
WCET-Aware Data Selection and
Allocation for Scratchpad Memory

Qing Wan Hui Wu Jingling Xue
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

{qingwan,huiw,jingling}@cse.unsw.edu.au

Abstract
In embedded systems, SPM (scratchpad memory) is an attractive
alternative to cache memory due to its lower energy consumption
and higher predictability of program execution. This paper stud-
ies the problem of placing variables of a program into an SPM
such that its WCET (worst-case execution time) is minimized. We
propose an efficient dynamic approach that comprises two novel
heuristics. The first heuristic iteratively selects a most beneficial
variable as an SPM resident candidate based on its impact on the
k longest paths of the program. The second heuristic incrementally
allocates each SPM resident candidate to the SPM based on graph
coloring and acyclic graph orientation. We have evaluated our ap-
proach by comparing with an ILP-based approach and a longest-
path-based greedy approach using the eight benchmarks selected
from Powerstone and Mälardalen WCET Benchmark suites under
three different SPM configurations. Our approach achieves up to
21% and 43% improvements in WCET reduction over the ILP-
based approach and the greedy approach, respectively.

Categories and Subject Descriptors C.3 [Real-time and embed-
ded systems]; B.3.3 [Memory Structures]: Worst-case analysis;
D.3.4 [Programming Languages]: Compilers—Optimization

General Terms Algorithms, Performance

Keywords Worst-Case Execution Time, Scratchpad Memory Al-
location, Graph Coloring, Acyclic Graph Orientation

1. Introduction
Large off-chip memory latency is a major obstacle for achieving the
high performance of modern processors. The classical solution is to
use cache memory to store code and data to reduce memory access
latency. However, cache memory introduces three major problems.
Firstly, cache memory consumes a significant amount of energy due
to its tag store and associated circuitry. Secondly, cache memory
makes it difficult to compute the WCET of a program. Thirdly, data
cache makes it hard to handle data hazards occurring on modern
RISC processors with deep pipelines. In contrast, SPM does not
have a tag store and associated circuitry as in cache memory. Thus,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES 2012 June 12–13, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1212-7. . . $10.00

it consumes less energy than cache memory and makes it much
easier to compute the WCET of a program. In addition, since SPM
is managed by the compiler, the compiler knows if each variable
access is in the SPM or the off-chip memory. Therefore, it is much
easier to compute the WCET of a program and handle data hazards.
As a result, SPM is an attractive alternative to cache memory in
embedded systems. SPM has been used in many processors and
DSPs. Examples are NVIDIA’s PhysX PPU (physics processing
unit) and the Cell jointly developed by Sony, IBM, and Toshiba.

An optimizing compiler plays a major role in making efficient
use of SPM. The compiler selects variables and code as SPM resi-
dents and inserts instructions to transfer selected data and code be-
tween off-chip memory and SPM. There are two major challenges
in SPM management. The first one is to find an optimal subset of
data and code as SPM residents. The second one is to allocate as
many SPM resident candidates to the SPM as possible. Extensive
research has been conducted to find solutions to these two major
challenges. Many SPM management approaches have been pro-
posed. All the existing approaches can be classified into two cat-
egories: static allocation [1, 6, 10, 11, 22] and dynamic allocation
[2, 3, 12–15, 20, 24, 27]. In the case of static allocation approaches,
once an SPM resident is loaded into the SPM, its space in the SPM
cannot be allocated to other SPM residents during the execution of
the program. As a result, static allocation approaches can lead to
low SPM utilization for some programs. Dynamic approaches rea-
son about the live ranges of the SPM residents. Two SPM residents
can share a section of the SPM if their live ranges do not overlap.
Therefore, better SPM utilization can be achieved.

Most of the existing approaches for SPM management aim at
minimizing either the average execution time or the average energy
consumption of a program. Thus, they are not suitable for real-time
embedded systems. In a real-time embedded system, the WCETs
of the tasks running on the system can have a major impact on the
schedulability of the entire task set. As a result, it is desirable to
minimize the WCET of each task.

Suhendra et al. [22] study the problem of selecting variables as
SPM residents such that the WCET of a task is minimized. They
have investigated three approaches, a longest-path-based greedy
approach, a branch and bound approach and an ILP-based ap-
proach. These approaches are all static without reasoning about
the live ranges of the variables considered, leading to low SPM
utilization for some programs. In addition, both the branch and
bound approach and the ILP-based approach have an exponential-
time complexity. Therefore, they can be slow for large programs
as discussed by the authors of that work. Finally, the longest-path-
based approach selects a variable with the most occurrences on the
longest path. On modern RISC processors, the compiler may hide
memory latency by scheduling other instructions to execute during

a memory access. As a result, allocating a variable with the most
occurrences into the SPM does not necessarily reduce the length of
the longest path in the program.

Deverge and Puaut [2] present a dynamic approach to data
selection and SPM allocation that aims at minimizing the WCET
of a task. Their approach iteratively solves an ILP (Integer Linear
Programming) problem to find a set of variables with the largest
impact on WCET reduction and allocates these variables to the
SPM by using a heuristic. Since the ILP problem itself is NP-
complete, this ILP-based approach can be slow for large programs
as discussed by the authors of this work.

Puaut and Pais [20] propose a static approach for selecting basic
blocks of a task as SPM residents. Their approach iteratively selects
a basic block with the most occurrences on the longest path of the
task as an SPM resident. Falk and Kleinsorge [4] introduce an ILP-
based, static approach to the problem of allocating basic blocks of a
program to SPM such that the WCET of the program is minimized.
Recently, Wu et al. [28] propose an optimal static code selection
algorithm to minimize the WCET of a program.

In the context of caches, the problem of locking code of a pro-
gram into the instruction cache such that the WCET of a program is
minimized has been studied. Falk at el. [5] present a WCET-aware
greedy approach to selecting a set of functions to be locked into the
instruction cache. Their approach iteratively computes the gain on
the WCET reduction of each function and selects the function with
the highest gain to be locked into the instruction cache. Liu et al.
[17] extend the work in [5] by using an ILP formulation to select a
function with the highest gain to be locked. Plazar et al. [19] further
extend the work in [17]. They propose a new ILP-based approach
that is able to model the intra-function worst-case execution path.

Vera et al. [25] propose an approach to locking data in the data
cache such that the worst-case memory performance (WCMP) of
a program can be estimated in a safe, tight and fast way. In or-
der to obtain predictable cache behavior, their approach locks the
cache for those parts of the code where the static analysis fails
and loads the cache with data likely to be accessed. Vera et al.
[26] propose a WCET-aware framework for locking data cache for
multitasking systems. Their framework combines cache partition-
ing and dynamic cache locking to provide worst-case performance
estimates in a safe and tight way for multitasking systems. Their
framework partitions the data cache among all the tasks to elimi-
nate intertask cache interferences and uses static cache analysis and
cache-locking mechanisms to ensure that all intratask conflicts, and
consequently, memory access times, are exactly predictable.

In this paper, we study the problem of placing data variables
(global and stack variables) of a program into an SPM to minimize
the WCET of the program. We propose an efficient polynomial-
time approach to solving this problem by employing two novel
heuristics, one for variable selection and one for SPM allocation.
Specifically, this paper makes the following contributions:

1. We introduce a new heuristic for selecting variables as SPM
resident candidates. Our heuristic iteratively selects a variable
as an SPM resident candidate that has the most impact on the k
longest paths of the program, where k is a positive integer.

2. We introduce a new heuristic for allocating selected variables to
the SPM by using graph coloring and acyclic graph orientation.

3. We have evaluated our approach by comparing with an ILP-
based approach [2] and a longest-path-based greedy approach
[22]. For the eight benchmarks selected from the Powerstone
suite [21] and the Mälardalen WCET Benchmark suite [8] un-
der three different SPM configurations, our approach achieves
up to 21% and 43% improvements in WCET reduction over the
ILP-based approach and the greedy approach, respectively.

The rest of this paper is organized as follows. Section 2 presents
our processor model and program representation. Section 3 exam-
ines a link between SPM allocation and graph coloring coupled
with acyclic graph orientation. Section 4 describes our heuristics
for variable selection and SPM allocation. Section 5 presents our
experimental results and analysis. Section 6 concludes the paper.

2. Processor Model and Program Representation
We assume that the target processor uses SPM to replace data
cache. The SPM occupies a contiguous memory space, starting at
address 0 with m bytes in total. Given a program to be executed on
the processor, our objective is to select a subset of variables of the
program and allocate them to the SPM such that the WCET of the
program is minimized. Each access (read/write) to the SPM takes
one processor cycle, and each access to the off-chip memory takes
c cycles. For illustration purposes, we consider C programs only.
However, our approach is applicable to any imperative languages.

We make use of the CFG (control flow graph) of a program in
computing its WCET. Given a program P , its CFG is a weighted
directed graph C = (V,E,W), where V = {v1, v2, · · · , vn} is
the set of the basic blocks in P , E = {(vi, vj) | vj is directly
control dependent on vi} is the set of control flow edges, and W =
{w(vi, vj) | w(vi, vj) is an edge weight on (vi, vj) denoting the
execution time of vj in the case where vj is executed immediately
after vi} labels each edge with an execution time. Throughout this
paper, we assume that all execution times are in processor cycles.

Modern RISC processors are pipelined. On a RISC processor,
the execution time of a basic block may vary due to data hazards
and branch penalty [9]. Therefore, we use an edge weight instead
of a node weight to denote the execution time of each basic block.

Let us consider an example. For the C function, foo(), given in
Listing 1, its CFG is shown in Figure 1a.

int foo (){
int a, b, c=0;
for(a=0; a<30; a++){ /* Loop1*/

if(a>15){
for(b=1; b<50; b++) /* Loop2*/

if(b>5)
c=c+a*b+10;

else
c=c+2*a*b;

}else{
for(b=10; b <=20; b++) /* Loop3*/

c=c+a*a*b+2;
}

}
return c;

}

Listing 1: An example function foo().

In order to facilitate computing the lengths of k-longest paths
needed by our variable selection heuristic, we break down the CFG
of a program into a set of weighted DAGs (directed acyclic graphs).
Each function or loop has its own weighted DAG. Given a loop or
function x of a program, x is recursively represented as a weighted
DAG D(x) = (V,E,W), where V = {vi | vi is a basic block, or
a loop immediately nested in x, or a function directly called in x},
E is a set of control flow edges, and W is a set of edge weights.
There are three types of nodes, basic block nodes, loop nodes and
function nodes. A basic block node represents a basic block in x. A
loop node denotes a loop that is immediately nested in x. A function
node denotes a function directly called in x. Here, a loop refers to
all the code of this loop, including other loops nested in it and all

v0

v2

v1

v3

v4 v5

v6
v7

v8

v9

v10

v11

5

7

724

8

15
23

1 1

1

2

1

1

7 1

9

2

(a) The weighted CFG of foo()

v0
DAG for
Loop1

v11
15

(b) DAG for foo()

v2

v1

DAG for
Loop3

DAG for
Loop2

v10
v7

9

7
8

1

1

2

1

(c) DAG for Loop1

v3

v4 v5

v6

15 23

11

(d) DAG for Loop2

v8

v9

24

(e) DAG for Loop3

Figure 1: The weighted CFG and DAGs of foo().

the functions called in it. When constructing a weighted DAG for a
loop, we ignore all the back edges in the CFG of the loop. Without
loss of generality, we assume that each weighted DAG has only one
source node and only one sink node. The weighted DAGs for the
function foo() given in Figure 1 are shown in Figures 1b – 1e.

Given a program P , its call graph, denoted CallGraph(P),
is defined in the standard manner. Its nodes represent the set of
its functions and its directed edges represent calling relationships
between functions such that each edge (f, g) indicates that f calls
g directly. We assume that the program has no recursive calls. As a
result, the call graph is a DAG.

Given a program P , its interference graph is an undirected
graph G = (V,E), where V is the set of all the variables (or live
ranges) and E = {(vi, vj) | the live ranges of vi and vj overlap}.
In a C program, if two variables have disjoint live ranges, they can
be allocated to two overlapping areas in the SPM. For example, if
any two local variables belong to two different functions that are
not on the same path of the call graph, they can share a section of
the SPM. As discussed later, our approach will start by perform-

ing live-range splitting [13] to ensure that our overall solution is
dynamic.

Given an interference graph G = (V,E), a legal vertex coloring
ω of G is a function ω : V → C such that for each (vi, vj) ∈ E,
ω(vi) 6= ω(vj) holds, where C is a set of colors.

3. SPM Allocation and Acyclic Graph Orientation
There are two main problems in WCET-aware SPM management
for a program, variable selection and SPM allocation. The former
is to select a set of variables as SPM resident candidates such that
the WCET of the program is minimized. The latter is to find an
optimal allocation scheme for allocating all the variables selected
to the SPM.

In order to maximize SPM utilization, we need to place as
many variables as possible into the SPM. The presence of inter-
ference constraints between variables complicates the SPM alloca-
tion problem. Graph coloring has been used as a central paradigm
for register allocation in modern compilers. Recently, graph color-
ing has also been adopted in SPM allocation [13–15, 29]. Building
on prior work, our WCET-aware approach exploits a link between
SPM allocation and graph coloring coupled with acyclic graph ori-
entation to reduce the WCET of a program.

Given an undirected graph, we obtain an acyclic orientation
(graph) of the graph if we assign a direction to each of its edges
such that the resulting directed graph has no cycles, The following
theorem describes the relationship between an acyclic oriented
interference graph and the SPM allocation problem.

Theorem 1. Consider a program with a set V of variables, an
acyclic oriented graph O of the interference graph G of the pro-
gram, and an SPM of size m. If the longest path length of O is not
greater than m, then all the variables can be allocated to the SPM.

Proof. We construct an SPM allocation scheme as follows:

1. For each source node vi, start addr(vi) of vi is 0.
2. For each non-source node vi, its start addr(vi) is recursively

defined as max{start addr(vj) + size(vj) | vj is an imme-
diate predecessor of vi in O}.

Clearly, the size of the SPM used by the above allocation scheme is
equal to the longest path length ofO. Moreover, all the interference
constraints are satisfied in the above allocation scheme.

The SPM allocation problem, in essence, is to find an acyclic
orientation of the interference graph such that its longest path
length is minimized. In the special case where the sizes of all
the variables are equal, the problem of finding an acyclic oriented
graph with the minimum longest path length is equivalent to the
problem of finding the minimum number of colors required to
color the interference graph. Since the graph coloring problem is
NP-complete for general graphs, the SPM allocation problem is
also NP-complete. Therefore, we use a graph coloring heuristic to
construct an acyclic oriented graph for SPM allocation.

Definition 1. Given a legal vertex coloring ω of an interference
graph G = (V,E), the ω-oriented graph of G is a directed graph
G′(G, ω) = (V ′, E′), where V ′ = V and E′ = {(vi, vj) |
(vi, vj) ∈ E and ω(vi) < ω(vj)}.

In this definition, the ω-oriented graph G′ of G is clearly an
acyclic orientation of G. For an acyclic oriented graph, we have
defined an SPM allocation scheme in the proof of Theorem 1. For
the ω-oriented graph G′, this is made more explicit in Algorithm 1.

Algorithm 1: SPM-Coloring(V,G′)
Input: a set V of n variables and an ω-oriented graph G′
Output: An SPM allocation scheme if true is returned

1 Find the longest path Pmax of in G′;
2 if Pmax’s length > m then
3 return false;

4 else
5 foreach variable vi(i = 1, 2, · · · , n) in topological order

of all the nodes in G′ do
6 if vi is a source node then
7 start addr(vi) = 0;

8 else
9 start addr(vi) =

max{start addr(vj) + size(vj) | vj is an
immediate predecessor of vi in G′ };

10 return true;

4. Our WCET-Aware Approach
Our WCET-aware approach iteratively selects a most beneficial
variable of a program as an SPM resident candidate and allocates
it to the SPM. For variable selection, the most beneficial variable
is the one with the most impact on the k longest paths in the
program. In order to compute the impact of each variable on the
k longest paths, our approach needs to construct a set of weighted
DAGs as defined in Section 2 and compute the lengths of the k
longest paths in the program. For SPM allocation, our approach
uses an incremental graph coloring heuristic coupled with acyclic
graph orientation. Finally, we will call SPM-Coloring given in
Algorithm 1 to produce an allocation scheme for the program.

Section 4.1 gives an algorithm for constructing the weighted
DAGs for a program. Section 4.2 gives an algorithm for computing
the lengths of the k longest paths in a program. Section 4.3 is
concerned with variable selection and SPM allocation. Section 4.4
shows that our approach has a polynomial-time complexity.

4.1 Constructing Weighted DAGs
A tree representation for a loop nest is introduced below.

while(a+b>c) /* L1 */
{

if(x>y)
for(i=0; i <=100; i++) /* L2 */

{...;}
else

for(i=0; i <=200; i++) /* L3 */
{...;}

for(i=0; i <=100; i++) /* L4 */
{

if(a>b)
for(i=0; i <=100; i++) /* L5 */

{...;}
else

for(i=0; i <=200; i++) /* L6 */
{...;}

}
}

Listing 2: A loop nest.

Definition 2. Given a loop nest LN , its loop nest tree is defined
as T (LN) = (V,E), where V = {Li | Li is a loop in LN} and

E = {(Li, Lj) | Li, Lj ∈ V and Lj is immediately nested within
Li }.

Consider a loop nest shown in Listing 2, with six loops num-
bered L1 – L6. Its loop nest tree is shown in Figure 2.

L1

L2

L3

L4

L5 L6

Figure 2: A loop nest tree.

According to Algorithm 2, we construct the weighted DAGs for
a program by starting with a sink function and working towards
the source functions in its call graph. For each loop nest contained
in a function, we process its loops inside out, starting from the
innermost ones and working towards the outermost loop. Applying
this algorithm to Listing 1 yields Figure 1.

Algorithm 2: Weighted-DAGs-Constructor(C)
Input: The weighted CFG C of a program P
Output: A weighted DAG D(main) for P that is defined in

terms of the weighted DAGs for its functions/loops
1 Construct the call graph, CallGraph(P), of P ;
2 foreach fi(i = 1, 2, · · · ,m) in reverse topological order of

all the function nodes in CallGraph(P) do
3 foreach loop nest LNj of fi do
4 Construct the loop nest tree T (LNj);
5 foreach node Ls of T (LNj) in reverse topological

order of all the loop nodes in T (LNj) do
6 Construct D(Ls), i.e., the weighted DAG of Ls

from C with the back edge of Ls removed;
7 Shrink the subgraph of Ls in C into one loop

node;

8 Construct D(fi), i.e., the weighted DAG of fi;
9 Shrink the subgraph of fi in C into one function node;

10 return D(main);

It is assumed that the main function of a program is named
main. Therefore, D(main) represents the weighted DAG of the
main function, i.e., the program itself, which is recursively defined
in terms of the other weighted DAGs in the program.

4.2 Computing the Lengths of k Longest Paths
Computing the lengths of the k longest paths in a program is a key
part of our heuristic for selecting a most beneficial variable as an
SPM resident candidate. This is done according to Algorithm 3.
For each node vi of a weighted DAG D(x), we introduce a vector
vi[1 : k] of length k to store the lengths of the k longest paths
from the source node of D(main), i.e., the weighted DAG of the
program to vi inD(x) in non-increasing order. In the case when vi
is a loop node, N(vi) denotes its worst-case number of iterations.
We approximate the lengths of its k longest paths by multiplying
the lengths of the k longest paths of its one iteration with N(vi).

Algorithm 3: Find-k-Longest-Paths-Lengths(D(x))
Input: D(x): The weighted DAG D(x) of a function/loop x
Output: The length vector containing the k longest paths of x

1 foreach node vi(i = 1, 2, · · · ,m) in topological order of all
the nodes in D(x) do

2 if vi is a basic block then
3 if vi is the source node of D(x) then
4 A = {vs | vs is an immediate predecessor of vi

in the weighted DAG containing x as a node};
5 else
6 A = {vs | vs is an immediate predecessor of vi

in D(x)};
7 foreach vs(s = 1, · · · , p) ∈ A do
8 for r = 1 to k do
9 tmp[s][r] = vs[r] + w(vs, vi);

10 Let x1, x2, · · · , xk be the k largest, in
non-increasing order, among all the p× k numbers
stored in the 2D matrix tmp;

11 vi[1 : k] = (x1, x2, · · · , xk);

12 else
13 if vi is a function node then
14 vi[1 : k] =

Find-k-Longest-Paths-Lengths(D(vi));
15 else

// vi is a loop node

16 vi[1 : k] = N(vi)∗Find-k-Longest-Paths-
Lengths(D(vi));

17 Let vt be the sink node of D(x);
18 return vt[1 : k];

A program can contain some infeasible paths, i.e., the paths that
are never executed. This paper is not concerned with path feasibility
analysis, which is a difficult problem in itself. Several approaches
[7, 23] have been proposed to find infeasible paths of a program.
We can use existing approaches to remove infeasible paths.

In order to compute the lengths of the k longest paths of a pro-
gram, we invoke Find-k-Longest-Paths-Lengths(D(main)) given
in Algorithm 3. When computing the lengths of the k longest paths,
this algorithm traverses each node of a weighted DAG in topolog-
ical order. That is, the lengths of the k longest paths to a node is
computed only after the lengths of the k-longest paths to all its
immediate predecessors have been computed. For a loop or func-
tion node, a recursive call is made to compute the lengths of the
k-longest paths to each node in its weighted DAG.

4.3 Variable Selection and Allocation
Given a program and an SPM, let S be a set of variables such that
if all the variables in S are allocated to the SPM, the WCET of
the program under the SPM size constraint is minimized. We can
partition S into a set of disjoint subsets S1, S2, · · · , Sr such that
for each Si, the longest path of the program will no longer be the
longest after allocating the variables in Si to the SPM.

Therefore, an optimal set of SPM residents can be found by re-
peatedly selecting variables from the longest path of the program.
However, there can be many variables on the longest path. Which
variables should be selected? The heuristic introduced in [23] se-
lects the variable with the most occurrences on the longest path.
However, the best variable may not be selected for two main rea-

sons. Firstly, an optimizing compiler can hide memory latency by
scheduling other instructions to execute during a memory access.
Secondly, when selecting a variable as an SPM resident candidate,
we need to check not only its impact on the longest path but also its
impact on other paths whose lengths are close to that of the longest
path. Our variable selection heuristic is inspired by a desire to im-
prove this existing heuristic by considering not only the longest
path but also those potential ones in subsequent iterations.

Our approach consists of two procedures: selecting a variable
with the largest benefit and allocating a variable to the SPM. For
each variable vi, we define its benefit vector benefit(vi) as:

benefit(vi) =
l − l(vi)

size(vi)
(1)

where l is a vector of the lengths, in non-increasing order, of the
k longest paths of the program without allocating vi to the SPM,
l(vi) is a vector of the lengths, in non-increasing order, of the k
longest paths of the program after allocating vi to the SPM, and
size(vi) is the size of vi. Intuitively, the benefit vector of a variable
vi is the normalized contribution of vi on the k longest paths of the
program. Given two benefit vectors benefit(x) and benefit(y),
their associated benefits are compared lexicographically. The larger
one is preferred as it leads to a larger WCET reduction.

Our approach for selecting and allocating variables, given in
Algorithm 4, iteratively selects a variable with the maximum non-
negative benefit vector among all the variables on the current
longest path and checks to see if it can be allocated to the SPM. If
a variable can be allocated to the SPM, it is included in the set S of
SPM residents and will not be considered again. If a variable has
been selected as an SPM resident candidate but cannot be allocated
to the SPM, it will be ignored now and also in subsequent iterations.
This process is repeated until all the variables have been tested. Fi-
nally, SPM-Coloring given in Algorithm 1 is called to produce an
SPM allocation scheme for all the SPM residents found.

Once a variable vi is selected as a potential SPM resident, SPM-
Allocator given in Algorithm 5 is called to check to see if it can be
allocated to SPM. First of all, our SPM allocator tries to assign the
‘best’ color to vi such that all interference constraints are satisfied.
If such a color does not exist, our SPM allocator will assign a new
color to vi. After vi has been assigned a color, our allocator adds vi
and all the interference edges between vi and other SPM residents
to the ω-oriented graph G′ and computes the longest path Pmax

of the ω-oriented graph. If the length of Pmax is greater than the
SPM size m, vi cannot be allocated to the SPM. In this case, all
the changes to the ω-oriented graph G′ are undone. Otherwise, vi
is selected as an SPM resident and the edge weights in the weighted
DAGs of the program are updated.

Consider the interference graph shown in Figure 3, where the
first element and the second element of each tuple are the benefit
vector and the size of the variable, respectively. For simplicity, we
assume that k is equal to 1, i.e., each benefit vector has only one
element. Assume that the size of the SPM is 16 bytes. Our variable
selector will pick variables d, x, e, y, a, z, b, f , and finally, c in
sequence, and assign a color to each variable. The coloring result
is shown in Figure 4, where the colors of d, x, e and y are 0, the
colors of a, z, b and f are 1, and the color of c is 2. When assigning
a color to a variable, our SPM allocator constructs the ω-oriented
graph incrementally. The final ω-oriented graph is shown in Figure
5. The SPM allocation scheme constructed by our approach using
Algorithm 1, based on the final ω-oriented graph, is shown in
Figure 6. As we can see, our ω-SPM allocator finds an optimal
allocation scheme for this interference graph using only 14 bytes
of SPM space.

Algorithm 4: Variable-Selection-Allocation(P,m)

Input: A whole program P and an SPM of size m
Output: A set of variables allocated to the SPM

1 Construct the weighted CFG C of P ;
2 D(main) = Weighted-DAGs-Constructor(C);
3 Construct the interference graph G of P ;
4 V = all the variables in P ;
5 S = set of variables already colored, initially ∅;
6 Create an empty ω-oriented graph G′(G, ω) (Definition 1),

where ω is a legal vertex coloring built in Algorithm 5;
7 max color = 0;
8 while V 6= ∅ do
9 R = V ∩ {v | v is a variable on the longest path};

10 if R = ∅ then
// The longest path cannot be reduced

11 break ;

12 l = Find-k-Longest-Paths-Lengths(D(main));
13 foreach vi ∈ R do
14 Assume that vi can be allocated to the SPM;
15 Recalculate the edge weights in the weighted DAGs;
16 l(vi) = Find-k-Longest-Paths-Lengths(D(main));
17 benefit(vi) = (l − l(vi))/size(vi);
18 Undo the changes to the weighted DAGs;

19 alloc = false ;
20 while alloc = false ∧ R 6= ∅ do
21 Select a variable vj ∈ R with the maximum

non-negative benefit vector, i.e., benefit(vj) > 0;
22 V = V − {vj};
23 R = R− {vj};
24 if SPM-Allocator(vj) = true then

// vj has been allocated to the SPM

25 S = S ∪ {vj};
26 alloc = true;

// Allocate an address to each SPM resident

27 SPM-Coloring(S,G′);

x(6,4) y(5,2) z(2.5,4)

a(3,1) b(2,4)
c(1,2)

d(8,4)

e(6,8)

f (2,4)

Figure 3: An interference graph.

4.4 Time Complexity Analysis
In this section, we analyze the time complexity of our WCET-aware
approach. Modern compilers hide memory latency by scheduling
some ready instructions to execute during a memory access. If a
variable is allocated to the SPM, its latency will change to one pro-
cessor cycle. For VLIW (very long instruction word) processors,
the compiler needs to compute a schedule for each basic block and

Algorithm 5: SPM-Allocator(vi)
Input: A variable vi to be allocated to the SPM
Output: A color assigned to vi if vi is allocated to SPM and

a boolean value indicating success or failure
// All variables used but not explicitly

defined here are defined in Algorithm 4

1 if S = ∅ then
// First variable to go into the SPM

2 if size(vi) ≤ m then
// Assign color 0 to vi

3 ω(vi) = 0;

4 else
5 return false;

6 else
7 C = {0, 1, · · · ,max color};

// C is the set of the colors used

8 B = C − {r | r is a color assigned to an adjacent
variable vj(vj ∈ S) of vi in the interference graph G};

9 if B = ∅ then
// Select a new color that is different

from any color in C
10 max color = max color + 1;
11 ω(vi) = max color;

12 else
13 Find a variable vj ∈ S with the maximum size

among all the variables with a color in B;
14 ω(vi) = ω(vj);

15 Add a new node vi to G′;
16 foreach edge (vj , vi)(vj ∈ S) in the interference graph G do
17 if ω(vi) < ω(vj) then
18 Add the directed edge (vi, vj) to G′;
19 else
20 Add the directed edge (vj , vi) to G′;

21 Find the longest path Pmax of G′;
22 if Pmax’s length > m then

// vi cannot be allocated to the SPM

23 Delete vi and all edges incident on vi from G′;
24 return false ;

25 else
26 Recalculate the edge weights in the weighted DAGs;
27 return true;

each innermost loop. If a variable is allocated to the SPM, the com-
piler needs to recompute a schedule for each of the basic blocks
containing this variable and all the other basic affected by this vari-
able. The problem of scheduling a basic block on a RISC processor
such that its execution time is minimized is NP-complete [18]. The
compiler typically uses a heuristic to compute a schedule for a basic
block. Since instruction scheduling is dependent on the target pro-
cessor model, we will ignore the time complexity of computing a
schedule and the execution time for each basic block in the follow-
ing time complexity analysis. The time complexity of our approach
is dominated by the following parts:

1. Constructing the weighted CFG. Since the compiler has already
generated the CFG, this part takes at most O(e) as we ignore

x(6,4) y(5,2) z(2.5,4)

a(3,1) b(2,4)
c(1,2)

d(8,4)

e(6,8)

f (2,4)

Figure 4: Coloring results.

x(6,4) y(5,2) z(2.5,4)

a(3,1) b(2,4)
c(1,2)

d(8,4)

e(6,8)

f (2,4)

Figure 5: ω-oriented graph.

e z c
d b f

x a

y

0 2 4 6 8 10 12 14 16

Figure 6: ω-oriented graph-based SPM allocation result.

the time complexity for computing schedules for basic blocks,
where e is the number of edges in the CFG.

2. Constructing the interference graph. We can reuse the interfer-
ence graph constructed by the compiler. Therefore, the time
consumed by this part is not included in our approach.

3. Computing all the weighted DAGs. All the weighted DAGs are
constructed from the weighted CFG. So this part takes O(e).

4. Selecting a most beneficial variable. This part takes O(e ∗ n)
time, where n is the number of variables.

5. Allocating a variable to the SPM. This part takes O(e′) time,
where e′ is the number of edges in the ω-oriented graph. Since
there are at most n SPM residents, e′ is at most O(n2). As a
result, this part takes at most O(n2) time.

Since at most n variables can be selected and allocated to
the SPM, the total time for selecting and allocating variables is
O(e∗n2) if we ignore the time complexity for computing schedules
for basic blocks. As a result, the time complexity of our approach is
O(e ∗ n2). Even if we consider the time complexity for computing
the schedules of basic blocks, it is easy to see that our approach is
still polynomial assuming that the compiler uses a polynomial time
algorithm to compute a schedule for each basic block.

5. Evaluation
In this section, we present and analyze the experimental results of
our WCET-aware variable selection and allocation approach.

5.1 Experiment Setup
We have implemented our approach in order to evaluate its perfor-
mance. The target architecture is an out-of-order, pipelined proces-
sor, with an instruction cache and perfect branch prediction. The
hit and miss latencies for the instruction cache are 1 and 10 cycles,
respectively. The target processor uses SPM to replace data cache.
The latencies of SPM and off-chip memory accesses are 1 cycle and
10 cycles, respectively. We have used the 10-cycle off-chip mem-
ory latency to facilitate comparing with the two prior approaches
[2, 22], where the latency used is 10 cycles [22] and 12 cycles [2].

We have selected eight benchmarks from two benchmark suites:
Powerstone [21] and Mälardalen WCET Benchmarks [8]. Some
statistics for the benchmarks are given in Table 1. As shown, both
scalars and arrays are considered in SPM allocation. For all the
benchmarks, we apply the live range splitting techniques proposed
in [13] first so that better SPM utilization can be achieved.

The benchmarks are compiled using gcc 2.7.2.3 targeted for
SimpleScalar. We have modified Chronos [16] 4.0 to analyze a
binary program, calculate the execution times of its basic blocks,
and construct its whole-program CFG. For comparison reasons,
we have also implemented the longest-path-based greedy approach
proposed in [22] and the ILP-based approach proposed in [2]. The
former approach is static and thus assumes essentially that all the
variables have the same live ranges. The latter approach is dynamic
with live-range splitting being considered in its ILP formulation.

A program may have some infeasible paths. By default, the path
feasibility analysis that comes with Chronos 4.0 is turned on so that
some infeasible paths are eliminated for all approaches evaluated.

Our experiments are performed under three different SPM con-
figurations with three different SPM sizes. The three SPM sizes we
have selected are 5%, 10% and 20% of the total data size of each
benchmark. For each SPM size, we evaluate the performance of
our approach and two prior approaches. For our k longest paths ap-
proach, we have selected different values for k, ranging from 1 to
6. Our experimental results show that the performance of our ap-
proach improves significantly when k increases from 1 to 3. How-
ever, the improvements become less pronounced when k increases
further. The reason is that in our selected benchmarks, the lengths
of the 4th to 6th longest paths are almost the same as that of the 3rd
longest path. They are redundant according to the benefit vector
metric used. Therefore, in our benchmarks, the best performance
results are achieved when k = 3, making our approach rather effi-
cient.

5.2 Results
The experimental results are plotted in Figure 7, where k is set to
3. The horizontal axis in each figure is the percentage of SPM size
over the total data size, and the vertical axis represents the percent-
age of WCET reduction in terms of execution cycles over the one
with no data allocated to SPM. There are three approaches evalu-
ated. For every SPM size, there are three bars, each representing the
percentage of WCET reduction of the corresponding approach. To
show the efficiency of our approach, we have also recorded the ex-
ecution times (in seconds) of the three approaches under 10% SPM
configuration, which are included in Table 1.

5.3 Analysis
Examining our results, we make the following observations:

1. In general, as shown in Figure 7, our approach outperforms
the other two approaches across all the eight benchmarks un-

Greedy ILP k Longest Paths

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

ludcmp

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

qurt

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

minver

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

engine

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

pocsag

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

jpeg

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

statemate

5% 10% 20%
0

15

30

45

60

R
ed

uc
ed

W
C

E
T

E
st

.(
%

)

SPM Size

nsichneu

Figure 7: Comparing three approaches in WCET reduction for benchmarks under three SPM configurations.

Benchmark Lines No. of Data size Arrays Scalars Running Time (secs)
Description

of Code Basic Blocks (Bytes) (Bytes) (Bytes) Greedy ILP k Longest Paths

ludcmp 147 45 21680 21600 80 1.2 8.5 1.6 LU decomposition
qurt 166 91 148 56 92 3.7 20.8 5.3 Quadratic root computation
minver 201 82 2604 2432 172 3.1 18.4 4.2 Matrix inversion
engine 289 56 478 370 108 2.1 35.7 2.8 Engine control
pocsag 521 203 1216 1038 178 7.2 52.6 9.6 Communication protocol
jpeg 529 109 77561 77273 288 4.3 41.4 6.3 JPEG decode
statemate 1198 342 227 163 64 11.9 125.6 13.8 Car window lift control
nsichneu 4253 751 1588 56 1532 17.5 246.3 19.7 Simulation for an extended Petri Net

Table 1: Benchmark statistics and the results under the 10% SPM configuration.

der all the three SPM configurations. In WCET reduction, our
approach enhances performance by up to 21% (for pocsag
under 20% SPM) over the ILP-based dynamic allocation ap-
proach, and up to 43% (for statemate under 20% SPM) over
the longest-path-based greedy approach. On average, under the
20% SPM configuration, our approach outperforms the ILP-
based approach and greedy approach by 12% and 26%, respec-
tively.

2. The performance of our approach increases as the SPM size
increases. For all benchmarks, our k longest-paths-based ap-
proach achieves only small improvements over the other two
approaches under the 5% SPM configuration. The reason is
that the SPM size is too small, and only the most beneficial
data variables on the longest path can be allocated to the SPM.
When the SPM size increases to 10%, the improvements from
our approach become more noticeable. Under the 20% SPM
configuration, our approach achieves the best improvements.

3. Under the 20% SPM configuration, for statemate, jpeg,
pocsag, nsichneu, engine and qurt, our approach shows
significant improvements over the other two approaches. These
benchmarks have multiple long execution paths with balanced
branches. The lengths of 3 longest paths are close, thereby fa-
voring our k longest-paths-based approach.

4. For ludcmp and minver, our approach works slightly better
than the ILP-based approach under every SPM configuration.
The reason is that data variables in these two benchmarks are
dominated by a few very large arrays. Even if we increase the
SPM size to 20%, they still cannot fit in the SPM. So we can
only select other variables as SPM residents.

5. Our approach is much faster than the ILP-based approach. Ta-
ble 1 compares the execution times of the three approaches for
all the benchmarks under the 10% SPM configuration. As we
can see, our approach runs slightly more slowly than the greedy
approach but a lot more efficiently than the ILP-based approach.

From the experimental results we can conclude that our ap-
proach is more effective for programs with more balanced long
paths, particularly when mapped to relatively larger SPMs. Even
if the available SPM size is relatively small or the program is dom-
inated by one single long path, our algorithm does not perform
worse than the other two approaches.

There are two reasons why our approach performs better than
the ILP-based approach proposed in [2]. The first reason is that
our variable selection heuristic considers not only the longest path,
but also the other paths whose lengths are close to that of the
longest path. One of these other paths may become the longest
path as the analysis proceeds. In contrast, the ILP-based approach
only considers the longest path. The second reason is that our SPM

allocation heuristic relies on both graph coloring and acyclic graph
orientation, while the ILP-based approach uses a simple first-fit-
based SPM allocation technique.

6. Conclusion
We have studied the problem of selecting variables of a program as
SPM residents to minimize the WCET of the program. We have
proposed an efficient, k-longest-paths-based dynamic approach.
Our approach consists of two novel heuristics, a heuristic for it-
eratively selecting a most beneficial variable as an SPM resident
candidate and a heuristic for incrementally allocating the most ben-
eficial variable to the SPM. The benefit of each variable is its con-
tribution to the path length reduction of the k longest paths of the
program. Our SPM allocation heuristic is based on an efficient
graph coloring technique coupled with acyclic graph orientation.
We have also evaluated our approach by comparing with an ILP-
based approach and a longest-path-based greedy approach using
the eight benchmarks selected from Powerstone and Mälardalen
WCET Benchmark suites under three different SPM configura-
tions. Our approach achieves up to 21% and 43% improvements
in WCET reduction over the ILP-based approach and the greedy
approach, respectively.

Our approach can be extended in three directions. Firstly,
WCET-aware live range splitting can be employed to further reduce
the WCET of a program. Different live range splitting techniques
have been proposed in the previous approaches to the register and
SPM allocation problems. These techniques aim at minimizing the
average execution time of a program. The challenge in WCET-
aware live range splitting is to find an optimal set of live ranges
to split in order to minimize the WCET of a program. Secondly,
allocating heap data into the SPM is another challenging prob-
lem. Accesses to heap data are usually performed via pointers. The
value of a pointer dynamically changes, making it difficult for the
compiler to manage heap accesses in the SPM. Finally, a typical
real-time embedded system consists of a set of tasks with timing
constraints. All the tasks executed on a processor need to share
the SPM of the processor. The challenging problem is to optimally
partition the SPM among a set of tasks to find a feasible schedule
whenever such a feasible schedule exists.

7. Acknowledgement
Thanks to the reviewers for their comments on the work. This
research is supported by the Australian Research Council (ARC)
grants, DP0881330 and DP110104628.

References
[1] ANGIOLINI, F., MENICHELLI, F., FERRERO, A., BENINI, L., AND

OLIVIERI, M. A post-compiler approach to scratchpad mapping

of code. In Proceedings of the 2004 International Cconference on
Compilers, Architecture and Synthesis for Embedded Systems (2004),
pp. 259–267.

[2] DEVERGE, J.-F., AND PUAUT, I. WCET-directed dynamic scratch-
pad memory allocation of data. In Proceedings of the 19th Euromicro
Conference on Real-Time Systems (2007), pp. 179–190.

[3] EGGER, B., LEE, J., AND SHIN, H. Dynamic scratchpad memory
management for code in portable systems with an MMU. ACM
Transactions on Embedded Computing Systems 7, 2 (2008), 11:1–
11:38.

[4] FALK, H., AND KLEINSORGE, J. C. Optimal static WCET-aware
scratchpad allocation of program code. In Proceedings of the 46th
Annual Design Automation Conference (2009), pp. 732–737.

[5] FALK, H., PLAZAR, S., AND THEILING, H. Compile-time decided
instruction cache locking using worst-case execution paths. In Pro-
ceedings of the 5th IEEE/ACM International Conference on Hard-
ware/Software Codesign and System Synthesis (2007), pp. 143–148.

[6] FRANCESCO, P., MARCHAL, P., ATIENZA, D., BENINI, L.,
CATTHOOR, F., AND MENDIAS, J. M. An integrated hardware/soft-
ware approach for run-time scratchpad management. In Proceedings
of the 41st annual Design Automation Conference (2004), pp. 238–
243.

[7] GOLDBERG, A., WANG, T., AND ZIMMERMANN, D. Applications
of feasible path analysis to program testing. In Proceedings of the
1994 ACM SIGSOFT International Symposium on Software Testing
and Analysis (1994), pp. 80–94.

[8] GUSTAFSSON, J., BETTS, A., ERMEDAHL, A., AND LISPER, B. The
Mälardalen WCET benchmarks – past, present and future. In Pro-
ceedings of the 10th International Workshop on Worst-Case Execution
Time Analysis (2010), pp. 137–147.

[9] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, 2007.

[10] JANAPSATYA, A., IGNJATOVIC, A., AND PARAMESWARAN, S. A
novel instruction scratchpad memory optimization method based on
concomitance metric. In Proceedings of the 2006 Asia and South
Pacific Design Automation Conference (2006), pp. 612–617.

[11] JANAPSATYA, A., PARAMESWARAN, S., AND IGNJATOVIC, A.
Hardware/software managed scratchpad memory for embedded sys-
tem. In Proceedings of the 2004 IEEE/ACM International Conference
on Computer-Aided Design (2004), pp. 370–377.

[12] KANDEMIR, M. T., RAMANUJAM, J., IRWIN, M. J., VIJAYKRISH-
NAN, N., KADAYIF, I., AND PARIKH, A. Dynamic management of
scratch-pad memory space. In Proceedings of the 38th annual Design
Automation Conference (2001), pp. 690–695.

[13] LI, L., FENG, H., AND XUE, J. Compiler-directed scratchpad mem-
ory management via graph coloring. ACM Transactions on Architec-
ture and Code Optimization 6, 3 (2009), 9:1–9:17.

[14] LI, L., NGUYEN, Q. H., AND XUE, J. Scratchpad allocation for data
aggregates in superperfect graphs. In Proceedings of the 2007 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (2007), pp. 207–26.

[15] LI, L., XUE, J., AND KNOOP, J. Scratchpad memory allocation for
data aggregates via interval coloring in superperfect graphs. ACM

Transactions on Embedded Computing Systems 10, 2 (2011), 28:1–
28:42.

[16] LI, X., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. Chronos:
A timing analyzer for embedded software. Science of Computer
Programming 69, 1-3 (2007), 56–67.

[17] LIU, T., LI, M., AND XUE, C. J. Minimizing WCET for real-time
embedded systems via static instruction cache locking. In Proceedings
of the 15th IEEE Symposium on Real-Time and Embedded Technology
and Applications (2009), pp. 35–44.

[18] PALEM, K. V., AND SIMONS, B. B. Scheduling time-critical in-
structions on risc machines. ACM Transactions on Programming Lan-
guages and Systems 15, 4 (1993), 632–658.

[19] PLAZAR, S., FALK, H., KLEINSORGE, J. C., AND MARWEDEL, P.
WCET-aware static locking of instruction caches. In Proceedings of
the International Symposium on Code Generation and Optimization
(2012), pp. 44–52.

[20] PUAUT, I., AND PAIS, C. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. In Proceedings
of the conference on Design, Automation and Test in Europe (2007),
pp. 1484–1489.

[21] SCOTT, J., LEE, L. H., ARENDS, J., AND MOYER, B. Designing
the low-power M*CORE architecture. In Proceedings of IEEE Power
Driven Micro Architecture Workshop (1998), pp. 145–150.

[22] SUHENDRA, V., MITRA, T., ROYCHOUDHURY, A., AND CHEN, T.
WCET centric data allocation to scratchpad memory. In Proceedings
of the 26th IEEE International Real-Time Systems Symposium (2005),
pp. 223–232.

[23] SUHENDRA, V., MITRA, T., ROYCHOUDHURY, A., AND CHEN, T.
Efficient detection and exploitation of infeasible paths for software
timing analysis. In Proceedings of the 43rd annual Design Automation
Conference (2006), pp. 358–363.

[24] UDAYAKUMARAN, S., AND BARUA, R. Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems. In Pro-
ceedings of the 2003 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (2003), pp. 276–286.

[25] VERA, X., LISPER, B., AND XUE, J. Data cache locking for higher
program predictability. In Proceedings of the 2003 ACM SIGMET-
RICS International Conference on Measurement and Modeling of
Computer Systems (2003), pp. 272–282.

[26] VERA, X., LISPER, B., AND XUE, J. Data cache locking for tight
timing calculations. ACM Transactions on Embedded Computing
Systems 7, 1 (2007), 4:1–4:38.

[27] VERMA, M., AND MARWEDEL, P. Overlay techniques for scratchpad
memories in low power embedded processors. IEEE Transactions on
Very Large Scale Integration Systems 14, 8 (2006), 802–815.

[28] WU, H., XUE, J., AND PARAMESWARAN, S. Optimal WCET-aware
code selection for scratchpad memory. In Proceedings of the 10th
ACM International Conference on Embedded Software (2010), pp. 59–
68.

[29] YANG, X., WANG, L., XUE, J., DENG, Y., AND ZHANG, Y. Com-
parability graph coloring for optimizing utilization of stream regis-
ter files in stream processors. In Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming (2009), pp. 111–120.

