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Abstract A certificate for the k connectivity of a graph G = (V, E) is a subset E’ of E such that (V, E’) is

k connected iff G is k connected. Let n = IV[ and m = IE1. A certificate is called sparse if it has size O(kn).

We present a distributed algorithm for computing sparse certificate fork connectivity whose time complexity

is O(k(D + n0614 )) where D is the diameter of the network. A new algorithm for identifying biconnected

components is also presented. This algorithm is significantly simpler than many existing algorithms and

can be implemented in distributed environment to run iu O(D + no “614) time. Both algorithms improve on

the previous best known time bounds. Our main focus in this paper is the time complexity. However, no

more than a polynomial number of messages, each of size O(log n), are generated by the algorithm.

1 Introduction

Connectivity is an important property of graphs

with many applications in computer science. We

study the distributed time complexity of ques-

tions pertaining to vertex and edge connectivity of

graphs. A connected graph is said to be k-vertex

(resp. k-edge) connected if it has at least (k+ 1) ver-

tices (resp. edges), and the deletion of any (k – 1)

vertices (resp. edges) leaves the graph connected.

The vertex connectivity when k = 2 is also known

as biconnectivity. Biconnected components or blocks

are equivalence classes induced on the edge set by

relating two edges el, ez if and only if there exists

a simple cycle cent aining e 1 and e2. The edge and

vertex connectivity determine respectively the num-

ber of link and node failures that can be tolerated
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by a distributed network.

A certificate for the k connectivity of a graph

G = (V, E) is a subset E’ of E such that the sub-

graph (V, E’) is k connected if (and only if) G is

k connected. The size of a certificate is IE’1. Let

n and m denote {VI and \El. There is a trivial

lower bound of kn/2 on the size of a certificate for

k connectivity because the degree of every vertex

in a k connected graph is at least k. An example

of a certificate for the l-connectivity of a connected

graph G is a spanning tree of G. Moreover, this is

a minimum-size certificate. However, for k > 1, the

problem of finding minimum-size certificates for k

connectivity y is NP-complete, see [GJ 79]. Therefore

certificates whose size is within a constant factor of

minimum are of interest. Call a certificate for k

connectivity sparse if it has size O(kn).

An area of research interest in distributed com-

puting is to design fault tolerant protocols [Ha 87],

[IR 88]. To this end, sparse certificates are useful

in serving as a reliable means of doing a message-

efficient broadcast on a distributed network. They

are preferable to a spanning tree because the lat-

ter can withstand no failures. Efficient sequen-

tial, parallel and distributed algorithms for comput-

ing sparse certificates are given by [CKT 93] (see
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also [NI 90] for a sequential algorithm). Their dis-

tributed algorithm is rather simple: Find a breadth-

first search (BFS) spanning tree I?l in G with an

arbitrary vertex as the root. Delete the edges of 1’1

from G and denote the resulting graph by G – PI.

Find another BFS spanning forest F2 in G – F1,

again rooting each tree at an arbitrary vertex in

each component. Repeat this process k times. It

is shown in [CKT 93] that F1 + F2 + . . . + Fk is a

sparse certificate for k connectivity of G. The best

known distributed algorithm for BFS takes time

0(11 log3 n) with O(rn + n log3 n) messages[AP 90]

where D is the diameter of the network. Nonethe-

less, the time to compute a sparse certificate in the

worstcase is O(kn log3 n) (and not O(kD log3 n)) as

the diameter of G – ZFi for some i, 1 ~ i ~ (k – 1),

could be as high as n.

The question of identifying inherent graph pa-

rameters that govern the distributed complexity of

various fundamental network problems has been

raised by [GKP 93]. This issue is important be-

cause many previous algorithms that achieved a

time bound of O(n) claimed optimality under the

assumption that the solution is optimal for some

networks of n vertices. A more desirable optimal-

ity, as argued in [GKP 93], is achieved when an

algorithm solves a problem optimally on every in-

st ante. They further make a case for the diame-

ter of a network D as being one of the important

parameters that is inherent in the distributed com-

plexity of algorithms. Under this paradigm, they

present a novel distributed algorithm for computing

a minimum spanning tree (MST) that runs in time

0( D+n0614). The chief tools employed in achieving

this bound are fragments – connected subgraphs of

limited diameter and a BFS tree that spans the en-

tire network. The computation is part distributed

and part central. Each fragment achieves a subgoal

distributedly and independently in parallel. The re-

sults of the subgoals are “put together” centrally at

the root of a BFS tree. The final results are broad-

cast over the entire network using pipelining. To get

good performance, the number as well as the diam-

eter of the fragments is controlled and the volume

of the final broadcast is kept small.

In this paper, the technique of of dividing the

computation into part distributed and part central

(using fragments and BFS) is shown to be useful in

other contexts. In particular, we show that a sparse

certificate for k connectivity can be found by similar

methods in time O(k(D + n0614)). This improves

the previous best known bound of O(kn log3 n). We

also present a new algorithm for computing bicon-

nected components. This algorithm is extremely

simple and is suitable for implementation on vari-

ous models of computation in addition to the dis-

tributed model. On a distributed network, it runs

0614 time. This is the first sublinear-in O(D+n )

time distributed algorithm for biconnected compo-

nents. There are two known distributed algorithms

for biconnected components both of which take at

least linear time [Hu 89], [Ho 90]. As in [GKP 93],

the main focus here is the time complexity, and we

ignore the communication costs.

The mode! of computation is a point-to-point

communication network represented by an undi-

rected graph G(V, E) where the set of vertices V

stands for processors and the set of edges E stands

for bidirectional communication channels. There

is no shared memory and processors may commu-

nicate only by transmitting messages. Typically,

there are two complexity measures that are used to

analyze distributed algorithms: the communication

complexity and the time complexity. The commu-

nication complexity is the total number of elemen-

tary messages generated in the worstcase during the

execution of the algorithm where each elementary

message consists of length O(log n) bits. The time

complexity is the number of rounds in the worst case

where in each round, each processor may send out

at most one elementary message per incident edge,

receive all messages sent to it during that round

from its neighbors, and carry out some local com-

putation. As mentioned before, we will not try to

minimize the number of messages generated in this

paper. Therefore, for a slight overhead in commu-

nication complexity, we can employ a synchronizer

and assume the computation to be synchronous.

The rest of the paper is organized as follows. The

next section describes scan-first search and its rela-

tion to finding sparse certificates. Section 3 presents

a distributed algorithm for edge and vertex certifi-

cates. An algorithm for finding biconnected compo-

nents is presented in Section 4. Concluding remarks

are given in Section 5.
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2 Scan-First Search

Scan-first search (SFS) was first introduced in

[CKT 93]. It proved to be a useful tool in obtaining

sparse certificates on the parallel model of compu-

tation. In this paper, we show that it is valuable on

the distributed model as well.

A scan-first search in a connected undirected

graph G starting from a specified vertex r is a sys-

tematic way of visiting the vertices of G. To scan a

vertex is to visit all previously unvisited neighbors

of that vertex. At the beginning of the search, only

r is visited. Then, the search iteratively scans an al-

ready visited but unscanned vertex until all vertices

are scanned.

For an undirected graph that is not connected,

a scan-first search can be performed on each con-

nected component by starting from an arbitrary

vertex and applying the above procedure. The

search produces a spanning forest with a spanning

tree in each connected component.

Notice that SFS is less restrictive than sequential

BFS. In other words, all sequential BFS trees are

SFS trees but some SFS trees are not BFS trees.

For example, in any odd cycle of length n with a

specified root r, there is only one BFS tree: the tree

obtained by removing the edge at distance (n – 1)/2

from r. However, there are n–2 SFS trees: the trees

obtained by removing any edge except the two edges

incident on r.

The following result was proved in [CKT 93].

Theorem 1 (Cheriyan, Kao, Thurimella)

Assume that the vertices of a connected graph G

are labeled with preorder labels using an arbitrary

tree rooted at r. For each v, v # r, let n(v) denote

the neighbor of v with the smallest preorder number.

Then, the subgraph formed by the edges (v, n(v)),

for all v #r, is an SFS spanning tree of G.

The above theorem can be stated in a slightly

more general form:

Theorem 2 Let G be a graph with c components.

Add any c – 1 edges that make G connected and

denote the resulting graph by G’. Assume that the

vertices are labeled using a preorder traversal of a

spanning tree T of G’. Consider a component C of

G. Let r, be the vertex with smaltest preorder label

in C. For each v E V(C), v # r., let n(v) be the

neighbor of v in C’ with the smallest preorder label.

Then, the subgraph formed by the edges (v, n(v)) is

an SFS spanning tree of C.

Proofl Denote the preorder that is used in the the-

orem by Z. Consider another preorder Q on the

vertices of C using the subtree of T restricted to C

with rc as the root. Now, apply the method of The-

orem 1 on C using Q. For any two vertices, w and z

of C, if z is visited after w in Q, then z will be vis-

ited after w in Z, possibly after visiting vertices of

other components. In fact, p-e(w) < pre(z) in Z if

and only if pre(w) < pre(z) in Q. That is, for each

v, v # rc, the relative ordering of the neighbors of

v in C is the same in Z and Q. Therefore, for every

vertex v, n(v) is the same regardless of whether Z

or Q is used. ~

3 Sparse Certificates

A sparse certificate for k-edge connectivity can be

computed as shown below.

Algorithm 1 Edge Certificate

Input: k-edge connected G = (V, E).

Output: A sparse certificate C.

1. Let GO be G with edge weights equal to O.

2. Forj+l,.. .,kdo

(a) Find an MST T in Gj-l.

(b) If the weight of an edge is O in Gj-l and if it

belongs to T, then change it to 1 and call the

new graph Gj.

3. Ck, the sparse certificate for k-edge connectivity,

is the subgraph of G consisting of edges whose

weight is 1.

End

Lemma 1 Let H be a subgraph of G. Let GW be

a weighted version obtained from G by assigning

weight one (resp. zero) io the edges of H (resp.

G – H). Then, the zero weight edges of an MST of

GW constitute a maximal spanning forest of G – H.

Proof Denote the MST by T and its subgraph of

zero weight edges by F. Clearly, F has no cycles

and E(F) ~ E(G – H). If F is not maximal, then

there exists an edge e of weight O in G – H whose
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addition to F will not create a cycle. But adding

e to T will create a cycle. Therefore, this cycle

must have an edge f whose weight is 1. That is, we

can trade e for f and keep T connected. The total

weight of this new spanning tree is one less than

that of T, contradicting that T is an MST. H

Theorem 3 The distributed time complexity of the

above aigorithm is O(k(D + no 614)), The above al-

gorithm is correct.

Proof Since the above algorithm can be imple-

mented by invoking the distributed algorithm of

[GKP 93] k times, the time complexity follows.

The sequential algorithm proposed by [T 89] for

edge certificates is similar to the above algorithm

with the following difference. The definition of Gj

is (Gj – 1 – T), where T is a maximal spanning forest

in Gj -1. By Lemma 1, finding a maximal spanning

forest in (G – {the edges of current certificate}) is

equivalent to finding the zero-weighted edges of an

MST in an appropriately weighted version of the

graph. This proves the correctness. n

Now consider finding a certificate for k-vertex

connectivity. To preserve vertex connectivity, it is

not enough to take any spanning forest in Gj – 1.

However, taking an SFS spanning forest will suffice,

as shown in [CKT 93]. Actually, any BFS tree is an

SFS tree. However, finding BFS trees in subgraphs

in sublinear time seems to be difficult. Instead, we

show how to compute preorder numbers of a tree,

thus enabling us to convert an arbitrary tree into

an SFS one as pointed out in Theorem 2. In other

words, we would like to use the following strategy.

Algorithm 2 Vertex Certificate

Input: A k-vertex connected G = (V, E).

Output: A sparse certificate C.

1. Let Go be G with edge weights equal to O.

2. Forj+l, . . ..kdo

(a) Find an MST T in Gj _ ~. Denote the zero-

weighted subgraph of T by F. (F is a maximal

spanning forest in the zero-weighted subgraph

of G by Lemma 1.)

(b) Preorder label the vertices of G using T.

Convert F into an SFS spanning forest F’ by

the method described in Theorem 2. If the

weight of an edge is O in Gj -1 and if it be-

longs to F’, then change it to 1 and call the

new graph Gj.

3. C’k, the sparse certificate for k-vertex connec-

tivity, is the subgraph of G consisting of edges

whose weight is 1,

End

In the rest of this section, we show how we fold

the preorder computation into the algorithm for

MST from [GKP 93].

Let us recapitulate some of their terminology and

results. The result of Lemma 2.6 of their paper

states that the input graph can be partitioned into

at most IV = n/2r fragments (each fragment F is

a connected subgraph that is induced by a subset

of vertices) where each fragment has a diameter,

denoted by d, at most 31. Here I is a parameter that

can be chosen so as to minimize the total running

time. It is pointed out in Section 5 of [GKP 93] that

the best choice of I is the one for which N = d, i.e.

n/21 = 31.

Their final part of the algorithm can be summa-

rized as follows. Each fragment F contains a rooted

spanning tree, the root r being referred to as the

center of that fragment. In order to find an MST,

they first build a BFS spanning tree Tb. Then, using

the center of each fragment r, the list of all edges in-

cident on F that are remaining at the end of Phase

III is sent up (at most O(N), by Corollary 3.11)

to Tb’s root in time O(iV + D). The root of Tb

computes centrally the list of edges of an MST that

connect different fragments and broadcasts this list

over the network.

Our strategy is to use their framework of frag-

ments and centers. In other words, we will make the

center of each fragment r ‘(responsible” for preorder

labeling the vertices of the subtree that belongs to

7. We will also assume that there is a rooted BFS

tree Tb superimposed over the fragments to facili-

tate the computations that need to be performed

cent rally. Refer to Figure 1(a). Each fragment is

shown in a circle. To keep the figures simple, BFS

tree Tb is not shown. The dashed edges, the edges

connecting different fragments, will be referred to

as inter-fragment edges, following the terminology

of [GKP 93].

Algorithm 3 Distributed Preorder

Input: A G = (V, E), an MST T with edges di-
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Figure 1: Centers and fragments of a minimum spanning tree (MST)

rected away from the root R(T), a BFS tree Tb with

root R(Tb ), fragments X and their roots r.

Output: A preorder number pre(v), for every v of

T.

1.

2.

3.

4.

5.

Compute size, the number of vertices, of each

fragment Y at r.

Collect size information at R(Tb). For each

inter-fragment edge u a v of T, compute cen-

trally at R(T~), the size of the subtree of T

rooted at v. Associate this size with u + v.

See Figure l(b).

Broadcast these sizes over the entire network.

At each r, using the sizes associated with inter-

fragment edges and assuming the pre(r) to be O,

compute the preorder number P of all vertices of

7. Also, compute the preorder number P of the

roots of fragments adjacent to F. Associate the

P values of roots with the inter-fragment edges

going out of %. (In Figure 2(a), the P values

of roots are the first components of the closed

intervals associated with the dashed edges.)

Send up the P labels of inter-fragment edges

to R(Tb ). Compute centrally, the final preorder

number for each r by summing the P labels of

the inter-fragment edges from r to the root of

6.

7.

the MST R(T).

Broadcast the final preorder numbers of each r

over the network.

Each r computes the preorder number for the

vertices of F by adding its own preorder number

to P – the preorder number computed assuming

pre(r) to be O in Step 4.

End

Theorem 4 The distributed time complexity of the

above algom”thm is O(D + n0614). The above algo-

rithm is correct.

Proof First consider preparing the input for the

algorithm, i.e. directing the tree edges away from

the root R(T). Start by directing the inter-fragment

edges of the tree centrally at R(T~) and broadcast

these directions over Tb. The computation is central

and takes constant time. Broadcasting the direction

of N — 1 edges can be done in O(N + D) by pipelin-

ing. Each fragment now has exactly one incoming

edge u -+ r except for one – the fragment contain-

ing R(T) which has zero incoming edges. We will

refer to the head of this incoming edge as the root r

of the fragment. (Assume the root r of the fragment

containing R(T) to be the root of MST R(T).) The
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edges in different fragments are directed in simulta-

neously in parallel. This can be done by a broadcast

from r in O(d) time.

Computing the size of a fragment F at its root r

can be done in time proportional to the diameter of

7. In fact, we can compute for each node, the size

of the subtree attached to it within F by starting

with leaves and sending up the sizes to their ances-

tors. Each node, after receiving the sizes from all

its children, adds them up and sends the total to

its parent. After d rounds, the root r will have the

size of its fragment.

Steps 3 and 6 are similar and can be done by

pipelining in time O(N + D).

Step 4 can be implemented to run in time O(d) as

follows. Assume at each node v, we have the size of

the subtree rooted at v and the sizes of the subtrees

rooted at the children of v. Compute centrally at v,

the prefix sums of the sizes of the subtrees rooted

at the children of v. Once pre(v) is known, add

the (i – l)th prefix sum to pre(v) and send it to

the ith child, for all i > 1; for the leftmost child,

send just pre(v). The value received from the par-

ent at a node is the preorder number of that node.
The whole computation is initiated at r by setting

(b)

Figure 2: Distributed preorder computation

p-e(r) = O. Similarly, Step 7 can be implemented
by doing a broadcast of pre(r) from r which takes

time O(d).

Finally, consider Step 5. Sending Up the F’ labels

takes time O(N + D). Once these values are avail-

able, the rest of the computation is local and takes

constant time.

The distributed time complexity of the above

steps, and that of the entire algorithm, is O(N+D).

According to [GKP 93], the total time is minimized

when the value of N is n0614. That establishes the

time bound.

We will now prove the correctness by inducting on

the number of inter-fragment edges. The base case

is trivial. Let u ~ v be an inter-fragment edge.

Removal of u ~ v from T results in two trees. De-

note the one containing u by T1 and the other by

Tz. Let pre(z, T) denote the preorder label of ver-

tex x in tree T. Let s be the vertex that occurs

just before v during a preorder traversal of T. As-

sume that the vertices of T1 and T2 are labeled with

preorder labels. T can be obtained from TI and Tz

by joining them with u -+ v. Consider computing

the preorder labels of T from the preorder labels
of T1 and T2. The only affected labels are of the

33



vertices of T2 and that of T1 which occur after u.

Ifzis a vertex such that pre(x, T1) >pr=e(u, T1),

then pre(z, T)–pre(~, T1) = size(T2). The size of

T2 is computedin Step 2. This value is broadcast

in Step 3 and is reflected on u - v as well as on

the subtree sizes shown on inter-fragment edges be-

tween u and R(T). Therefore, Step 4 correctly adds

size(T2) to every z where pre(~, Tl) > pre(u, Tl).

On the other hand, if x is vertex in TZ, then
pre(z, T) – g.me(z, Tz) = pre(s, Tl) + 1. Adding

the P values associated with inter-fragment edges

from u to R(T) to the P value ofs gives pre(s, Tl),

by inductive hypothesis. The P value associated

with the edge u ~ v is one more than this value.

Again by inductive hypothesis, adding the P value

of z to the sum of the P values associated with the

inter-fragment edges from z to v yields pre(z, T2).

Therefore, adding the P value of z to the sum of P

values of the inter-fragment edges from z to R(T)

results in pre(s, T1 ) + 1 + pre(z, T2) which is simply

pre(s, T). ~

4 Biconnectivity

In this section, we give algorithms for identify bi-

connected components. We first present an algo-
rithm that is a significant simplification and an

adaptation of Huang’s algorithm [Hu 89] which it-

self is based on the algorithm proposed by Tarjan

and Vishkin [TV 84]. The main idea in both these

algorithms is to reduce the problem of computing

blocks to that of computing connected components.

The algorithm of Tarjan and Vishkin constructs an

auxiliary graph whose connected components cor-

respond to the blocks of the original graph. In con-

trast, Huang’s algorithm avoids building this auxil-

iary graph but constructs a graph that is a locally

modified subgraph of the original graph. In this

paper, we show that blocks can be retrieved from

the connected components of a subgraph. Thus our

algorithm builds neither an auxiliary graph nor a lo-

cally modified subgraph. To identify the subgraph
from which blocks can be retrieved, we need to show

the computation of some tree functions. Let T be a

spanning tree. Denote the parent of u in T by p(u).

Assume each vertex v has been identified with a

preorder number pre(v), and size(v) – the number

of vertices in the subt ree of T rooted at v. For each

v, let high(v) (resp. low(v)) denote the vertex with

highest (resp. lowest) preorder number that is ei-

ther a descendant of v or adjacent to a descendant

of v by a nontree edge. Figure 3a shows a BFS tree

with preorder labels. The size of the subtree rooted

at vertex with label 5 is 8. The high value of the

vertex with label 1 is 13.

We are now ready to present the algorithm.

Algorithm 4 Biconnected Components

Input: A G = (V, E), a rooted tree T with root

R(T), pre(v), size(v), low(v) and high(v).

Output: A label ,8(u, v) for each edge (u, v). Two

edges get the same label iff they are in the same

block.

1.

2.

3.

Identify a subgraph H of G whose connected

components are useful in finding biconnected

components of G. Represent H by associating a

weight of O with its edges.

(a) Assign a weight of O to all edges in E.

(b) For an edge u -+ v of T, if pre(u) ~ low(v)

and high.(v) < pr=e(u) + size(u), change the

weight to 1.

Let C’ be a connected component of H. For

each C, label every v E V(C) with I(v) =

min{pre(u) I u e V(C)}

Find the biconnected component labels for all

edges in E’: For every edge (u, v), /3(u, v) is the

maximum of l(u) and i(v).

End

Lemma 2 Let Bi, 1 ~ i ~ k, be the blocks of G.

Let ui be the vertex with the smallest preorder label

in Bi. Then, the edges of H are the edges of G that

are not incident on ui in Bi, for any 1 ~ i ~ k.

Proof : Consider a Bi and corresponding Ui. We

claim that none of the children of Ui that belong

to Bi have descendants that are adjacent to a non-

descendant of ui. Assume not. Then, there is a

child x of ui and y a descendant of x that is adj scent

to a non-descendant z of ui. Then including (y, z) in

T creates a cycle that includes edges (p(ui), ui) and
(ui, z). Hence (P(ui), ui) belongs to Bi. Then, the

smallest preorder label in Bi is less than or equal to

pre(p(ui )) which is strictly less than Pre(ui ) con-
tradicting the fact that Ui is the vertex with the

smallest preorder label in Bi. Given the claim, it

is easy to see that the children of ui that belong

to Bi have their low and high values in the closed
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Figure 3: Computing biconnected connected components: (a) A graph with a rooted BFS tree (shown in bold)

and a preorder numbering of vertices. (b) A rooted MST T for the weighted version of the graph. (c] The Z

labels for the vertices

interval ~re(ui), pre(q) + size(ui ) – 1]. Therefore,

all edges of Bi incident on Ui are absent in II.

Next, we show that if an edge (a, b) is not incident

on Ui, for some i, then it belongs to H. Assume not.

Clearly, (a, b) must come from T as only tree edges

undergo a change in their weights (see Step lb).

Let (a, b) belong to B1 without loss of generality

and that a is the parent of b. If a is articulation

point that separates (p(a), a) from the edges of B1,

then a must have the smallest preorder label in B1

as it is the only entry point into B1 from p(a). That

is a = U1. Since we assumed (a, b) is an edge that is

not incident on ui, a cannot be an articulation point

that separates (p(a), a) and from the edges of B1.

That is (p(a), a) and (a, b) are in the same block.

Hence there is a simple cycle containing them. This

cycle contains an edge that connects a descendant

of b to a non-descendant of a. Therefore, either

low(b) < pre(a) or high(b) ~ pre(a)+size(a). ~

Corollary 1 Assume that two edges (a, b) and

(c, d) belong to two different blocks in G and that

a # d. Then, a and d belong to diflerent compo-

nents in H.

Proof : Let (a, b) and (c, d) belong to 13i and Bj.

Since (a, b) and (c, d) belong to different blocks,

there exists a vertex u in Bj, an articulation point,

that is present on every path between a and d. As-

sume, without loss of generality, that a vertex of

Bi is visited during the preorder before any of the

vertices of Bj —{u}. In that case, u must be the ver-

tex with the smallest preorder label in l?j. By the

previous lemma, all edges of Bj incident on u are

absent in H. Therefore, there is no path between a

and d in H. n

Theorem 5 Algorithm 4 is correct.

Proof : To prove that all edges of a block get the

same label, consider a block B of G with more than

one edge. Let u and v be the vertices of B with

the smallest and the next smallest preorder labels.

By Lemma 2, H contains all edges of 1? except the

ones incident on u. Now, consider any two ver-

tices a and b of B different from u. As B is bicon-

nected, there are at least two vertex-disjoint paths

between a and b in G. At most one them contains

u. Since the only edges of B that are missing in

H are the ones incident on u, a and b are con-

nected in H. That is, all vertices of B except u

are in the same connected component in H. From

Corollary 1, we know that if two vertices are in

the same connected component in H, then there

is a block in G that contains both those vertices.

Therefore, all vertices of B except u get the same
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i label which, by Step 2, is pre(v). The /? label

for all edges (x, y) of 1? not incident on u would

be max(l(z), l(y)) = max(pre(v), pre(v)) = pre(v).

The edges of 1? that are incident on u are labeled

with a /3 label equal to max(i(u), pre(v)). Since

I(u) s pre(u), this is simply pre(v). Therefore, all

edges of B get labeled with the same P label which

is equal to pre(v).

Next we will prove that if two edges get the same

label, then they are in the same block in G. Assume

not. Consider two edges (a, b) and (c, d), a # d, that

belong to different blocks Bi and -Bj in G but which
get the same ~ label. Since a and d are in different

components in H by Corollary 1, l(a) # l(d) by

Step 2. Therefore, according to Step 3, it is not

possible that i(a) ~ l(b) and l(c) ~ l(d). There are

three other cases.

1.

2.

3.

l(a) ~ l(b) and l(c) > i(d). Then, @(a, b) =

/3(c, d) = i(a) = I(c). In other words, a and c

are in the same connected component in H. As

a and d are in different components, c must be

an articulation point in G. Since l(c) > I(d),

the vertices d and c are visited before the ver-

tices of B~ – {c} during the preorder traversal.

Then, c must be vertex with the smallest pre-

order label in Bi. But then c and a must be in

different components in H by Lemma 2, con-

tradicting that I(a) = l(c).

l(a) < l(b) and I(c) s l(d). Similar to the

previous case.

i(a) < i(b) and l(c) > {(d). Then /3(a, b) =

8(c, d) =’ ~(b) = ~(c). In’ other words; b and

c are in the same connected component in H.

Since I(a) < l(b), a and b are in different com-

ponents in H. If pre(a) < pre(d), then c is
visited before any vertex from Bj — {c} con-

tradicting that l(c) > l(d). The possibility

pre(a) > pre(d) can be ruled out similarly.

Therefore, two edges (a, b) and (c, d) are in the same

block if and only if (a, b) and (c, d) are assigned the
~ same label. m

Consider implementing Algorithm 4 in a dis-

tributed environment so that it runs in sublinear

time. Section 3 shows how this can be accomplished

for pre(v) and size(v). The same distributed time

can also be achieved for high(v) as follows. In a

given round, each node computes the maximum of

its preorder number, preorder number of its neigh-

bors, and the values received, if any, from its chil-

dren. This computed value is passed up to the par-

ent, if one exists, in the next round. By D rounds,

each node v would have its high(v) value. Com-

putation of low(v) is similar. That only leaves the

comp-ltation of connected components – Step 2. We

show below that by employing the techniques used

to do distributed preorder, it is possible to achieve

sublinear time for this as well.

Algorithm 5 Distributed Connected Components

Input: A G = (V, E) with a subgraph H whose

edges are marked with a weight of 1. The edges not

belonging to H have a weight of O. A BFS tree Tb.

Output: A label l(u) for each vertex u. Two ver-

tices get the same label iff they are in the same

connected component in H.

1.

2,

3<

Divide G into fragments F and find a rooted,

directed MST T of G with root R(T). Label

each vertex w of T with a preorder label pre~ (v).

Designate the root r of each fragment to be the

vertex of Y with the smallest pret value.

Compute the connected components of H re-

stricted to each fragment by finding a label lj (v)

for each vertex v of 7. Find the minimum of

pret (v) and the preorder numbers received, if

any, from its children. If the edge connecting v

to its parent (in T) belongs to ~ and has weight

O, then send this value up. Otherwise, denote it

lf (v) and send this value down to all the children

of v in F that are connected by zero-weighted

edges. For a node u that has the parent in ~

connected by an edge of weight O, if(u) is the

value u receives from its parent.

For each v, compute l(v) using /f(v).

(a)

(b)

(c)

For each inter-fragment edge u ~ v of T,

send the weight of the edge, /f (u) and lj (v)

to R(Tb) – the root of Th.

At R(Tb) build a graph J whose vertices are

vertices of T that have an inter-fragment

edge (either incoming or outgoing) incident

on them. Add an edge between u and v in

J if either u and v are in the same fragment

and /j(u) = /f (v), or u and v are in differ-

ent fragments but are connected by an edge

of weight O.

Compute the connected components of J
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(d)

End

and label each component with the smallest

lf label that belongs to that component.

These labels are the 1 labels for all vertices

incident on inter-fragment edges.

Extend 1 labels to all the vertices of G:

Broadcast down i(r) within each fragment

along the zero-weighted tree edges from the

root r. If a node u receives a label during

this broadcast, I(u) is the value received;

otherwise l(u) is IJ (u) computed in Step 2

above.

Theorem 6 The distributed time complexity of the

above algorithm is O(D + n0614). The above aigo-

rithm is correct.

Proof : The proof for time complexity is straight-

forward. The correctness can be seen from the fol-

lowing facts. The connected component computa-

tion is performed hierarchically. That is, first com-

ponents within each fragments are labeled, and then

the labeling is extended to the whole graph. The

connected components of H and that of T are iden-

tical by Lemma 1. In other words, for any two ver-

tices u and v, u and v are in the same connected

component in H if and only if the unique path P

in T connecting u and v consists of zero-weighted

edges. ~

5 Conclusion

We presented sublinear time algorithms for find-

ing sparse certificates and biconnected components.

The reduction in time was achieved using the

paradigm introduced by [GKP 93]. We demon-

strated that this methodology of dividing a problem

into subtasks, solving them in parallel and combin-

ing the results centrally at the root of a BFS tree

is useful in contexts other than MST computation.

It would be nice to see more applications of this

technique.

If certificate algorithms are to be implemented,

we suggest that the presented algorithms be mod-

ified so that the first spanning tree is a BFS tree

(instead of an SFS tree). This way one can pre-

serve not only connectivity but also the diameter of

the original graph.
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