ak
(yij)B log tijk ≤

min{ǫ, log 1
1−δ
} are satisfied in the BIP problem. In the MIP

problem, if lettingxij be 1 for all (y∗
ij)B = 1, ∀Ak ⊂ D,∑

∀(qi,uj)∈Ak
xij log tijk ≤ min{ǫ, log 1

1−δ
} can be equally

satisfied. In this case, we have
∑

∀(qi,uj)∈D
(y∗

ij)B

=
∑

∀(qi,uj)∈D xij =
∑

∀(qi,uj)∈D(yij)M

>
∑

∀(qi,uj)∈D
(y∗

ij)M

(since∀(qi, uj) ∈ D, xij = (yij)M ). Hence,(y∗)M is not
the optimal solution of the MIP problem. It is a contradiction.

Therefore, Theorem 2 has been proven.

D. PROOF OF LEMMA 1, 2 AND 3
PROOF. It is similar and straightforward to prove Lemma 1, 2

and 3 (probabilistic differential privacy) using Theorem 1, we thus
prove them together.

The sanitized search logO is generated in terms of the opti-
mal solution of O-UMP, F-UMP or D-UMP. We sample the output
based on the linear relaxed optimal solutionx∗ = {⌊x∗

ij⌋} (gives
the total count) and the query-url-user histograms in any input D
(gives the individual outcome probabilities). Due to∀⌊x∗

ij⌋ ≤ x∗
ij ,

we can infer that{∀(qi, uj) ∈ O, ⌊x∗
ij⌋} satisfies the Condition

2 and 3 of Theorem 1 (differential privacy constraints∀Ak ⊂ D,∑
∀(qi,uj)∈Ak

xij log tijk ≤ min{ǫ, log 1
1−δ
} in O-UMP, F-UMP

or D-UMP are satisfied). Moreover, Condition 1 of Theorem 1 is
also guaranteed in the preprocessing step.

Thus, while sampling user-IDs for any input search logD and
its arbitrary neighboring inputD′ with the optimal counts (given
by the optimization problem), we can divide the multinomialsam-
pling output spaceΩ (derived fromD andD′) into Ω1 andΩ2 as
described in Section 4 where all the probabilities in Definition 2 are
bounded byǫ andδ in such space split (refer Theorem 1). There-
fore, the O/F/D-UMP based sanitization (randomization) algorithm
satisfies(ǫ, δ)-probabilistic differential privacy (we can add Lapla-
cian noise to ensure differential privacy for the step of computing
the optimal counts if necessary).

This completes the proof.
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