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Abstract—We study adaptive network coding (NC) for schedul-
ing real-time traffic over a single-hop wireless network. Tomeet
the hard deadlines of real-time traffic, it is critical to strike a
balance between maximizing the throughput and minimizing be
risk that the entire block of coded packets may not be decoddb
by the deadline. Thus motivated, we explore adaptive NC, whe
the block size is adapted based on the remaining time to the
deadline, by casting this sequential block size adaptatioproblem
as a finite-horizon Markov decision process. One interestip
finding is that the optimal block size and its corresponding
action space monotonically decrease as the deadline appiees,
and the optimal block size is bounded by the “greedy” block
size. These unique structures make it possible to narrow daw
the search space of dynamic programming, building on which
we develop a monotonicity-based backward induction algothm
(MBIA) that can solve for the optimal block size in polynomial
time. Since channel erasure probabilities would be time-varyig
in a mobile network, we further develop a joint real-time
scheduling and channel learning scheme with adaptive NC tha
can adapt to channel dynamics. We also generalize the analgso
multiple flows with hard deadlines and long-term delivery ratio
constraints, devise a low-complexity online scheduling gbrithm
integrated with the MBIA, and then establish its asymptoticl
throughput-optimality. In addition to analysis and simulation
results, we perform high fidelity wireless emulation tests \ith real
radio transmissions to demonstrate the feasibility of the MBIA
in finding the optimal block size in real time.

Index Terms—Network coding, real-time scheduling, wireless
broadcast, deadlines, delay, throughput, resource alloti@n

I. INTRODUCTION

the block NC induces “decoding delay,” i.e., receivers may
not decode network-coded packets until a sufficient number o
innovative packets are received. Therefore, the minirurat
of NC delay has received much attention (e.g., [9]-[12]).

For multimedia traffic, meeting the deadline may be more
critical than reducing the average delay. Under therd
deadlineconstraints, NC may result in significant performance
loss, unless the receivers can decode the packets before the
deadline. Different NC mechanisms (e.g., [13]-[16]) have
been proposed recently to incorporate deadline consirafmt
immediately-decodable network coding (IDNC) scheme has
been proposed in [14] to maximize the broadcast throughput
subject to deadlines. A partially observable Markov decisi
process (POMDP) framework has been proposed in [15] to op-
timize media transmissions with erroneous receiver feekiba

These works focus on optimizing network codes in each
transmission; howeversuch anapproach is typically not
tractable due to the “curse of dimensionality” of dynamic
programming. To reduce the complexity of optimizing netkvor
codes in each transmission, [16] has formulated a jointrapdi
window selection and resource allocation problem to ogtEmi
the throughput in deadline-constrained flows. However, the
computational complexity can be still overwhelming duehte t
finite-horizon dynamic programming involved in the coding
window selection. To overcome this limitation, [16] has pro
posed a heuristic scheme with fixed coding window to tradeoff
between optimality and complexity.

The past few years have witnessed a tremendous growttA primary objective of this study is to (i) explore optimal
of multimedia applications in wireless systems. To suppoatiaptive NC schemes with low computational complexity,
the rapidly growing demand in multimedia traffic, wirelessind (ii) integrate channel learning with adaptive NC over
systems must meet the stringent quality of service (QoS) mieless broadcast erasure channels. Our main contritsitio
quirements, including the minimum bandwidth and maximu@re summarized as follows.

delay constraints. However, the time-varying nature oéleiss

channels and the hard delay constraints give rise to great

challenges in scheduling multimedia traffic flows. In thipea
we explorenetwork coding(NC) to optimize the throughput
of multimedia traffic over wirelesghannelsunder the hard
deadline constraint.

In capacitated multihop networks, NC is known to optimize
the multicast flows from a single source to the min-cut

capacity [1]. NC also provides coding diversity over urable

« We develop an adaptive NC scheme that sequentially
adjusts the block size (coding block length) of NC to
maximize the system throughput, subject to the hard
deadlines (cf. [16]). We show that the optimal block
size and its corresponding action space monotonically
decrease as the packet deadline approaches, and the
optimal block size is bounded by the “greedy” block size
that maximizes the immediate throughput anljhese
unique structures make it possible to narrow down the

wireless channels and improves the throughput and delay
performance of single-hop broadcast systems, compared to
(re)transmissions of uncoded packets [2]-[8]. Nevergle

search space of dynamic programming, and accordingly
we develop a monotonicity-based backward induction
algorithm (MBIA) that can solve for the optimal block
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Packets with deadline T in Fig. 1. Time slots are synchronized across receivers and

Elm o v § the transmission_time of a packet corresponds to one time
s . é . S slot. The transmitter broadcasfd packets toN receivers
-7 \ e over i.i.d. binary erasure channels with erasure probability
T| | . |t| . .|2|1 EENRY e.! We assume immediate and perfect feedback available at
< ——\ L8 the transmitter. For multimedia communications, it is gl
"~ _ Remaining time™ fen to impose deadlines for delay-sensitive data (see, e.y., [4
S \\ [14]-[17]). We assume that packets must be delivered to each
| Frame-1 | ... ] Frame-k l receiver beforeél” slots, i.e., the deadl_ine of each pack_etﬂs
} I ¥ - > slots. Any packet that cannot be delivered to all receivers b
1me

this deadline is dropped without contributing to the thriopigt.
Fig. 1: System model. (The arrow denotes the time instant forWorth noting is that this model can be readily applied
drops of undelivered packets and arrivals of new packets.)to finite-energy systems with NC, where the objective is to
maximize the system throughput before the energy is deplete
for further transmission. Therefore, the energy and delay
o o . constraints can be used interchangeably.
size in polynomial time compared with [15], [16]. We In Section 1ll, we consider the basic model with one flow

also develop a joint real-time scheduling aobannel and one frame ofl" slots. In Section IV, we generalize the

learning scheme with adaptive NC for the practical CaS¢nodel to multiple frames with multiple flows, where packets

in which the scheduler does not have (perfect) channgli e 4t the beginning of each frame and they are dropped if

mformatlon._ . they cannot be delivered to their receivers by the deadline o
o We generalize the study on adaptive NC to the ca slots

with multiple flows. We develop a joint scheduling an
block size adaptation approach to maximize the weight& Network Coding for Real-time Scheduling

system throughput subject to the long-term delivery ratio o5 noted above, the throughput gain of NC comes at the
and_the hard-deadline constraint_ of eac_h flow. By im%Xpense of longer decoding delay (since packets are coded
grating the MBIA in the model with multiple flows, we ang decoded as a block), which may reduce the throughput
construct a low-complexity online scheduling algorithmef the system due to the hard deadline constraints. Ket
This online algorithm is shown to be throughput optim&lenote the block size, i.e., the number of original packets
in the asymptotic sense as the step size in iteratiogcoded together by NC. We assume that the transmitter and
approaches zero. . . ~ each receiver know the set of coding coefficients, and the
« We implement the adaptive NC schemes in a realistigansmitter broadcasts the value &fto receivers before the
wireless emulation environment with real radio transmigyc transmissions start. The coding coefficients can also be
sions. Our high fidelity testbed results corroborate thgyosen randomly from a large field size (or from a predeter-
feasibility of the MBIA in finding the optimal block mined coding coefficient matrix of rank?) such that with
size in real time. As expected, the adaptive NC schemgyh probability X' packet transmissions delivéf innovative
with the MBIA outperforms the fixed coding schemepsckets in coded form to any receiver, i.e., the entire biafck
and the proposed scheme of joint real-time schedulingckets can be decoded affersuccessful transmissions. As
and channel learning performs well under unknown anghown in [2], the probability that all receivers can decdue t

dynamic channel conditions. block of size K within T slots is given by
The rest of the paper is organized as follows. In Section N
II, we introduce the system model and present the block size P(K,T) = ( XT: (771)67_1((1 _ €)K> (1)
adaptation problem with the hard deadlines. In Sectionud, ’ ey ’

develop the MBIA to solve for the optimal block size an%here(”) denotes the number of combinations of sizeout
building on this we devise the joint real-time schedulingl ant . element£ Note that (1) strongly depends on the choice
channel learning scheme with adaptive NC for the case w%tﬁ block size K and we can show that

unknown channel information. In Section IV, we generalize '

the study on adaptive NC to multiple flows. In Section Viemma 2.1. The decoding probability (1) is monotonically
we implement the adaptive NC schemes and test them irdecreasing withi for fixedT'.

realistic wireless emulation environment with hardwardkie-

. . . With block NC, there is the risk that none of the packets can
loop experiments. We conclude the paper in Section VI.

be decoded by the receivers before the hard deadline. By usin
Il. THROUGHPUTMAXIMIZATION VS . HARD DEADLINE L o ) )
The results derived in the paper can be readily applied terbgéneous
A. System Model channels with different erasure probabilities.

Wi id . | dd link ith 2We can also employ random NC with fiite field size . This would
e consider a time-slotted downlink system with one trangﬁange the decoding probability (1) to a functiongofHowever, the general

mitter (e.g., base station) ad receivers (users), as illustratedstructure of the results will remain the same.



IDNC, it may be possible to start decoding without waiting, and N to an actionK; € {0,1,...,min(¢, M;)}, i.e.,
for the entire block to arrive but the complexity of findingK; = P:(t, Mt,e, N) = min(P:(t, e, N), M;). Without loss
a suitable code may be overwhelming due to the dynanmo€ generality, in Section Ill, we assume thaf, is always
programming involved in the problem [14]. Here, we providé&rger thart, i.e., K; € {0, 1, ..., t}. This does not change the
the throughput guarantees for the worst-case scenariaewh@onotonicity structure of the block size with statewe will
either the whole block or none of the packets can be decod#idcuss these structural properties in detail in Section I
at any slot. There is a tradeoff between the block size and theTotal expected rewardGiven the adaptation policf, the
risk of decoding. In particular, we cannot greedily incee&S total expected reward for the remaininglots is given by
to maxi_mize 'Fhe system throughput under the hard deadline Vi(KuP) = Ru(K:)+ E[V;(K;: P)]
constraints, since the risk that some receivers cannotdgeco K 3)
the packets, i.el— P(K,T), also increases withk according Ri(Ky)+ > q(3)Vi(K;;P),
to Lemma 2.1. 3=0

If the first block is delivered within the deadline, i.€, where the probability mass functiap(j) = P(K:,t — j) —
slots, the size of a new block (with new packets) needs to-be (K, t — j — 1) denotes the probability that the block of size
adjusted for the remaining slots. In other words, we meaedt K, is delivered over exactly slots before the deadline.
time scheduling of network-coded transmissions depending on
how close the deadline is. For example, when there is only one”l' N_ETWOR_K C_ODING W_'TH ADAP_TIVE BLOCK SizE
slot left before the deadline, the optimal block size is mgei A Main contribution of this paper is the development and

for any K > 1, no receivers can decode the packets befop@alysis of the polynomial-time monotonicity-based baakdv
the deadline. Also, the block size in a given slot statigfjca induction algorithm (MBIA). The design of the MBIA is
determines the remaining slots (before the deadline) alotiy Motivated by the structures of the optimal and the greedy
the future system throughput. In Section Ill, we derive tholicies that are formally defined as follows.

optimal block size adaptation policy to maximize the syste@efinition 3.1. A real-time scheduling policy with adaptive
throughput under the deadline constraints for one framb Wigetwork coding is optimal, if and only if it achieves the
one flow.In SectionlV, we generalize the results to the casg,aximum value of the total expected reward given by the

with multiple frames with multiple flows. Bellman equation [18] in dynamic programming:
C. Problem Formulation: A Markov Decision Process View WK} P*) = . I{%alX t}{Rt(Kt)
t€10,1,...,
The NC-based multimedia traffic scheduling of one frame K, (4)
is a sequential decision problem, which can be formulated as + ZO @t (7)Vi (K7 P*)
j=

a Markov decision process (MDP) described as follows.

Horizort The number of slots available before the deadlinéhere K7 denotes the optimal block siz&* denotes the
over which the transmitter (scheduler) decides the blozk sioPtimal block size adaptation policy, and the terminal reva
is the horizon. Due to the hard deadline, this MDP probleffi given byVy(0; P*) = 0.

is a finite horizon problem witfi” slots (one frame). Definition 3.2. The greedy policy maximizes only the expected

State The remaining slots € {0, 1,..., T'} before the hard jmmediate reward (2) without considering the future reveard
deadline is defined as the stdteyvheret = 0 denotes that gnq the greedy decision is given by

there is no slot left for transmissions. .
Action Let K;, t € {1,...,T}, denote the action taken at K= Kaef{%rl“a)(t} Ry(Ky). (5)
statet, which is the block size for the remainirigslots. Let A
M, denote the number of packets undelivered at statéus, A- Optimal Block Size Adaptation Policy
at statet > 0, K; can be chosen from to min(¢, M;). In each slott, the optimal policy balances the immediate
For ¢ = 0, the transmitter stops transmitting any packeteward and the future reward by selecting a suitable blaok si
i.e., Ko = 0. In general, the action space is defined a&;. In general, the approach of solving for the optimal block
K: =40,1,...,min(¢t, My)}. size by traditional dynamic programming [18] suffers frdme t
Expected immediate rewardror the remaining slots, the “curse of dimensionality,” where the complexity of compmggi
expected immediate reward is the expected number of packibis optimal strategy grows exponentially withHowever, the
successfully decoded by all receivers, which is given by  optimal block size and its corresponding action space éxhib
the monotonicity structures, and the optimal block size is
Re(K:) = K¢ P(Ke 1), @) pounded by the greedy block size. These unique structures

where P(K,,t) is given by (1), denoting the probability thatmake it po_ssible to narrow_down the search space of dyr_15_1mic
each receiver can decode thdsg packets withint slots. programming, and accordingly we develop a monotonicity-
Block size adaptation policyA block size adaptation policy based backward induction algorithm (MBIA) with polynomial

P is a sequence of mapping®, = {P;}7_,, from ¢, M,, time complexity. . _
The MBIA searches for the optimal block size by backward

3We use the terms “state” and “slot” interchangeably. induction and provides the optimal block size for each syste



6 - if K < K/, Vica(K5P*) > Vi (K;_1;P*), which

-o-t=2 contradicts that; , is the optimal action in slot — 1. [
5 :2:; ié ] As t decreases, the risk that some receivers cannot decode
A-f—3 the given block of packets increases for a fixed block size.
4 - t=10]4 Therefore, the scheduler becomes more conservative in the
K block size adaptation and selects a smaller block size.
33 Q ] Remarks: 1) Fort = 1, 2, the optimal block size i%; = 1,
2R which can be obtained by computing the Bellman equation (4).
7 R A ] 2) WhenN = 1, the optimal block size ig(; = 1 for all ¢,
|, g since the plain retransmission policy witki, = 1 is better
1*9‘\ o ] than the block coding withi; > 1 in the presence of the
2 g T A, e hard deadlines.
1 2 3 4 5 & 7 8 9 10 _ _ ,
K, Theorem 3.2. The optimal block sizé<; is not greater than

Fig. 2: The unimodal property aR;(K). the greedy block siz&: for any.

Proof outline: Based on Proposition 3.1, we can show if
Ki > K, along any sample path, the system throughput
y taking the actionk; is at least as high as that by taking

state. Depending on the remaining time to deadline, t . N . : i : .
scheduler transmits coded packets with the optimal blaod sit e_actlonKt ' \.Nh'Ch contradicts thaf<; in this case is the
imal action in slot. O

until each user receives enough packets to decode this.blo%'%t
Then, the scheduler adjusts the block size based on thentur@orollary 3.1. At statet, if R(K;) > R;(K; + 1), then
state, and proceeds with the new block transmission. THis' < K; < K, for anyj € {1, ..., t}.

continues until the packet deadline expires or all packets a

delivered. We present next the structural properties otlblo
size adaptatioproblemthat will lead to the formal definition

of the MBIA.

Corollary 3.1 followsdirectly from Proposition 3.1 and
Theorem 3.2. Based on these structural properties, weajevel
the MBIA, which is presented in Algorithm 1.

Lemma 3.1. The action spacé&’; monotonically shrinks as Algorithm 1 Monotonicity-based Backward Induction Algo-
decreases. rithm (MBIA)

Proof outline:As the number of remaining slotslecreases, 1) Sett = 0 and 4 (0; P*) = 0.
the maximum possible block size decreasesswell, since ~ 2) Substitutet + 1 for ¢, and computeV;(K;;P*) by
K, € {0,1,...,t}; otherwise nareceivercan decode the block searchingk; € K, wherek, = {K; |, Ki'" ; +1,..., K¢},

t— Ky
of coded packets [l e, Vi(KF; P*) = 1?13% (Ro(K)+ Z q(j)Vj(K;f;P*)},
Proposition 3.1. The expected immediate reward function A
R;(K) has the following properties: and K; = argma{ R(K;) + Y. q(j)V; (K P}
=0

1) R:(K:) is unimodal fork; € {0, 1, T S
2) K, in (5) monotonically decreases aglecreases.

Proof outline: To show the unimodal property, it suffices The MBIA confines the search space at statéo the
to show thatR; (k) is log-concave, which can be shown bynterval from K , (the optimal policy at state — 1) to K,
using induction method. The monotonicity property/of can (the greedy policy at staté). Thus, theMBIA reduces the
be shown by invoking the contradiction argument and applyisearch space over time and reduces the complexity of dynamic

limy oo By (Ky) = Ky 0 programming as given by the following theorem.
Fig. 2 showsthe possible curves oR;(K;) for different i o )
values oft, illustrating the unimodal property ofR;(K;) Theorem 3.3. The MBIA is a polynomial-time algorithm and

formally stated in Proposition 3.Based on Proposition 3.1,the complexity is upper bounded BY7?).

Kieky ) J=
3) If t =T, stop; otherwise go to step 2.

the monotonicity property of the optimal block siZ€] is  proof: Based on Proposition 3.8, (K;) has theunimodal
given by the following theorem. property and thereforés; can be solved efficiently by the
Theorem 3.1. The optimal block sizek; monotonically Fibonacci se_arch a_Igorithm [19],_which is a sequential line
decreases as decreases, i.eK; > K ,, for anyt. search algorithm with a complexity aP(log(¢)) at statet.

Therefore, in each iteration, it take¥(log(t) + K; — K )
Proof outline:Based on Proposition 3.1, we can shtwt sjots to find k7. Based on Lemma 3.1K, — K} , is
4 _ _ o _ , upper bounded by. After some algebra, we show that the
f(x) is a unimodal function if for somen, f(z) is monotonically

i i i 2
increasing forz<m and monotonically decreasing fe>m. The maximum complexny of Algomhm 1is bounded W(T ) and Theorem
value is attained at = m and there are no other local maximum points. 3.3 follows. O



08 ‘ ‘ 5 network-coded packets decreases, k&({, V) increases. 3)

0_,0—"9' b As N increases, it becomes more difficult to meet the deadline
0.7 e e g s for each of N receivers and thereforé (¢, N) drops accord-
0.6 e ’ - :"3,'—_—;2—'— -2 ingly.
0.5r ,'p E‘ ] B. Robustness vs. Throughput
woar g F ’ ] The real-time scheduling policies presented so far focus
0.3 ‘ on the expected throughput without considering the vaniati
,”/j/' from the average performance. Therefore, it is possiblethiza
0'2(5",',",& instantaneous throughput drops far below the expectedvalu
0. ;s"' To reduce this risk, we use additional variation constsatot
;f% ‘ ‘ ‘ guarantee that the throughput performance remains close to
2 4 g 8 10 the average. In particular, for each slgtwe introduce the
variation constrainto the block size adaptatioproblem as
Fig. 3: The monotonicity property of*. follows:
’Ut(Kt) < 0'252, VK, € ICt, (7)

whereo? is the maximum variation allowed in slotand the

Remarks: By using the MBIA, the Optlmal block size Canperformance Variatiomt(Kt) under actionKt is given by
be computed in polynomial time, which is a desirable prgpert

for online implementation. The optimal block size depends o v (K) = io: i2(P(Ky,i) — P(Kg,i—1)). (8)
the number of receivers and channel erasure probabiliass. i=1

different flows, the set of receivers may be different, whickjnce v, (I, increases withi, (7) can be rewritten as the

may result in different optimal block sizes, even when th@aximum block size constraint for each stoti.e.,

number of remaining slots is the same across these flows.

Therefore, without using the MBIA, offline schemes would K < K, 9)

neeq to compute '_[he optimal policies for aI_I possible regev, oo Ko = maxKy K, = v (o)} o7 () is the

sets; however, this would be a computationally demandlnr% . :
. . inverse mapping of,(-), and || denotes the largest integer

task as the number of receivers increases

Based on the monotonicity properties of the greedy aﬁgwaller thanxz. The variation constraints do not change the

optimal block sizes, the optimal policy becomes the pIaiWonOtonICIty property of the optimal block size provided

R s by Theorem 3.1. By introducing the variation constraints
retransmission, if the channel erasure probability is cigffitly A

: . " X > (9), the scheduler becomes more conservative in the block
large. This sufficiency condition fok; = 1 at slot¢ is

formally given as follows size adaptation. The additional bourdd™** can be easily

‘ incorporated into the MBIA by changing the action space to
Theorem 3.4. At slot ¢, the optimal policy switches to thek, = {K;_ {, K, ; + 1,...,min(K*** K;)} at statet.
plain retransmission policy, i.e; = 1, when the erasure . ,
probability satisfies the threshold condition C. Block Size Adaptation under Unknown Channels

So far we have discussed the real-time scheduling policies

€>e€(t,N), 6)  with adaptive NC, where the channel erasure probahility
wheree* (¢, N) € (0,1) is the non-trivial (unique) solution to perfectly knc_)vx_/n to the scheduler. The throughput perforrean
Ri(1) = R,(2). of these policies depends entherefore, the scheduler needs

to learn e while adapting the block size, when it does not

Proof outline: The proof follows directly by comparing have (perfect) channel knowledge. Li&tdenote the estimate
R(1) and R;(2) that are expressed as a functioneof [ of the channel erasure probability in stotThe scheduler can

Note that (6) is a sufficient condition only and indicates thepdateé; based on the feedback from the receivers. In slot
optimality of the greedy policy whea is large enough. T, if ér < ¢, we would expect with high probability that a

Fig. 3 depicts how the threshokd varies with¢ and N. block of packets with the size that is calculated with respec
The underlying monotonicity property is formally stated ino é; cannot be delivered before the deadline. Therefore, it is
Corollary 3.2. better to select the block size conservatively at the béginn
when the estimaté; cannot be highly accurate yet, because
of the small number of samples. Asimproves over time, the
block size can be gradually increased to improve the system

Remarks: 1) When the channel is good enough (withhroughput. Once the estimate is close enough to the actual
e < €*), NC with K; > 1 can always improve the throughputvalue ofe¢ after enough samples are collectélde block size
compared to the plain retransmission policy. 2)tAacreases should be adjusted (and reduced over time) according to the
(i.e., the deadline becomes looser), the risk of decodiMBIA.

Corollary 3.2. The thresholde*(¢, N) increases monotoni-
cally with ¢ and decreases monotonically wiffi.



Clearly, there is a tradeoff between the channel learnitlg an

the block size adaptation. Here, we formulate a joint reaét ° Ak (; —02) | |
scheduling and channel learning algorithm (Algorithm 2) to ) s

. . . : o | |-v-K; (c=0.2) .
adapt the block size while updating the maximum likelihood T | o kv €=05) vy oA
estimateé, of channel erasure probability. In slot based ‘4}‘1‘(! s
on the feedback, the scheduler can compute the packet loss a 10209 G- A
ratio, e; = 1 — ¢, wheren; denotes the number oéceivers “
that successfully receive a packet in stotAccordingly, the ~
estimated channel erasure probabilitys given by the moving 3 P o R
average )

€ = (T_Jf)f% (10) 2 ,v-—,#'—--A' B--e-- -0 --0

The scheduler decides on the block size by comparing the
temporal variationé; — ¢;41| with a thresholds. A detailed ]‘3_3 o d @& ‘
description is given in Algorithm 2. 4 ? 8 10
Algorithm 2 Joint Real-time Scheduling and Channel Learn- Fig. 4: K; is nondecreasing anfl} < K;.

ing with Adaptive Network Coding

Initialization: Choose threshold and setKr = 1.
Repeat until ¢ = 0.

Update channel estimate by (10). 8 B0yt ol
. . . 1mal ol1c;
Compute block size<; by Algorithm 1 with é,. 54l y e
K N 2 -Greedy Policy
If |6t - €t+1| > 4 then = l:lConservative Polic
f K} h e ! |
I Kt > Ky1 +1then g [ ]Plain Retransmission Policy
Ky =K1 +1, el
Else =
Kt = Kt+1. 5 4 ]
Endif 2 al
Else ‘8
K, = K;. LK
Endif ;ﬂg i
Remarks: Algorithm 2 captures the tradeoff betwedme 0 0.1 0.2 03
channel learning and block size adaptation. There are two op €

ig. 5: Performance (average system throughput) compariso

)f/different policies.

|é: — é.41| and §. If the channel estimation is not yet goo
enough, Algorithm 2 chooses the block size conservative
by incrementingK,; by at mostl. Otherwise, Algorithm 2
computes the block size by applying the MBIA.

tions for the scheduler depending tive relationship between£

D. Performance Evaluation T = 10. The plain retransmission policy always performs the

Fig. 4 illustrates forN = 5 the monotonicity structure of yorst, whereas the conservative policy performs worse than
the optimal block size (Theorem 3.1) and verifies thit < the greedy policyHowever, as increases, all policies select

K; (Theorem 3.2). Both the optimal and greedy block siz&gnaller block sizes and their performance gap diminishes.
increase when the channel conditions improve (feom0.5 to

e = 0.2). Next, we evaluate the performance (average syste ig. 6 shows the tradeoff betvyegn the average system
throughput) of different policies. For comparison purpsee throughput and the throughput "a”a“of‘- When the phannels
also consider a soft delay-basednservativepolicy, where are good (e.g.¢ = 0.1 in Fig. 6), the varlatlon_ constr_amt (7)

the scheduler chooses the largest block size with the ee(qbeépakes the scheduler choose a small block size, which reduces

completion time less than or equal to the number of remainil:'_{%;)e gve.:cgge syfsftem ';hrourg];hputhaccorldinglyt.) Hdowever, tisere
slots. The expected completion time is studied in [2], and . significant effect of (7jvhen channels are bdd.g..c = 0.5

is given by in Fig. 6), since the scheduler already chooses a small block
- size for largee. Fig. 7 evaluates the performance of Algorithm
S(K)=K+ Y. (1-P(K,t)). (11) 2 under channel uncertainty and show that Algorithm 2 is
t=K robust with respect to the variation &&and achieves a reliable
Fig. 5 compares the performance of the optimal, greeditroughput performance close to the case with perfect adann
conservative and plain retransmission policiesfor= 10 and information
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Fig. 6: Average system throughput vs. throughput variation

whereN = 10 and T = 20. Fig. 7: Performance of Algorithm 2.

IV. JOINT SCHEDULING AND BLOCK SIZE OPTIMIZATION ~ Where cy(sy) is the expected number of packets that can

. . . be delivered under schedule, which is a constant and
In this section, we generalize the study on adaptive N, po sopyeq by the MBIA. Hence, we formulate the joint

fo the case of multiple frames, where thE_" scheduler SENY&ource allocation and block size adaptation as the foligw
a setF of flows subject to the hard deadline and the Ion%'ptimization problem:

term delivery ratio constraints. The packets of each flbw
arrive at the beginning of every frame and they are droppedyaximize S rer Wiy

if they cannot be delivered to its receivep$; within this subject to W'fi Mg, ¥ feEF

frame (see Fig. 1). We impose that the loss probability faw flo ur < 5 ’Cf(‘Sf)PT(’S|a)PT(a), VfeF,

f due to deadline expiration must be no more than gy, Pr(_s|a) 5>"“0 Vse S, Y. o Pr(sla) <1, Va
where gy is the delivery ratio requirement of flowi. Fora | ..o {1y Pr(g|a)7} ? £us€S -0
given frame, the vectos = (ay)sc+ denotes the number of " ' (13)

packet arrivals at each flow, wheig is the number of packets yherey  is the weight for flowf and can be used as a fairmess
generated by flowf. We assume thai; is i.i.d. across frames metric for resource allocation to each fléwNote that (13)

with finite mean); and vqrianc% For ease of exposition, generalizes the problem studied in [21] by using adaptive NC
we assume perfeathannel information at the scheduler angchemes in packet transmissions.

consider coding within each flow but not across different ow

A. Multi-Flow Scheduling B. Dual Decomposition

The scheduler allocates slots for each flow and uses the opsince (13) is strictly convex, the duality gap is zero from
timal real-time scheduling policy with adaptive NC devesdp the Slater's condition [20]. The dual problem is given by
in Section 11l to transmit network-coded packets. Given the
arrivals, the scheduler needs to allocate a suitable nuwiber maximize Zfef (wipp +vilpr — Arar))

slots for each flow to satisfy the delivery ratio requirement sybject to py <. cr(sp)Pr(sla)Pr(a), ¥V f € F,

This resource allocation is defined as a feasible schedule, Pr(sla) >0, Vs € S, ,.s Pr(sla) <1, Va,
s = (sy)rer, Wheres; denotes the number of slots allocated variables {u, Pr(s|a)}, * B
to flow f and > ;. sy < T. Our goal is to maximize the ' (14)

weighted throughput subject to the delivery ratio and hawgherev, is the Lagrangian multiplier for flow. The objective
deadline constraints. We find the optimal schedule, i.ee, thunction of (14) is linear and the upper bounds for are
probability Pr(s|a) that given the arrivals:, the schedule affine functions. Therefore, the optimization problem (&&h
s € S is used from the sef of all feasible schedules. Then,be rewritten as:

the expected service rate for flofvis upper-bounded by

pf <325 qcf(sp)Prisla)Pr(a), (12) max > per(wr +veslsy)- (15)

5The algorithm developed for thié.d. case can be readily applied to non 6The problem (13) caie generalizedo the case with congestion control
i.i.d. scenarios.The analysis and performance guarantees can be obtainby treating the weights as virtual queues for flow rates (simo the service
using the delayed Lyapunov drift techniques developed 2], [23]. deficit queues that we use later in Section IV-B).



Thus, we have the following gradient-based iterative algor The proofs follow from the optimization framework in [22],
to find the solution to the dual problem (14), [23] and they are similar to the proofs presented in [21].eNot
X that the online scheduling algorithm (18) can approachiwith
s"(k) € argergaxzjef(wf T er(k)es(ss), O(p) of the optimal solution to (14) and does not require any
wi(k) = cp(s3(k)), (16)  knowledge ofthe packet arrival statistics.

(k+ 1) = max(0, vs (k) + p(Argr — pi(k))), .
i ) = max(0,v(k) + p(Aras Mf( ) D. Performance Evaluation

wherek is the step indexp > 0 is a fixed step-size parameter,

and cf(s;‘c(lc)) is the expected service rate for flofvunder We consider a network with two flows, each with five

X o or (k) . . receivers. The packet traffic of each flow follows Bernoulli
schedulesy (k). Letting oy (k) = ==, (16) is rewritten s gjstribution with mean\; packets/frame fof = 1,2, and the
* wyp o oA length of each frame i40 slots. In the simulation, we set
s(k) € argeg]axzfef( o T 2i(R)es(s5), Ay = A for f =1,2. The channel erasure probabilitys 0.3,
u;(k) = Cf(S;(k))7 (17)  the weightsw; arel for all flows, the step-size is 0.1, and
vp(k + 1) = max(0, 0¢(k) + (Argr — pi(k))). the simulation time i0° frames.

We evaluate the performance of our algorithm by com-
garing the region of achievable ratés;, u2) with the plain
retransmission under different traffic flow ratéswhere the
achievable rates denote the feasible solution to (13) fegrgi
delivery ratio requirementsg;. By varying ¢¢, we find the
achievable rate region. As illustrated in Fig. 8, the plain
retransmission only achieves a small fraction of the region
with adaptive NC. By using adaptive NC, the network can

Remarks: The update equation fav; can be interpreted
as a virtual queue for the long-term delivery ratio with th
arrival rate) yq; and the service rate; (k), which keeps track
of the deficit in service for flowf to achieve a delivery ratio
greater than or equal t@;. Note that (17) provides only the
static solution to (14). Next, we provide an online schatiyli
algorithm which takes into account the dynamic arrivalshef t

flows. : . .
supportflows with heavier traffic
C. Online Scheduling Algorithm Fig. 9 shows the average service deficbf two flows. The
The online scheduling algorithm is given by delivery ratio requirement of each flow (s8. As X increases,
. w; - 7 grows unbounded, which means that the conditigrjs>
s*(k) € argg@afoef(T +0p(k))ey(sy), (18) A4s for all f € F, are not satisfied, i.e., the arrival rates
Dy (k +1) = max(0, 0y (k) + ay (k) — é(s3(k))), are not in the “stability” region, and the online scheduling

) algorithm cannot meet the delivery ratio requirements.
where ¢;(s}(k)) denotes the actual delivered number of

packets under the scheduig(k) dependingon the channel V. HIGH FIDELITY WIRELESSTESTING WITH HARDWARE
realizations and as (k) is a binomial random variable with IMPLEMENTATION

parameters:;(k), the number of packet arrivals of flof  \ye tested the adaptive NC schemes in a realistic wireless
in the kth frame, and;;. This implementation fofi; (k) Was  emyjation environment with real radio transmissioAs. il-
proposed in [21]. Atthe beginning of eaperiod,the schedule |ysirated in Fig. 10, outestbed platform consists of four
s"(k) is determined by (18). Then, the packets of each ffow main components: radio frequency network emulator siroulat
are trqnsmltted Wlt!‘] the MBIA in the schedulsti(k) slots. tool, RFnest™ [24] (developed and owned as a trademark
The virtual queuery is update(i based on the number ofy |nelligent Automation, Inc.), software simulator ring
successfully delivered packets(s (k)) of each flowf. With  pigher-layer protocols on a PC host, configurable RF front-
Lyapunov optimization techniques [22], [23], it can be showgngs (RouterStation Pro from Ubiquiti), and digital switch

that (18) has the following properties. We removed the radio antennas and connected the radios

Theorem 4.5. Consider the Lyapunov functiod(p) = With RF cables over an attenuator box. Then, real_signals

%Zfef V? If 115 > Apqy for all f € F, then the expected are sent over emulated channels, where actual physicai-lay

service deficit’; is upper-bounded by interactions occur between radios, and in the meantime the
physical channel attenuation is digitally controlled aciiog

limsup E[> ;.- v5(k)] < By + 1By : : : :
PN reF”f = p2 to the simulation model or recorded field test scenarios can be

replayed.

for some positive constant®; and B,. Furthermore, the
online algorithm can achieve the long-term delivery rati%t
requirements, i.e., for alf € 7 we have

In the hardware experiments, we executed wireless tests
2.462GHz channel with 10dBm transmission power and
1Mbps rate. We used CORE (Common Open Research Emu-
ljminfE[% Zszl ep(sh(k)] = Arqy. lator) [25] to manage the scenario being tested. We changed
K=veo the locations of receivers through RFA&®UI and let the
Theorem 4.6. Let p > 0 and n} be the solution to (17). If signal power decay ag—* over distanced with path loss

wy > Agqy for all f € 7, it follows for B > 0 that coefficienta: = 4. By using real radio transmissions according
o o wp =K 4 o to this model, we varied the attenuation from the transmitte
h;?:;lopE[Zfe]—‘(wfuf & L= Cr(s3(R))] < Bp. each of the receivers and generated different channelrerasu
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Fig. 8: Achievable rate regions under adaptive NC and plajfje|ess network. By exploring the structural propertiés o
retransmission policies. the problem, we derived the polynomial time policy, MBIA,
to solvethe optimal NC block size adaptatiggroblemand
. ) ) developed the joint real-time scheduling and channel legrn
probabilities. With RFnedt!, we replayed the same wirelessscheme that can adapt to wireless channel dynamics if the
traces for each of the NC algorithms and compared them und@itect channel information is not available at the schedul
the h|gh fidelity network emulation with hardware-in-tt@®p Then we generalized the study to multiple flows with hard
experiments. deadlines and long-term delivery constraints, and deeglop
Fig. 11 illustrates the performance of the optimal policyy |ow-complexity online scheduling algorithm integrateithw
the greedy policy and the fixed block size policy suggested kye MBIA. Finally, we performed high fidelity wireless emula
[16]. The experimental results show that the greedy poligjyn tests with real radios to demonstrate the feasibilitshe
performs close to the optimal policy in practice. Both thgB|A in finding the optimal block size in real time. Future
greedy and the optimal policies outperform the fixed blozk si york should extend the modé integrate congestion control
policy, and the complexity remains low with the polynomialyith adaptive NC and real-time scheduling under deadline
time algorithm MBIA. Fig. 12 illustrates the wireless teskgonstraints.
performance for the case when the unknown channel erasure
probabilities are learned over time. Algorithm 2 perforruse ACKNOWLEDGMENTS
to optimal in this case and converges quickly in several &8&m  \ne would like to thank Lei Ding from Intelligent Automa-
VI, CONCLUSION tion, Inc. for help with hardware exper_iments. Thi_s maﬂe’s’a}
' based upon work supported by the Air Force Office of Scien-
We considered adaptive NC for multimedia traffic with hartlfic Research under Contracts FA9550-10-C-0026, FA9550-
deadlines and formulated the sequential block size adaptd-C-0006 and FA9550-12-C-0037. Any opinions, findings
tion problem as a Markov decision process for a single-h@md conclusions or recommendations expressed in this ialater
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APPENDIX

A. Proof of Lemma 2.1

P(K,T) is monotonically decreasing witk', if P(K,T)

is monotonically decreases withi, where

P(K,T) = o

7

(ko) -,

= (P(K,T))N. First, we express
P(K,T) - eP(K T)
(1-of + z (G -GD)era-9x

(IR - g
(1—ef + i (F2)e K1 -k
T=K+1

_ (T—ll)ETf(Kfl)(l _ E)K

()R- on)

(I K

T
(-0 > Gerra-ge
_( - )ET_'H_K(l _ 6)K—l

T— (K—l)( E)K
(1—-e)P(K —1,T)— (%
—(Til)eT (K— 1)( E)K

=(1-eP(K-1,T)— (")’ D1 -ek.
(20)

)€T+17K(1 — K

Since from (20) it follows that

P(K,T)—

P(K—-1,T)=—(, )"~ =1)(

-kt (21

is negative,P(K,T) is monotonically decreasing with .

B. Proof of Proposition 3.1
1) To show thatR,(K;) is unimodal, it suffices to show

that R,(K,) is log-concave, i.e . R(K) =
log(P(K,T)) is concave. Since; log(K

% log(K) +
) is concave, it suf-

fices to show that for any giveR, log(P (K T)) is concave,
i.e., P(K,T) is log-concave. Based on the definition of log-
concavity, in what follows, we will show that

P(K —1,T)(L=E+) =

P(K,T)? > P(K —1,T)P(K +1,T). (22)

Fig. 12: Average system throughput and convergence ratel?’o"j}sed on (21), (22) can be rewritten as

Algorithm 2, whereN = 10, 7' = 10 and the initial channel

P(K.T) > (23)

We use induction to show (23). F@r = 1,2, it is obvious to
see that (23) holds. FoF = 3, we can verify (23) by using
(19). Assume that fof" =t > 3, (23) holds. ForT' =t + 1,

are those of the authors and do not necessarily reflect taesviéter some algebra, we have

+

P(K —1,t+ 1)(“”2) —< _ P(K,t+1)
P(K—l t) (=KL K+1) — _ P(K,t)
2 (P(K —1,t)1 = (. )et=E=D(1 - F) >0,

(24)

which is based on the induction and (21).
2) Since P(K,t) is monotonically increasing with for
any K;, R;(K;) is monotonically increasing with. Besides,

ast goes to infinite thm Riy(Ky) =

K, i.e., the block with

length K; can be delivered almost surely. Therefore, for any
K < Kt, we can conclude thaRtH(Kt) > Ryt (K).
Since Kt+1 is the optimal block size in slot + 1, i.e.,
Riy1(Ki11) > Repa(Ky), if Kiyy < Ky, then we have



Riy1(Ki1) < Repa(Ky), which contradicts the fact thatF. Proof of Theorem 3.4
Kiy1 is the optimal block size in slot + 1. Therefore,  \whenR, (1) > R,(2) holds, K (t) = 1, due to the unimodal

Ky > K. property of R;(-). Then,K*(t) = 1 from Theorem 3.2. Since
K*(t) is non-decreasign with (Theorem 3.1) K*(¢') = 1 in
C. Proof of Theorem 3.1 the remaining slot¢’ > ¢, i.e., the plain retransmission policy

The proof follows from a contradiction argument. Suppodg optimal. To show there exits a threshaft, we expand

that K; > Kj,,. It can be shown thats; < K, by a Z4(1)> f(2) ?ccorgiping toT(_21),]\évherRt(1) = (1-¢")" and

contradiction argument. From Proposition 3.1, it follovsit }Et@) =2(1-e"+Te —Te ) ._Then,the_ monotonicity of

R/(K}) > Ry(K?,,) in slott. Sincek: is the optimal action € follows from comparingR, (1) with R;(2) in the expanded

S e b . form. Definef(e,t, N) = (1 —¢t) =2 /N (1 — et +tet —tet~1)

in slott, V,(K/;P*) > Vi(Kj; P*). SinceK;} > K, in : b =

slot ¢, when the optimal policy is applied, the future reward4c" lt/hj\?tf(e (t,N),t,N) = 0. Note that f(0,t,N) =

Ji(K}) under K/ is less than the future reward, (K, ) L=27" <0 and J,[(.l’t’N) =0 T*.‘efe exists a unique

under K;,,, due to the less remaining time undg¥. The non-trl\/nal value ofé’ in (0,1) to maximize f(e, ¢, N). For

future rewards under both actions are monotonically irsirgg. ¢ < € f(¢,,N) is first increasing and then decreasing

with ¢, since R,(K) is monotonically increasing with for Igack to 0. Therefore, there exists a unique non-trivial solu-

given K. Moreover, lim (J;(K}) — Ji(K7,,)) = 0, since the tion of f](\; (tvg)’tszV: OOSfUCh thatf(e}\? N) < 0 for
—0 * *

probability of successfully delivering any given set of keis e <e(t,N) and f(e,t, N) > 0 for e > (¢, N).

under any policy goes to 1, when the remaining time goé&s Proof of Corollary 3.2

to infinity. This indicates that the gap between these futureif n, > N, f(e,t,Ny) > f(e,t,N1). ForanyN, f(e,t, N)
rewards decreases in slot 1. SinceR;(K) is monotonically increases with, achieves a positive maximum and decreases
increasing witht, we haveR, 1 (K7) > Riy1(K¢y ). There- pack to zero. Sincef(e,t,No) > f(e t,Ny), the value
fore, Ri1(KY) + Jia1(KY) > Repa(Kiyq) + S (Ki), e (L, Ny), @ = 1,2, for which f(ef, ¢, N;) = 0 decreases from
i.e., in slot¢ + 1, the total expected reward undéf;,, is ¢5(¢, Ny) to €}(t, No). By following the similar arguments, it
less than that undeK’;, which contradicts thaf(;,, is the follows thate* (¢, N') is monotonically increasing with.

optimal action in slott + 1.
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