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Abstract
In this article a scheduling method is presented which is ca-
pable of allocating supplementary resources during scheduling.
This makes it very suitable in synthesis strategies based on lower
bound estimations techniques. The method is based on genetic
algorithms. Special coding techniques and analysis methods are
used to improve the runtime and quality of the results. The sched-
uler can easily be extended to coverother architectural issues and
(for example) providesways to make trade-offs between functional
unit allocation and register allocation. Experiments and compar-
isons show high quality results and fast run times that outperform
results produced by other heuristic scheduling methods

1 Introduction

High-level synthesis translates behavioral descriptions into dig-
ital network structures. During this translation the cycle steps
in which operations start their execution must be determined
(scheduling problem). A schedule induces a resource alloca-
tion (because some operations are executing simultaneously) and
a completion time (the cycle in which the last operation finishes its
execution). Solving this problem efficiently is a non-trivial matter
because of the NP-complete nature of most high-level synthesis
scheduling problems.

To restrict the search space of a scheduler, lower bound estima-
tion techniques as reported in [Timm93b], [Jain92] and [Rim92]
can be used. Given a time constraint and a data flow graph these
techniques try to estimate an accurate lower bound on the num-
ber of resources which are needed to schedule the graph within
the time constraint. In some cases these techniques find a lower
bound for which no feasible schedule exists, i.e. the completion
time of the schedule exceeds the specification. Schedulers which
are used in such an environment should be able to cope with
such a behavior. When exact solution methods like IP scheduling
([Hwan91], [Gebo90]) are used, the danger exists that they will
perform an exhaustive search because they cannot detect that a
combination of constraints is infeasible, and large run times may
be the result. Heuristic methods like list scheduling [Thom90],
critical path scheduling [Park86] and force directed (list) schedul-
ing [Paul89], [Verh92] are faster, but may produce unsatisfactory
results because of their greedy characteristics. Methods based

on approximation schemes [Deva89], [Nest90], [Wehn91] may
produce better results, but in general these algorithms suffer from
large run-times.

In this article a new scheduling method is presented which is based
on genetic algorithms. Some previous work about genetic algo-
rithms used for high-level synthesis scheduling will be presented,
and the shortcomings of these methods will be discussed. Af-
ter that, a genetic solution to the resource constrained scheduling
problem is given, in such a way that it combines the speed of a
heuristic algorithm with the quality of an approximation scheme.
It is shown that the incorporation of problem specific knowledge
improves the quality of such a scheduling method even more.

An efficient time constrained scheduler is obtained by extending
the genetic encoding of the resource constrained scheduler with
resource allocation information, resulting in a scheduler which has
the possibility to allocate extra hardware during scheduling. Some
well-known benchmarks will be presented to show the quality of
results and fast execution times of this method. By incorporating
other issues like register costs into the schedule method, a trade-
off between functional unit allocation and register allocation can
be made.

2 Genetic Algorithms and Scheduling

Genetic algorithms are probabilistic search algorithms. Given an
optimization problem they try to find an optimal solution. Ge-
netic algorithms start by initializing a set (population) containing
a random selection of encoded points of the search space (indi-
viduals). By decoding the individual and determining its cost the
fitness of an individual can be determined, which is used to distin-
guish between better and worse individuals. A genetic algorithm
iteratively tries to improve the average fitness of a population
by construction of new populations. A new population consists
of individuals (children) constructed from individuals of the old
population (parents) by use of re-combination operators. Better
(above average) individuals have a higher probability to be se-
lected for re-combination than other individuals (survival of the
fittest). After some criterion is met, the algorithm returns the best
individual of the population.

A theoretical foundation of genetic algorithms and their conver-



gence to an optimal solution can be found in [Gold89] (schemata
theory and building block hypothesis). In contrast to the theo-
retical foundations, genetic algorithms have to deal with limited
population sizes and a limited number of generations. This lim-
itation can lead to premature convergence, which means that the
algorithm gets stuck at local optima. A lot of research has been
undertaken to overcome premature convergence (for an overview,
see [Mich92]). The strategies proposed suggest different selec-
tion schemes, scaling of fitness functions, use of alternative re-
combinators and/or en(de)codings. Experiments have shown that
incorporation of problem specific knowledge generally improve
genetic algorithms. In this paper attention will be paid how to in-
corporate schedule specific information into a genetic algorithm.

3 Previous Work

In [Wehn91] a scheduling method is presented based on genetic
paradigms. This method does not use constraints, but searches for
a trade-off between resource allocation and completion time by
re-weighting a cost function. The method is based upon assigning
a displacement da(v) to each operation v 2 V . Disadvantage
of the method is that displacement of critical path operations
has a large impact on the completion time of the schedule. In
[Wehn91] special initialization routines are presented to construct
a population containing scheduleswithin their ’time constraint’ by
distributing displacements over critical paths. An improvement
of the quality of the results is reported, however no attention has
been paid to adapt re-combinators such that this property will be
preserved during the run of the genetic algorithm.

Our own experience using a time constrained scheduler derived
from this method show that only a few individuals are constructed
that represent feasible schedules(i.e. within their time constraint).
A possible explanation for the failure of the algorithms is the lack
of problem specific knowledge inside the encoding. For example,
the method does not prevent 2 additions being scheduled simul-
taneously, even if both operations have large schedule ranges.
Simple algorithms to prevent such a behavior, without missing
out on the optimal solution, are not known to us. Therefore
new encodings have been developed, which make use of specific
schedule knowledge.

4 Resource Constrained Scheduling

Given are a data flow graph (precedence constraints) and a re-
source constraint. The goal of a resource constrained scheduler is
to minimize the completion time of the schedule. A well-known
resource constrained scheduling technique used in high-level syn-
thesis is list scheduling [Thom90].

The advantage of a list scheduler is that the schedules constructed
always satisfy the precedence constraints and the resource con-
straints. A disadvantage of a list scheduler is the influence of
the priority function on the quality of its results. To overcome
this disadvantage a genetic algorithm can be used to search for a
good priority function to direct a list scheduler. Inside the genetic
algorithm the encoding of a schedule consists of a permutation of
operations which can be used as a priority list for the list scheduler.
The completion time of the resulting schedule is used to calculate

the fitness of the individual.

Initially a population with individuals is constructed,each contain-
ing a random permutation. Schedules are constructed by decod-
ing permutations into priority lists and applying a list scheduler.
The genetic algorithm selects individuals for re-combination us-
ing stochastic sampling with replacement (also known as roulette
wheel selection). Using this strategy, fit individuals have higher
probability to be selected than non-fit individuals. To avoid pre-
mature convergenceof the algorithm, duplication of individuals is
avoided by selecting individuals at most once. Uniform crossover,
mutation and inversion as discussed in [Sysw91] and [Mich92] are
used as re-combinators to generate new individuals.

In general the relative difference between the completion times
is quite small (less than 30%). In that case stochastic sampling
with replacement acts like random search because fit individuals
have no substantial higher probability to be selected than non-fit
individuals. Linear scaling is used to avoid random search by
subtracting a lower bound of the completion time from the com-
pletion time of the resulting schedule. An accurate lower bound of
the completion time using precedence relations and resource con-
straint information can be calculated using the method reported
in [Timm93a].
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Figure 1: Convergence of genetic scheduling, fdct, 2 multipliers,
2 adders

The genetic parameters have been determined empirically, how-
ever changing these parameters within a reasonable range (< 50%)
doesn’t alter the performance of the algorithm substantially. Care
has been taken that the average fitness of the population converges
gradually towards the minimum value found so far (see figure 1).
The population consists of 100 individuals, distribution of re-
combinators is crossing (40%), inversion (9%), mutation (1%)
and copying (50%). The genetic algorithm stops if it meets the
lower time bound or if the number of iterations is 100 (in figure
1 more iterations are drawn to be able to observe the convergence
behavior of the algorithm). In figure 2 the results of a random
search can be found, which shows no convergence behavior and
doesn’t find the optimal solution.

To improve the method, special attention has been paid to prevent
constructing priority lists which lead to identical schedules. In the
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Figure 2: Random search, fdct, 2 multipliers, 2 adders
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Figure 3: Permutations and lists schedules

example of figure 3 individual 0 and 1 lead to the same list sched-
ule, hence exchanging operation v1 and v3 inside the permutation
makes no sense.

Several observations assist in avoiding the exchange of operations
leading to identical schedules:

� Only the exchange of operations whose schedule ranges (or
execution intervals) have cycles in common will lead to
priority lists with possibly different schedules.

� Only the exchange of nodes which don’t have flow of data
in common (i.e. can be executed in parallel) can lead to
priority lists with different schedules. This relation among
nodes can be determined by taking the complement of the
transitive closure of the data flow graph.

� Only the exchange of operations which have common re-
source types makes sense.

These observations have been incorporated inside the genetic re-
combinators as follows. Before scheduling starts for each node
u a list of nodes L(u) is constructed that satisfies the observa-
tions mentioned before. During mutation first a node u from a
permutation is selected randomly, then a node v 2 L(u) is se-
lected randomly, and after that u and v are exchanged inside the
permutation. During inversion first a node u from a permutation
is selected randomly, then the first node v 2 L(u) in the permu-
tation which comes after u inside the permutation is selected, and
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Figure 4: Convergence after incorporation of schedule specific
information

a position bigger or equal than the position of node v is selected.
These new extensions greatly add to a more efficient investigation
of the design space (see figure 4).

In table 1 and 2 some results of the new genetic scheduler and an
ordinary list scheduler using the critical path as priority function
can be found (examples from [DeWi85] and [Mall90]). In all cases
the new scheduler finds the optimal solution. The results show
a substantial improvement of the genetic scheduler versus the
ordinary list scheduler. The run times of the proposed scheduler
are between 0.1 and 20 seconds for each entry of the table using
an HP 9000/735 computer.

Table 1: Results for fifth-order elliptical filter

resource constraint completion time
mult add optimal genetic list

3 3 17 17 17
2 2 18 18 19
1 2 21 21 22
1 1 28 28 28

5 Time Constrained Scheduling

During time constrained scheduling the completion time of a
schedule is restricted. The goal is to find a schedule that induces
a minimal resource allocation.

A time constrained scheduler can be obtained from a resource
constrained scheduler by applying a resource allocation, and after
scheduling check whether the time constraint is met (see figure 5).
To be sure that not too many resources are allocated (which lead
to non-optimal solutions), lower bound estimations can be used
[Timm93b]. In some cases these techniques find a lower bound
for which no feasible schedule exists, i.e. the resource allocation
induces a completion time for which the resource constrained



Table 2: Results for fast discrete cosine transform filter

resource constraint completion time
mult add optimal genetic list

8 4 8 8 8
5 4 10 10 10
4 3 11 11 13
4 2 13 13 15
3 2 14 14 17
2 2 18 18 21
2 1 26 26 27
1 1 34 34 40

Resource Allocation
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Figure 5: Time Constrained Scheduling using a Resource Con-
strained Scheduler

scheduler exceeds the specification. Consequently the method
must have the possibility to allocate extra hardware.

The resource constrained scheduler described in the previous sec-
tion can be extended to enable encoding of extra resource al-
location [Clui92]. The difference between the maximum and
minimum number of resources needed is encoded in a string. A
lower bound on the number of resources is obtained by using
the technique of [Timm93b], and an upper bound on the num-
ber of extra resources needed can be obtained by looking at the
maximal parallelism for each resource type. This problem can
be modelled as a min-flow max-cut problem on a comparability
graph [Golu80], which can be solved in polynomial time. Each
resource not part of the initial lower bound is accompanied by
a binary variable which denotes whether a resource is available
(1) or is not available (0) for scheduling [Clui92] (see figure 6).
Standard cross and mutate re-combinators can be used to modify
these classic bit-vector representations during the run of the ge-
netic algorithm. The advantage of using a genetic strategy for the
allocation of extra resources is that no complex feedback paths
are necessary for re-allocation, the results of which might heavily
depend on the resource constrained scheduler used and the ini-
tial resource allocation taken, which is the case in for instance
[Kuma91]. The use of lower and upper bounds in combination

with the list scheduler also results in a reduction of the search
space of the genetic algorithm.
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1 0Individual 1
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1

add1  add2  mult1

3 adders, 2 multipliers

2 adders, 2 multipliers

resource allocation:
Initial minimal

Figure 6: Encoding of supplementary resource allocation

The fitness of an individual is determined by a combination of
the completion time and the resource allocation. A small penalty
on the fitness is used to favor individuals representing schedules
that are within the time constraint. If both the time constraint and
resource constraint are satisfied or the number of populations ex-
ceeds 100, the scheduler stops and returns the resulting schedule.

Table 3: Scheduling run times in seconds for fdct

time constraint genetic ifds

10 1.30 17.7
20 1.30 101.5
30 1.34 203.0
40 1.40 327.6

The transformed resource constrained scheduler is very fast (0.1 -
20 seconds) and produces optimal solutions for all examples that
have been tested.

Table 4: Results for fifth-order elliptical filter

optimal genetic ifds
cycles mult add mult add mult add

17 3 3 3 3 3 3
18 2 2 2 2 2 3
19 2 2 2 2 2 2
20 2 2 2 2 2 2
21 1 2 1 2 1 2
22 1 2 1 2 1 2
23 1 2 1 2 1 2
24 1 2 1 2 1 2
25 1 2 1 2 1 2
26 1 2 1 2 1 2
27 1 2 1 2 1 2
28 1 1 1 1 1 1

The schedulers proposed in this article have been compared with
heuristic time constrained scheduling methods. One state-of-
the-art high-level synthesis time constrained scheduling method
is (improved) force-directed scheduling [Verh92]. Comparison



Table 5: Results for fast discrete cosine transform

optimal genetic ifds
cycles mult add mult add mult add

8 8 4 8 4 8 4
9 8 4 8 4 8 4
10 5 4 5 4 5 4
11 4 3 4 3 4 4
12 4 3 4 3 4 3
13 4 2 4 2 4 3
14 3 2 3 2 3 3
15 3 2 3 2 3 3
16 3 2 3 2 3 3
17 3 2 3 2 3 3
18 2 2 2 2 3 2
19 2 2 2 2 2 2
20 2 2 2 2 2 2
21 2 2 2 2 2 2
22 2 2 2 2 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 1 2 1 2 2
27 2 1 2 1 2 2
28 2 1 2 1 2 2
29 2 1 2 1 2 2
30 2 1 2 1 2 2
31 2 1 2 1 2 2
32 2 1 2 1 2 1
33 2 1 2 1 2 2
34 1 1 1 1 2 1

shows that the genetic time constrained scheduler offers better re-
sults, in particular for more complex schedule problems like in 5.
Comparison of run times (see table 3) using our own implementa-
tion of an improved force directed scheduler shows that especially
for large time constraints the new method is much faster.

6 Extensions

Because of the flexible nature of the genetic algorithm it can be
easily extended with all kind of design issues, like register costs,
interconnect costs and support for complex libraries in which a
single operation type can get different values for its delay. In
some cases only the cost function needs to be extended, in other
cases the resource constrained scheduler needs to be expanded
to take care of other architectural constraints. If, for instance, a
trade-off between register costs and functional unit costs must be
made, the cost of a schedule can be extended by the incorporation
of the register allocation of the resulting schedule. The time
constrained algorithm presented in the preceding section searches
for the schedule with the lowest cost possible, and may increase
functional unit cost to obtain a lower overall cost. Assuming that
each incoming value of the data flow graph has to be stored at

cycle step 0, the total area including register costs can be found
in table 6. The results show that the genetic algorithm including
register optimization finds schedules in which less registers are
needed.

Table 6: Area fdct with register costs: area mult = 100, add = 10,
reg = 10

cycles genetic with genetic without ifds with
reg. opt. reg. opt. reg. opt.

8 960 960 940
13 520 540 530
18 340 350 420
23 320 340 440
28 320 340 330
33 320 340 320

7 Conclusions

An efficient scheduler based on genetic algorithms has been pre-
sented which offers high quality results and fast execution times.
The new resource constrained scheduler improves the results of
list scheduling considerably. New re-combinators have been pre-
sented, and show that incorporation of schedule specific knowl-
edge improves the results of the genetic scheduling algorithm.
New re-combination and encoding schemes have been developed
and presented to transform the resource constrained scheduler into
a time constrained scheduler, which provides the possibility to al-
locate extra resources during scheduling. Comparison with other
high-level synthesis scheduling methods show that these sched-
ulers offer better results than other existing heuristics. Extensions,
like the incorporation of register costs can be easily made, and
give good results. Although the scheduling technique does not
guarantee optimality, the algorithm produced optimal results for
all examples tested.
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