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Abstract—We study adaptive network coding (NC) for schedul-
ing real-time traffic over a single-hop wireless network. Tomeet
the hard deadlines of real-time traffic, it is critical to str ike a
balance between maximizing the throughput and minimizing the
risk that the entire block of coded packets may not be decodable
by the deadline. Thus motivated, we explore adaptive NC, where
the block size is adapted based on the remaining time to the
deadline, by casting this sequential block size adaptationproblem
as a finite-horizon Markov decision process. One interesting
finding is that the optimal block size and its corresponding
action space monotonically decrease as the deadline approaches,
and the optimal block size is bounded by the “greedy” block
size. These unique structures make it possible to narrow down
the search space of dynamic programming, building on which
we develop a monotonicity-based backward induction algorithm
(MBIA) that can solve for the optimal block size in polynomial
time. Since channel erasure probabilities would be time-varying
in a mobile network, we further develop a joint real-time
scheduling and channel learning scheme with adaptive NC that
can adapt to channel dynamics. We also generalize the analysis to
multiple flows with hard deadlines and long-term delivery ratio
constraints, devise a low-complexity online scheduling algorithm
integrated with the MBIA, and then establish its asymptotical
throughput-optimality. In addition to analysis and simulation
results, we perform high fidelity wireless emulation tests with real
radio transmissions to demonstrate the feasibility of the MBIA
in finding the optimal block size in real time.

Index Terms—Network coding, real-time scheduling, wireless
broadcast, deadlines, delay, throughput, resource allocation

I. I NTRODUCTION

The past few years have witnessed a tremendous growth
of multimedia applications in wireless systems. To support
the rapidly growing demand in multimedia traffic, wireless
systems must meet the stringent quality of service (QoS) re-
quirements, including the minimum bandwidth and maximum
delay constraints. However, the time-varying nature of wireless
channels and the hard delay constraints give rise to great
challenges in scheduling multimedia traffic flows. In this paper,
we explorenetwork coding(NC) to optimize the throughput
of multimedia traffic over wirelesschannelsunder the hard
deadline constraint.

In capacitated multihop networks, NC is known to optimize
the multicast flows from a single source to the min-cut
capacity [1]. NC also provides coding diversity over unreliable
wireless channels and improves the throughput and delay
performance of single-hop broadcast systems, compared to
(re)transmissions of uncoded packets [2]–[8]. Nevertheless,

the block NC induces “decoding delay,” i.e., receivers may
not decode network-coded packets until a sufficient number of
innovative packets are received. Therefore, the minimization
of NC delay has received much attention (e.g., [9]–[12]).

For multimedia traffic, meeting the deadline may be more
critical than reducing the average delay. Under thehard
deadlineconstraints, NC may result in significant performance
loss, unless the receivers can decode the packets before the
deadline. Different NC mechanisms (e.g., [13]–[16]) have
been proposed recently to incorporate deadline constraints. An
immediately-decodable network coding (IDNC) scheme has
been proposed in [14] to maximize the broadcast throughput
subject to deadlines. A partially observable Markov decision
process (POMDP) framework has been proposed in [15] to op-
timize media transmissions with erroneous receiver feedback.

These works focus on optimizing network codes in each
transmission; however,such an approach is typically not
tractable due to the “curse of dimensionality” of dynamic
programming. To reduce the complexity of optimizing network
codes in each transmission, [16] has formulated a joint coding
window selection and resource allocation problem to optimize
the throughput in deadline-constrained flows. However, the
computational complexity can be still overwhelming due to the
finite-horizon dynamic programming involved in the coding
window selection. To overcome this limitation, [16] has pro-
posed a heuristic scheme with fixed coding window to tradeoff
between optimality and complexity.

A primary objective of this study is to (i) explore optimal
adaptive NC schemes with low computational complexity,
and (ii) integrate channel learning with adaptive NC over
wireless broadcast erasure channels. Our main contributions
are summarized as follows.

• We develop an adaptive NC scheme that sequentially
adjusts the block size (coding block length) of NC to
maximize the system throughput, subject to the hard
deadlines (cf. [16]). We show that the optimal block
size and its corresponding action space monotonically
decrease as the packet deadline approaches, and the
optimal block size is bounded by the “greedy” block size
that maximizes the immediate throughput only. These
unique structures make it possible to narrow down the
search space of dynamic programming, and accordingly
we develop a monotonicity-based backward induction
algorithm (MBIA) that can solve for the optimal block

http://arxiv.org/abs/1203.4008v4


User 1

Tx

User 2

User N

T

tT

k

Fig. 1: System model. (The arrow denotes the time instant for
drops of undelivered packets and arrivals of new packets.)

size in polynomial time, compared with [15], [16]. We
also develop a joint real-time scheduling andchannel
learningscheme with adaptive NC for the practical case,
in which the scheduler does not have (perfect) channel
information.

• We generalize the study on adaptive NC to the case
with multiple flows. We develop a joint scheduling and
block size adaptation approach to maximize the weighted
system throughput subject to the long-term delivery ratio
and the hard-deadline constraint of each flow. By inte-
grating the MBIA in the model with multiple flows, we
construct a low-complexity online scheduling algorithm.
This online algorithm is shown to be throughput optimal
in the asymptotic sense as the step size in iterations
approaches zero.

• We implement the adaptive NC schemes in a realistic
wireless emulation environment with real radio transmis-
sions. Our high fidelity testbed results corroborate the
feasibility of the MBIA in finding the optimal block
size in real time. As expected, the adaptive NC scheme
with the MBIA outperforms the fixed coding scheme,
and the proposed scheme of joint real-time scheduling
and channel learning performs well under unknown and
dynamic channel conditions.

The rest of the paper is organized as follows. In Section
II, we introduce the system model and present the block size
adaptation problem with the hard deadlines. In Section III,we
develop the MBIA to solve for the optimal block size and
building on this we devise the joint real-time scheduling and
channel learning scheme with adaptive NC for the case with
unknown channel information. In Section IV, we generalize
the study on adaptive NC to multiple flows. In Section V,
we implement the adaptive NC schemes and test them in a
realistic wireless emulation environment with hardware-in-the-
loop experiments. We conclude the paper in Section VI.

II. T HROUGHPUTMAXIMIZATION VS . HARD DEADLINE

A. System Model

We consider a time-slotted downlink system with one trans-
mitter (e.g., base station) andN receivers (users), as illustrated

in Fig. 1. Time slots are synchronized across receivers and
the transmission time of a packet corresponds to one time
slot. The transmitter broadcastsM packets toN receivers
over i.i.d. binary erasure channels with erasure probability
ǫ.1 We assume immediate and perfect feedback available at
the transmitter. For multimedia communications, it is standard
to impose deadlines for delay-sensitive data (see, e.g., [4],
[14]–[17]). We assume that packets must be delivered to each
receiver beforeT slots, i.e., the deadline of each packet isT

slots. Any packet that cannot be delivered to all receivers by
this deadline is dropped without contributing to the throughput.

Worth noting is that this model can be readily applied
to finite-energy systems with NC, where the objective is to
maximize the system throughput before the energy is depleted
for further transmission. Therefore, the energy and delay
constraints can be used interchangeably.

In Section III, we consider the basic model with one flow
and one frame ofT slots. In Section IV, we generalize the
model to multiple frames with multiple flows, where packets
arrive at the beginning of each frame and they are dropped if
they cannot be delivered to their receivers by the deadline of
T slots.

B. Network Coding for Real-time Scheduling

As noted above, the throughput gain of NC comes at the
expense of longer decoding delay (since packets are coded
and decoded as a block), which may reduce the throughput
of the system due to the hard deadline constraints. LetK

denote the block size, i.e., the number of original packets
encoded together by NC. We assume that the transmitter and
each receiver know the set of coding coefficients, and the
transmitter broadcasts the value ofK to receivers before the
NC transmissions start. The coding coefficients can also be
chosen randomly from a large field size (or from a predeter-
mined coding coefficient matrix of rankK) such that with
high probabilityK packet transmissions deliverK innovative
packets in coded form to any receiver, i.e., the entire blockof
packets can be decoded afterK successful transmissions. As
shown in [2], the probability that all receivers can decode the
block of sizeK within T slots is given by

P (K,T ) =

(

T
∑

τ=K

(

τ−1
K−1

)

ǫτ−K(1− ǫ)K
)N

, (1)

where
(

n
m

)

denotes the number of combinations of sizem out
of n elements.2 Note that (1) strongly depends on the choice
of block sizeK and we can show that,

Lemma 2.1. The decoding probability (1) is monotonically
decreasing withK for fixedT .

With block NC, there is the risk that none of the packets can
be decoded by the receivers before the hard deadline. By using

1The results derived in the paper can be readily applied to heterogeneous
channels with different erasure probabilities.

2We can also employ random NC with afinite field size q. This would
change the decoding probability (1) to a function ofq. However, the general
structure of the results will remain the same.



IDNC, it may be possible to start decoding without waiting
for the entire block to arrive but the complexity of finding
a suitable code may be overwhelming due to the dynamic
programming involved in the problem [14]. Here, we provide
the throughput guarantees for the worst-case scenario, where
either the whole block or none of the packets can be decoded
at any slot. There is a tradeoff between the block size and the
risk of decoding. In particular, we cannot greedily increaseK

to maximize the system throughput under the hard deadline
constraints, since the risk that some receivers cannot decode
the packets, i.e.,1−P (K,T ), also increases withK according
to Lemma 2.1.

If the first block is delivered within the deadline, i.e.,T
slots, the size of a new block (with new packets) needs to be re-
adjusted for the remaining slots. In other words, we needreal-
timescheduling of network-coded transmissions depending on
how close the deadline is. For example, when there is only one
slot left before the deadline, the optimal block size is 1, since
for any K > 1, no receivers can decode the packets before
the deadline. Also, the block size in a given slot statistically
determines the remaining slots (before the deadline) alongwith
the future system throughput. In Section III, we derive the
optimal block size adaptation policy to maximize the system
throughput under the deadline constraints for one frame with
one flow.In SectionIV, we generalize the results to the case
with multiple frames with multiple flows.

C. Problem Formulation: A Markov Decision Process View

The NC-based multimedia traffic scheduling of one frame
is a sequential decision problem, which can be formulated as
a Markov decision process (MDP) described as follows.

Horizon: The number of slots available before the deadline
over which the transmitter (scheduler) decides the block size
is the horizon. Due to the hard deadline, this MDP problem
is a finite horizon problem withT slots (one frame).

State: The remaining slotst ∈ {0, 1, ..., T } before the hard
deadline is defined as the state,3 where t = 0 denotes that
there is no slot left for transmissions.

Action: Let Kt, t ∈ {1, ..., T }, denote the action taken at
statet, which is the block size for the remainingt slots. Let
Mt denote the number of packets undelivered at statet. Thus,
at statet > 0, Kt can be chosen from1 to min(t,Mt).
For t = 0, the transmitter stops transmitting any packet,
i.e., K0 = 0. In general, the action space is defined as
Kt = {0, 1, ...,min(t,Mt)}.

Expected immediate reward: For the remainingt slots, the
expected immediate reward is the expected number of packets
successfully decoded by all receivers, which is given by

Rt(Kt) = Kt P (Kt, t), (2)

whereP (Kt, t) is given by (1), denoting the probability that
each receiver can decode theseKt packets withint slots.

Block size adaptation policy: A block size adaptation policy
P is a sequence of mappings,P = {Pt}Tt=1, from t, Mt,

3We use the terms “state” and “slot” interchangeably.

ǫ, and N to an actionKt ∈ {0, 1, ...,min(t,Mt)}, i.e.,
Kt = Pt(t,Mt, ǫ, N) = min(Pt(t, ǫ, N),Mt). Without loss
of generality, in Section III, we assume thatMt is always
larger thant, i.e.,Kt ∈ {0, 1, ..., t}. This does not change the
monotonicity structure of the block size with statet. We will
discuss these structural properties in detail in Section III.

Total expected reward: Given the adaptation policyP , the
total expected reward for the remainingt slots is given by

Vt(Kt;P) = Rt(Kt) + E[Vj(Kj ;P)]

= Rt(Kt) +
t−Kt
∑

j=0

qt(j)Vj(Kj ;P),
(3)

where the probability mass functionqt(j) = P (Kt, t − j) −
P (Kt, t− j− 1) denotes the probability that the block of size
Kt is delivered over exactlyj slots before the deadline.

III. N ETWORK CODING WITH ADAPTIVE BLOCK SIZE

A main contribution of this paper is the development and
analysis of the polynomial-time monotonicity-based backward
induction algorithm (MBIA). The design of the MBIA is
motivated by the structures of the optimal and the greedy
policies that are formally defined as follows.

Definition 3.1. A real-time scheduling policy with adaptive
network coding is optimal, if and only if it achieves the
maximum value of the total expected reward given by the
Bellman equation [18] in dynamic programming:

Vt(K
∗
t ;P

∗) = max
Kt∈{0,1,...,t}

{Rt(Kt)

+
t−Kt
∑

j=0

qt(j)Vj(K
∗
j ;P

∗)},
(4)

where K∗
t denotes the optimal block size,P∗ denotes the

optimal block size adaptation policy, and the terminal reward
is given byV0(0;P∗) = 0.

Definition 3.2. The greedy policy maximizes only the expected
immediate reward (2) without considering the future rewards
and the greedy decision is given by

K̂t = arg max
Kt∈{0,1,...,t}

Rt(Kt). (5)

A. Optimal Block Size Adaptation Policy

In each slott, the optimal policy balances the immediate
reward and the future reward by selecting a suitable block size
K∗

t . In general, the approach of solving for the optimal block
size by traditional dynamic programming [18] suffers from the
“curse of dimensionality,” where the complexity of computing
the optimal strategy grows exponentially witht. However, the
optimal block size and its corresponding action space exhibit
the monotonicity structures, and the optimal block size is
bounded by the greedy block size. These unique structures
make it possible to narrow down the search space of dynamic
programming, and accordingly we develop a monotonicity-
based backward induction algorithm (MBIA) with polynomial
time complexity.

The MBIA searches for the optimal block size by backward
induction and provides the optimal block size for each system
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Fig. 2: The unimodal property ofRt(Kt).

state. Depending on the remaining time to deadline, the
scheduler transmits coded packets with the optimal block size
until each user receives enough packets to decode this block.
Then, the scheduler adjusts the block size based on the current
state, and proceeds with the new block transmission. This
continues until the packet deadline expires or all packets are
delivered. We present next the structural properties of block
size adaptationproblemthat will lead to the formal definition
of the MBIA.

Lemma 3.1. The action spaceKt monotonically shrinks ast
decreases.

Proof outline:As the number of remaining slotst decreases,
the maximum possible block size decreasesas well, since
Kt ∈ {0, 1, ..., t}; otherwise noreceivercan decode the block
of coded packets. �

Proposition 3.1. The expected immediate reward function
Rt(Kt) has the following properties:

1) Rt(Kt) is unimodal forKt ∈ {0, 1, ..., t}.4

2) K̂t in (5) monotonically decreases ast decreases.

Proof outline: To show the unimodal property, it suffices
to show thatRt(Kt) is log-concave, which can be shown by
using induction method. The monotonicity property ofK̂t can
be shown by invoking the contradiction argument and applying
limt→∞ Rt(Kt) = Kt. �

Fig. 2 showsthe possible curves ofRt(Kt) for different
values of t, illustrating the unimodal property ofRt(Kt)
formally stated in Proposition 3.1. Based on Proposition 3.1,
the monotonicity property of the optimal block sizeK∗

t is
given by the following theorem.

Theorem 3.1. The optimal block sizeK∗
t monotonically

decreases ast decreases, i.e.,K∗
t ≥ K∗

t−1, for any t.

Proof outline:Based on Proposition 3.1, we can showthat

4f(x) is a unimodal function if for somem, f(x) is monotonically
increasing forx≤m and monotonically decreasing forx≥m. The maximum
value is attained atx = m and there are no other local maximum points.

if K∗
t < K∗

t−1, Vt−1(K
∗
t ;P

∗) > Vt−1(K
∗
t−1;P

∗), which
contradicts thatK∗

t−1 is the optimal action in slott− 1. �

As t decreases, the risk that some receivers cannot decode
the given block of packets increases for a fixed block size.
Therefore, the scheduler becomes more conservative in the
block size adaptation and selects a smaller block size.

Remarks: 1) Fort = 1, 2, the optimal block size isK∗
t = 1,

which can be obtained by computing the Bellman equation (4).
2) WhenN = 1, the optimal block size isK∗

t = 1 for all t,
since the plain retransmission policy withKt = 1 is better
than the block coding withKt > 1 in the presence of the
hard deadlines.

Theorem 3.2. The optimal block sizeK∗
t is not greater than

the greedy block sizêKt for any t.

Proof outline: Based on Proposition 3.1, we can show if
K∗

t > K̂t, along any sample path, the system throughput
by taking the actionK̂t is at least as high as that by taking
the actionK∗

t , which contradicts thatK∗
t in this case is the

optimal action in slott. �

Corollary 3.1. At state t, if Rt(Kt) > Rt(Kt + 1), then
K∗

j ≤ K̂j ≤ Kt for any j ∈ {1, ..., t}.

Corollary 3.1 follows directly from Proposition 3.1 and
Theorem 3.2. Based on these structural properties, we develop
the MBIA, which is presented in Algorithm 1.

Algorithm 1 Monotonicity-based Backward Induction Algo-
rithm (MBIA)

1) Sett = 0 andV0(0;P∗) = 0.
2) Substitutet + 1 for t, and computeVt(K

∗
t ;P

∗) by
searchingKt ∈ Kt, whereKt = {K∗

t−1,K
∗
t−1 +1, ..., K̂t},

i.e.,Vt(K
∗
t ;P

∗) = max
Kt∈Kt

{Rt(Kt)+
t−Kt
∑

j=0

q(j)Vj(K
∗
j ;P

∗)},

andK∗
t = arg max

Kt∈Kt

{Rt(Kt) +
t−Kt
∑

j=0

q(j)Vj(K
∗
j ;P

∗)}.

3) If t = T , stop; otherwise go to step 2.

The MBIA confines the search space at statet to the
interval fromK∗

t−1 (the optimal policy at statet − 1) to K̂t

(the greedy policy at statet). Thus, theMBIA reduces the
search space over time and reduces the complexity of dynamic
programming as given by the following theorem.

Theorem 3.3. The MBIA is a polynomial-time algorithm and
the complexity is upper bounded byO(T 2).

Proof: Based on Proposition 3.1,Rt(Kt) has theunimodal
property and thereforêKt can be solved efficiently by the
Fibonacci search algorithm [19], which is a sequential line
search algorithm with a complexity ofO(log(t)) at statet.
Therefore, in each iteration, it takesO(log(t) + K̂t −K∗

t−1)

slots to find K∗
t . Based on Lemma 3.1,̂Kt − K∗

t−1 is
upper bounded byt. After some algebra, we show that the
complexity of Algorithm 1 is bounded byO(T 2) and Theorem
3.3 follows. �
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Fig. 3: The monotonicity property ofǫ∗.

Remarks: By using the MBIA, the optimal block size can
be computed in polynomial time, which is a desirable property
for online implementation. The optimal block size depends on
the number of receivers and channel erasure probabilities.For
different flows, the set of receivers may be different, which
may result in different optimal block sizes, even when the
number of remaining slots is the same across these flows.
Therefore, without using the MBIA, offline schemes would
need to compute the optimal policies for all possible receiver
sets; however, this would be a computationally demanding
task, as the number of receivers increases.

Based on the monotonicity properties of the greedy and
optimal block sizes, the optimal policy becomes the plain
retransmission, if the channel erasure probability is sufficiently
large. This sufficiency condition forK∗

t = 1 at slot t is
formally given as follows.

Theorem 3.4. At slot t, the optimal policy switches to the
plain retransmission policy, i.e.,K∗

t = 1, when the erasure
probability satisfies the threshold condition

ǫ > ǫ∗(t, N), (6)

whereǫ∗(t, N) ∈ (0, 1) is the non-trivial (unique) solution to
Rt(1) = Rt(2).

Proof outline: The proof follows directly by comparing
Rt(1) andRt(2) that are expressed as a function ofǫ. �

Note that (6) is a sufficient condition only and indicates the
optimality of the greedy policy whenǫ is large enough.

Fig. 3 depicts how the thresholdǫ∗ varies with t andN .
The underlying monotonicity property is formally stated in
Corollary 3.2.

Corollary 3.2. The thresholdǫ∗(t, N) increases monotoni-
cally with t and decreases monotonically withN .

Remarks: 1) When the channel is good enough (with
ǫ < ǫ∗), NC with Kt > 1 can always improve the throughput
compared to the plain retransmission policy. 2) Ast increases
(i.e., the deadline becomes looser), the risk of decoding

network-coded packets decreases, i.e.,ǫ∗(t, N) increases. 3)
As N increases, it becomes more difficult to meet the deadline
for each ofN receivers and thereforeǫ∗(t, N) drops accord-
ingly.

B. Robustness vs. Throughput

The real-time scheduling policies presented so far focus
on the expected throughput without considering the variation
from the average performance. Therefore, it is possible that the
instantaneous throughput drops far below the expected value.
To reduce this risk, we use additional variation constraints to
guarantee that the throughput performance remains close to
the average. In particular, for each slott, we introduce the
variation constraintto the block size adaptationproblem as
follows:

vt(Kt) < σ2
t , ∀Kt ∈ Kt, (7)

whereσ2
t is the maximum variation allowed in slott and the

performance variationvt(Kt) under actionKt is given by

vt(Kt) =
∞
∑

i=1

i2(P (Kt, i)− P (Kt, i− 1)). (8)

Sincevt(Kt) increases withKt, (7) can be rewritten as the
maximum block size constraint for each slott, i.e.,

Kt ≤ Kmax
t , (9)

where Kmax
t = max{Kt|Kt = ⌊v−1

t (σt)⌋}, v−1
t (·) is the

inverse mapping ofvt(·), and⌊x⌋ denotes the largest integer
smaller thanx. The variation constraints do not change the
monotonicity property of the optimal block size provided
by Theorem 3.1. By introducing the variation constraints
(9), the scheduler becomes more conservative in the block
size adaptation. The additional boundKmax

t can be easily
incorporated into the MBIA by changing the action space to
Kt = {K∗

t−1,K
∗
t−1 + 1, ...,min(Kmax

t , K̂t)} at statet.

C. Block Size Adaptation under Unknown Channels

So far we have discussed the real-time scheduling policies
with adaptive NC, where the channel erasure probabilityǫ is
perfectly known to the scheduler. The throughput performance
of these policies depends onǫ; therefore, the scheduler needs
to learn ǫ while adapting the block size, when it does not
have (perfect) channel knowledge. Letǫ̂t denote the estimate
of the channel erasure probability in slott. The scheduler can
updateǫ̂t based on the feedback from the receivers. In slot
T , if ǫ̂T < ǫ, we would expect with high probability that a
block of packets with the size that is calculated with respect
to ǫ̂T cannot be delivered before the deadline. Therefore, it is
better to select the block size conservatively at the beginning,
when the estimatêǫt cannot be highly accurate yet, because
of the small number of samples. Asǫ̂t improves over time, the
block size can be gradually increased to improve the system
throughput. Once the estimate is close enough to the actual
value of ǫ after enough samples are collected, the block size
should be adjusted (and reduced over time) according to the
MBIA.



Clearly, there is a tradeoff between the channel learning and
the block size adaptation. Here, we formulate a joint real-time
scheduling and channel learning algorithm (Algorithm 2) to
adapt the block size while updating the maximum likelihood
estimate ǫ̂t of channel erasure probability. In slott, based
on the feedback, the scheduler can compute the packet loss
ratio, ǫt = 1 − nt

N , wherent denotes the number ofreceivers
that successfully receive a packet in slott. Accordingly, the
estimated channel erasure probabilityǫ̂t is given by the moving
average

ǫ̂t =
(T−t)ǫ̂t+1+ǫt

T−t+1 . (10)

The scheduler decides on the block size by comparing the
temporal variation|ǫ̂t − ǫ̂t+1| with a thresholdδ. A detailed
description is given in Algorithm 2.

Algorithm 2 Joint Real-time Scheduling and Channel Learn-
ing with Adaptive Network Coding

Initialization: Choose thresholdδ and setKT = 1.
Repeat until t = 0.

Update channel estimatêǫt by (10).
Compute block sizeK∗

t by Algorithm 1 with ǫ̂t.
If |ǫ̂t − ǫ̂t+1| > δ then

If K∗
t ≥ Kt+1 + 1 then

Kt = Kt+1 + 1,
Else
Kt = Kt+1.

Endif
Else
Kt = K∗

t .
Endif

Remarks: Algorithm 2 captures the tradeoff betweenthe
channel learning and block size adaptation. There are two op-
tions for the scheduler depending onthe relationship between
|ǫ̂t − ǫ̂t+1| and δ. If the channel estimation is not yet good
enough, Algorithm 2 chooses the block size conservatively
by incrementingKt by at most1. Otherwise, Algorithm 2
computes the block size by applying the MBIA.

D. Performance Evaluation

Fig. 4 illustrates forN = 5 the monotonicity structure of
the optimal block size (Theorem 3.1) and verifies thatK∗

t ≤
K̂t (Theorem 3.2). Both the optimal and greedy block sizes
increase when the channel conditions improve (fromǫ = 0.5 to
ǫ = 0.2). Next, we evaluate the performance (average system
throughput) of different policies. For comparison purposes, we
also consider a soft delay-basedconservativepolicy, where
the scheduler chooses the largest block size with the expected
completion time less than or equal to the number of remaining
slots. The expected completion time is studied in [2], and it
is given by

S(K) = K +
∞
∑

t=K

(1− P (K, t)) . (11)

Fig. 5 compares the performance of the optimal, greedy,
conservative and plain retransmission policies forN = 10 and
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T = 10. The plain retransmission policy always performs the
worst, whereas the conservative policy performs worse than
the greedy policy.However, asǫ increases, all policies select
smaller block sizes and their performance gap diminishes.

Fig. 6 shows the tradeoff between the average system
throughput and the throughput variation. When the channels
are good (e.g.,ǫ = 0.1 in Fig. 6), the variation constraint (7)
makes the scheduler choose a small block size, which reduces
the average system throughput accordingly. However, thereis
no significant effect of (7)when channels are bad(e.g.,ǫ = 0.5
in Fig. 6), since the scheduler already chooses a small block
size for largeǫ. Fig. 7 evaluates the performance of Algorithm
2 under channel uncertainty and show that Algorithm 2 is
robust with respect to the variation ofδ and achieves a reliable
throughput performance close to the case with perfect channel
information.
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Fig. 6: Average system throughput vs. throughput variation,
whereN = 10 andT = 20.

IV. JOINT SCHEDULING AND BLOCK SIZE OPTIMIZATION

In this section, we generalize the study on adaptive NC
to the case of multiple frames, where the scheduler serves
a setF of flows subject to the hard deadline and the long-
term delivery ratio constraints. The packets of each flowf

arrive at the beginning of every frame and they are dropped
if they cannot be delivered to its receiversNf within this
frame (see Fig. 1). We impose that the loss probability for flow
f due to deadline expiration must be no more than1 − qf ,
where qf is the delivery ratio requirement of flowf . For a
given frame, the vectora = (af )f∈F denotes the number of
packet arrivals at each flow, whereaf is the number of packets
generated by flowf . We assume thataf is i.i.d. across frames
with finite meanλf and variance5. For ease of exposition,
we assume perfectchannel information at the scheduler and
consider coding within each flow but not across different flows.

A. Multi-Flow Scheduling

The scheduler allocates slots for each flow and uses the op-
timal real-time scheduling policy with adaptive NC developed
in Section III to transmit network-coded packets. Given the
arrivals, the scheduler needs to allocate a suitable numberof
slots for each flow to satisfy the delivery ratio requirement.
This resource allocation is defined as a feasible schedule,
s = (sf )f∈F , wheresf denotes the number of slots allocated
to flow f and

∑

f∈F sf ≤ T . Our goal is to maximize the
weighted throughput subject to the delivery ratio and hard
deadline constraints. We find the optimal schedule, i.e., the
probability Pr(s|a) that given the arrivalsa, the schedule
s ∈ S is used from the setS of all feasible schedules. Then,
the expected service rate for flowf is upper-bounded by

µf ≤
∑

s,a cf (sf )Pr(s|a)Pr(a), (12)

5The algorithm developed for thei.i.d. case can be readily applied to non
i.i.d. scenarios.The analysis and performance guarantees can be obtained
using the delayed Lyapunov drift techniques developed in [22], [23].
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Fig. 7: Performance of Algorithm 2.

where cf (sf ) is the expected number of packets that can
be delivered under schedulesf , which is a constant and
can be solved by the MBIA. Hence, we formulate the joint
resource allocation and block size adaptation as the following
optimization problem:

maximize
∑

f∈F wfµf

subject to µf ≥ λfqf , ∀ f ∈ F ,

µf ≤
∑

s,a cf (sf )Pr(s|a)Pr(a), ∀ f ∈ F ,

P r(s|a) ≥ 0, ∀s ∈ S,
∑

s∈S Pr(s|a) ≤ 1, ∀a,
variables {µf , P r(s|a)},

(13)
wherewf is the weight for flowf and can be used as a fairness
metric for resource allocation to each flow.6 Note that (13)
generalizes the problem studied in [21] by using adaptive NC
schemes in packet transmissions.

B. Dual Decomposition

Since (13) is strictly convex, the duality gap is zero from
the Slater’s condition [20]. The dual problem is given by

maximize
∑

f∈F (wfµf + νf (µf − λfqf ))

subject to µf ≤
∑

s,a cf (sf )Pr(s|a)Pr(a), ∀ f ∈ F ,

P r(s|a) ≥ 0, ∀s ∈ S,
∑

s∈S Pr(s|a) ≤ 1, ∀a,
variables {µf , P r(s|a)},

(14)
whereνf is the Lagrangian multiplier for flowf . The objective
function of (14) is linear and the upper bounds forµf are
affine functions. Therefore, the optimization problem (14)can
be rewritten as:

max
s∈S

∑

f∈F(wf + νf )cf (sf ). (15)

6The problem (13) canbe generalizedto the case with congestion control
by treating the weights as virtual queues for flow rates (similar to the service
deficit queues that we use later in Section IV-B).



Thus, we have the following gradient-based iterative algorithm
to find the solution to the dual problem (14),

s∗(k) ∈ arg max
s∈S

∑

f∈F (wf + νf (k))cf (sf ),

µ∗
f (k) = cf (s

∗
f (k)),

νf (k + 1) = max(0, νf (k) + ρ(λf qf − µ∗
f (k))),

(16)

wherek is the step index,ρ > 0 is a fixed step-size parameter,
and cf (s

∗
f (k)) is the expected service rate for flowf under

schedules∗f (k). Letting ν̂f (k) =
νf (k)

ρ , (16) is rewritten as

s∗(k) ∈ arg max
s∈S

∑

f∈F(
wf

ρ + ν̂f (k))cf (sf ),

µ∗
f (k) = cf (s

∗
f (k)),

ν̂f (k + 1) = max(0, ν̂f(k) + (λf qf − µ∗
f (k))).

(17)

Remarks: The update equation for̂νf can be interpreted
as a virtual queue for the long-term delivery ratio with the
arrival rateλf qf and the service rateµ∗

f (k), which keeps track
of the deficit in service for flowf to achieve a delivery ratio
greater than or equal toqf . Note that (17) provides only the
static solution to (14). Next, we provide an online scheduling
algorithm which takes into account the dynamic arrivals of the
flows.

C. Online Scheduling Algorithm

The online scheduling algorithm is given by

s∗(k) ∈ arg max
s∈S

∑

f∈F (
wf

ρ + ν̂f (k))cf (sf ),

ν̂f (k + 1) = max(0, ν̂f (k) + âf (k)− ĉf (s
∗
f (k))),

(18)

where ĉf (s
∗
f (k)) denotes the actual delivered number of

packets under the schedules∗f (k) dependingon the channel
realizations, and âf (k) is a binomial random variable with
parametersaf (k), the number of packet arrivals of flowf
in the kth frame, andqf . This implementation for̂af (k) was
proposed in [21]. At the beginning of eachperiod,the schedule
s∗(k) is determined by (18). Then, the packets of each flowf

are transmitted with the MBIA in the scheduleds∗f (k) slots.
The virtual queueν̂f is updated based on the number of
successfully delivered packetsĉf (s∗f (k)) of each flowf . With
Lyapunov optimization techniques [22], [23], it can be shown
that (18) has the following properties.

Theorem 4.5. Consider the Lyapunov functionL(ν̂) =
1
2

∑

f∈F ν̂2f . If µ∗
f > λfqf for all f ∈ F , then the expected

service deficit̂νf is upper-bounded by

lim sup
k→∞

E[
∑

f∈F ν̂f (k)] ≤ B1 +
1
ρB2,

for some positive constantsB1 and B2. Furthermore, the
online algorithm can achieve the long-term delivery ratio
requirements, i.e., for allf ∈ F we have

lim inf
K→∞

E[ 1
K

∑K
k=1 ĉf (s

∗
f (k))] ≥ λf qf .

Theorem 4.6. Let ρ > 0 and µ∗
f be the solution to (17). If

µ∗
f > λfqf for all f ∈ F , it follows for B > 0 that

lim sup
K→∞

E[
∑

f∈F(wfµ
∗
f − wf

K

∑K
k=1 ĉf (s

∗
f (k)))] ≤ Bρ.

The proofs follow from the optimization framework in [22],
[23] and they are similar to the proofs presented in [21]. Note
that the online scheduling algorithm (18) can approach within
O(ρ) of the optimal solution to (14) and does not require any
knowledge ofthe packet arrival statistics.

D. Performance Evaluation

We consider a network with two flows, each with five
receivers. The packet traffic of each flow follows Bernoulli
distribution with meanλf packets/frame forf = 1, 2, and the
length of each frame is10 slots. In the simulation, we set
λf = λ for f = 1, 2. The channel erasure probabilityǫ is 0.3,
the weightswf are1 for all flows, the step-sizeρ is 0.1, and
the simulation time is105 frames.

We evaluate the performance of our algorithm by com-
paring the region of achievable rates(µ1, µ2) with the plain
retransmission under different traffic flow ratesλ, where the
achievable rates denote the feasible solution to (13) for given
delivery ratio requirementsqf . By varying qf , we find the
achievable rate region. As illustrated in Fig. 8, the plain
retransmission only achieves a small fraction of the region
with adaptive NC. By using adaptive NC, the network can
supportflows with heavier traffic.

Fig. 9 shows the average service deficitν̂ of two flows. The
delivery ratio requirement of each flow is0.8. As λ increases,
ν̂ grows unbounded, which means that the conditions,µ∗

f >

λfqf for all f ∈ F , are not satisfied, i.e., the arrival rates
are not in the “stability” region, and the online scheduling
algorithm cannot meet the delivery ratio requirements.

V. H IGH FIDELITY WIRELESSTESTING WITH HARDWARE

IMPLEMENTATION

We tested the adaptive NC schemes in a realistic wireless
emulation environment with real radio transmissions.As il-
lustrated in Fig. 10, ourtestbed platform consists of four
main components: radio frequency network emulator simulator
tool, RFnestTM [24] (developed and owned as a trademark
by Intelligent Automation, Inc.), software simulator running
higher-layer protocols on a PC host, configurable RF front-
ends (RouterStation Pro from Ubiquiti), and digital switch.
We removed the radio antennas and connected the radios
with RF cables over an attenuator box. Then, real signals
are sent over emulated channels, where actual physical-layer
interactions occur between radios, and in the meantime the
physical channel attenuation is digitally controlled according
to the simulation model or recorded field test scenarios can be
replayed.

In the hardware experiments, we executed wireless tests
at 2.462GHz channel with 10dBm transmission power and
1Mbps rate. We used CORE (Common Open Research Emu-
lator) [25] to manage the scenario being tested. We changed
the locations of receivers through RFnestTMGUI and let the
signal power decay asd−α over distanced with path loss
coefficientα = 4. By using real radio transmissions according
to this model, we varied the attenuation from the transmitter to
each of the receivers and generated different channel erasure
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Fig. 8: Achievable rate regions under adaptive NC and plain
retransmission policies.

probabilities. With RFnestTM , we replayed the same wireless
traces for each of the NC algorithms and compared them under
the high fidelity network emulation with hardware-in-the-loop
experiments.

Fig. 11 illustrates the performance of the optimal policy,
the greedy policy and the fixed block size policy suggested by
[16]. The experimental results show that the greedy policy
performs close to the optimal policy in practice. Both the
greedy and the optimal policies outperform the fixed block size
policy, and the complexity remains low with the polynomial-
time algorithm MBIA. Fig. 12 illustrates the wireless test
performance for the case when the unknown channel erasure
probabilities are learned over time. Algorithm 2 performs close
to optimal in this case and converges quickly in several frames.

VI. CONCLUSION

We considered adaptive NC for multimedia traffic with hard
deadlines and formulated the sequential block size adapta-
tion problem as a Markov decision process for a single-hop
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Fig. 9: Service deficit vs. average arrival rate.

Fig. 10: Programmable RFnestTM testbed.

wireless network. By exploring the structural properties of
the problem, we derived the polynomial time policy, MBIA,
to solve the optimal NC block size adaptationproblemand
developed the joint real-time scheduling and channel learning
scheme that can adapt to wireless channel dynamics if the
perfect channel information is not available at the scheduler.
Then, we generalized the study to multiple flows with hard
deadlines and long-term delivery constraints, and developed
a low-complexity online scheduling algorithm integrated with
the MBIA. Finally, we performed high fidelity wireless emula-
tion tests with real radios to demonstrate the feasibility of the
MBIA in finding the optimal block size in real time. Future
work should extend the modelto integrate congestion control
with adaptive NC and real-time scheduling under deadline
constraints.
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APPENDIX

A. Proof of Lemma 2.1

P (K,T ) is monotonically decreasing withK, if P̂ (K,T )
is monotonically decreases withK, where

P̂ (K,T ) =
T
∑

τ=K

(

τ−1
K−1

)

ǫτ−K(1 − ǫ)K . (19)

such thatP (K,T ) = (P̂ (K,T ))N . First, we express

P̂ (K,T )− ǫP̂ (K,T )

= (1− ǫ)K +
T
∑

τ=K+1

(

(

τ−1
K−1

)

−
(

τ−2
K−1

)

)

ǫτ−K(1− ǫ)K

−
(

T−1
K−1

)

ǫT−(K−1)(1− ǫ)K

= (1− ǫ)K +
T
∑

τ=K+1

(

τ−2
K−2

)

ǫτ−K(1− ǫ)K

−
(

T−1
K−1

)

ǫT−(K−1)(1− ǫ)K

= (1− ǫ)

(

T
∑

τ=K

(

τ−2
K−2

)

ǫτ−K(1− ǫ)K−1

)

−
(

T−1
K−1

)

ǫT−(K−1)(1− ǫ)K

= (1− ǫ)
( T

∑

τ=K−1

(

τ−1
K−2

)

ǫτ+1−K(1 − ǫ)K−1

−
(

T−1
K−2

)

ǫT+1−K(1− ǫ)K−1
)

−
(

T−1
K−1

)

ǫT−(K−1)(1− ǫ)K

= (1− ǫ)P̂ (K − 1, T )−
(

T−1
K−2

)

ǫT+1−K(1− ǫ)K

−
(

T−1
K−1

)

ǫT−(K−1)(1− ǫ)K

= (1− ǫ)P̂ (K − 1, T )−
(

T
K−1

)

ǫT−(K−1)(1− ǫ)K .
(20)

Since from (20) it follows that

P̂ (K,T )−P̂ (K−1, T )=−
(

T
K−1

)

ǫT−(K−1)(1− ǫ)K−1 (21)

is negative,P (K,T ) is monotonically decreasing withK.

B. Proof of Proposition 3.1

1) To show thatRt(Kt) is unimodal, it suffices to show
that Rt(Kt) is log-concave, i.e.,R̂(K) = 1

N log(K) +

log(P̂ (K,T )) is concave. Since1N log(K) is concave, it suf-
fices to show that for any givenT , log(P̂ (K,T )) is concave,
i.e., P̂ (K,T ) is log-concave. Based on the definition of log-
concavity, in what follows, we will show that

P̂ (K,T )2 ≥ P̂ (K − 1, T )P̂ (K + 1, T ). (22)

Based on (21), (22) can be rewritten as

P̂ (K − 1, T )(T−K+1
K )1−ǫ

ǫ − P̂ (K,T ) ≥ 0. (23)

We use induction to show (23). ForT = 1, 2, it is obvious to
see that (23) holds. ForT = 3, we can verify (23) by using
(19). Assume that forT = t > 3, (23) holds. ForT = t+ 1,
after some algebra, we have

P̂ (K − 1, t+ 1)( t−K+2
K )1−ǫ

ǫ − P̂ (K, t+ 1)

= P̂ (K − 1, t)( t−K+1
K )1−ǫ

ǫ − P̂ (K, t)

+ 1
K (P̂ (K − 1, t)1−ǫ

ǫ −
(

t
K−1

)

ǫt−(K−1)(1− ǫ)K) ≥ 0,
(24)

which is based on the induction and (21).
2) SinceP (Kt, t) is monotonically increasing witht for

anyKt, Rt(Kt) is monotonically increasing witht. Besides,
as t goes to infinite, lim

t→∞
Rt(Kt) = Kt, i.e., the block with

lengthKt can be delivered almost surely. Therefore, for any
K < K̂t, we can conclude thatRt+1(K̂t) > Rt+1(K).
Since K̂t+1 is the optimal block size in slott + 1, i.e.,
Rt+1(K̂t+1) ≥ Rt+1(K̂t), if K̂t+1 < K̂t, then we have



Rt+1(K̂t+1) < Rt+1(K̂t), which contradicts the fact that
K̂t+1 is the optimal block size in slott + 1. Therefore,
K̂t+1 ≥ K̂t.

C. Proof of Theorem 3.1

The proof follows from a contradiction argument. Suppose
that K∗

t > K∗
t+1. It can be shown thatK∗

t ≤ K̂t by a
contradiction argument. From Proposition 3.1, it follows that
Rt(K

∗
t ) > Rt(K

∗
t+1) in slot t. SinceK∗

t is the optimal action
in slot t, Vt(K

∗
t ;P

∗) > Vt(K
∗
t+1;P

∗). SinceK∗
t > K∗

t+1 in
slot t, when the optimal policy is applied, the future reward
Jt(K

∗
t ) underK∗

t is less than the future rewardJt(K∗
t+1)

underK∗
t+1, due to the less remaining time underK∗

t . The
future rewards under both actions are monotonically increasing
with t, sinceRt(K) is monotonically increasing witht for
givenK. Moreover, lim

t→∞
(Jt(K

∗
t )− Jt(K

∗
t+1)) = 0, since the

probability of successfully delivering any given set of packets
under any policy goes to 1, when the remaining time goes
to infinity. This indicates that the gap between these future
rewards decreases in slott+1. SinceRt(K) is monotonically
increasing witht, we haveRt+1(K

∗
t ) > Rt+1(K

∗
t+1). There-

fore, Rt+1(K
∗
t ) + Jt+1(K

∗
t ) > Rt+1(K

∗
t+1) + Jt+1(K

∗
t+1),

i.e., in slot t + 1, the total expected reward underK∗
t+1 is

less than that underK∗
t , which contradicts thatK∗

t+1 is the
optimal action in slott+ 1.

D. Proof of Theorem 3.2

The proof follows from a contradiction argument. Suppose
that K∗

t > K̂t. For any sample path, the case witĥKt will
deliver the block earlier than the case withK∗

t . For the sample
paths with the number of slots that all the channels between the
transmitter and the receivers are good less thanK∗

t , the reward
underK̂t is higher than that underK∗

t . For the other sample
paths with the number of slots that all the channels between
the transmitter and the receivers are good greater thanK∗

t , the
block with sizeK̂t will be delivered earlier than that with size
K∗

t . We assume that after the block with sizêKt is delivered,
the scheduler chooses to deliver the block with size 1, before
the block with sizeK∗

t is delivered. Then after the block with
size K∗

t is delivered, the optimal policy is applied for both
cases. Obviously, in this case, both cases will generate the
same reward. However, for the case with block sizeK̂t, the
policy that we applied after the block with sizêKt is delivered
may not be optimal, which means that the reward under the
optimal policy is no less than the reward of the policy we
used. Therefore, the total expected reward underK∗

t is less
than that under̂Kt, which contradicts the fact thatK∗

t is the
optimal action in slott.

E. Proof of Corollary 3.1

From Theorem 3.2, we haveK∗
j ≤ K̂j . Therefore, it suffices

to show thatK̂j ≤ Kt for anyj ∈ {1, ..., t}. From Proposition
3.1,Kt is in the decreasing sequence ofRt(·) whenRt(Kt) >
Rt(Kt + 1). Therefore, it follows thatK̂t ≤ Kt.

F. Proof of Theorem 3.4

WhenRt(1) > Rt(2) holds,K̂(t) = 1, due to the unimodal
property ofRt(·). Then,K∗(t) = 1 from Theorem 3.2. Since
K∗(t) is non-decreasign witht (Theorem 3.1),K∗(t′) = 1 in
the remaining slotst′ > t, i.e., the plain retransmission policy
is optimal. To show there exits a thresholdǫ∗, we expand
Rt(1) > Rt(2) according to (2), whereRt(1) = (1−ǫT )N and
Rt(2) = 2(1−ǫT+T ǫT−T ǫT−1)N . Then, the monotonicity of
ǫ∗ follows from comparingRt(1) with Rt(2) in the expanded
form. Definef(ǫ, t, N) = (1− ǫt)−21/N (1− ǫt+ tǫt− tǫt−1)
such thatf(ǫ∗(t, N), t, N) = 0. Note that f(0, t, N) =
1 − 21/N < 0 and f(1, t, N) = 0. There exists a unique
non-trivial value ofǫ′ in (0, 1) to maximizef(ǫ, t, N). For
ǫ < ǫ′, f(ǫ, t, N) is first increasing and then decreasing
back to 0. Therefore, there exists a unique non-trivial solu-
tion of f(ǫ∗(t, N), t, N) = 0 such thatf(ǫ, t, N) < 0 for
ǫ < ǫ∗(t, N) andf(ǫ, t, N) > 0 for ǫ > ǫ∗(t, N).

G. Proof of Corollary 3.2

If N2 > N1, f(ǫ, t, N2) > f(ǫ, t, N1). For anyN , f(ǫ, t, N)
increases withǫ, achieves a positive maximum and decreases
back to zero. Sincef(ǫ, t, N2) > f(ǫ, t, N1), the value
ǫ∗i (t, Ni), i = 1, 2, for which f(ǫ∗i , t, Ni) = 0 decreases from
ǫ∗1(t, N1) to ǫ∗2(t, N2). By following the similar arguments, it
follows thatǫ∗(t, N) is monotonically increasing witht.
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