
Collecting Cyclic Distributed Garbage

by Controlled Migration

Umesh Maheshwari Barbara Liskov

M.I.T. Laboratory for Computer Science

Cambridge, MA 02139

Abstract

Distributed reference counting provides timely and fault-tolerant

‘garbage collection in large distributed systems, but it fails to collect

cyclic garbage distributed across nodes. A common proposal is to

migrate all objects on a garbage cycle to a single node, where they

can be collected by the local collector. However, existing schemes

have practical problems due to umecessary migration of objects.

We present solutions to these problems: our scheme avoids migra-

tion of live objects, batches objects to avoid a cascade of migration

messages, and short-cuts the migration path to avoid multiple mi-

grations. We use simple estimates to detect objects that are highly

likely to be cyclic garbage and to select a node to which such ob-

jects are migrated. The scheme has low overhead, and it preserves

the decentralized and fault-tolerant nature of distributed reference

counting and migration.

1 Introduction

Systems that store objects on multiple nodes need distributed

garbage collection to reclaim storage of inaccessible objects. These

systems can use either global marking [HK82] or distributed ref-

erence counting [Bis77]. Global marking requires the cooperation

of all nodes before it can collect any garbage. Distributed refer-

ence counting is preferred for systems with large numbers of nodes

because it is more fault-tolerant and scalable, and quicker at col-

lecting distributed garbage. Many variants of distributed reference

counting schemes have been proposed to enhance fault-tolerance

and reduce overheads [Ali84, Bev87, Ves87, Piq91, LL92, SDP92,

BENOW93, ML94].

Distributed reference counting algorithms cannot collect multi-

node cycles of garbage objects. This is particularly undesirable

in long-lived systems such as persistent object stores, where even

small amounts of uncollected garbage can accumulate over time

to cause a significant storage loss. The problem can be solved

either by using a complementary marking scheme to collect cyclic

garbage [Ali84, JJ92, LQP92], or by migrating objects so that cyclic

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract NOO014-91-J-4136.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appeur, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
PODC 95 Ottawa Ontario CA@ 1995 ACM 0-89791-710-3/95/08. .$3.50

garbage ends up in a single node and is collected by the local

collector [Bis77, SGP90, GF93]. The advantage of migration is

that, like distributed reference counting, it is decentralized and fault-

tolerant. The collection of a cycle requires the cooperation of only

those nodes that contain it, and progress can be made even if other

nodes or other parts of the network fail. Therefore, migration is

an attractive solution in large-scale systems that allow objects to

migrate between nodes.

However, existing migration schemes have some practical prob-

lems. First, they tend to migrate live objects along with garbage.

Most schemes migrate locally unreachable objects, either immedi-

ately [Bis77, Bag91] or if the objects are not used for some time

period [GF93]. In a persistent store, however, live objects may not

be accessed for long periods (say, weeks or months), so even sys-

tems that wait will migrate live objects. Migration of live objects

is undesirable because it wastes processor and network bandwidth.

Also, it interferes with load balancing. For example, a database

might be partitioned between two nodes to position objects close to

frequent users, yet it may have a single logical root, say, on the first

node. In that case, all objects on the second node would be locally

unreachable, but should not be moved. (Of course, users could

prevent this migration by explicitly rooting the second partition lo-

cally, but this leads to exactly what garbage collection is supposed to

replace: error-prone manual memory management.) The problem

with load-balancing is exacerbated because migration must occur in

one direction to avoid thrashing, as explained in Section 4.2.

This paper presents a simple way to avoid unnecessary migra-

tion. We estimate the length of the shortest path from any root to

each object. Estimates for cyclic distributed garbage objects keep

increasing without bound; those of other objects do not. We migrate

only objects with very large estimates.

We also do the actual migration of objects efficiently. Con-

solidating a distributed garbage cycle may involve migrating ob-

jects multiple times before they converge on the same node. Some

schemes avoid this problem by migrating objects to a fixed dump

node [GF93], but having a single dump node in a large system can

be a performance or fault-tolerance bottleneck. We have a simple

way of selecting one of the nodes containing a garbage cycle as the

destination, and we migrate all objects on the cycle directly to that

node. Further, migrating an object often leaves behind objects that

have to be migrated late~ our scheme determines all objects at a

node that should be moved together, and batches them in a single

message.

Our scheme is based on a fault-tolerant variant of reference

counting described in Section 2, and adds very little space and

time overhead to the base scheme. Unlike some other schemes

[BE86, KA93], ours does not require the local collector to trace the

object graph multiple times. It also preserves the naturally decen-

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F224964.224971&domain=pdf&date_stamp=1995-08-20

tralized and fault-tolerant nature of distributed reference counting

and migration.

The scheme achieves its desirable performance properties by de-

laying the collection of cyclic garbage: it waits to migrate objects

until they have a large distance estimate, and until the destination

node has been selected, thus avoiding the cost of unnecessary mi-

grations that occur in other schemes. We believe that slowness in

collecting distributed cyclic garbage is not a practical problem be-

cause we expect cyclic garbage to be a small fraction of the total

garbage. Thus, our scheme makes an appropriate tradeoffi cyclic

garbage is always collected, but in a way that does not degrade

overall system performance.

The rest of the paper is organized as follows. Section 2 describes

the environment in which our technique is to be used and how ref-

erence counting works in that environment. Section 3 describes

the distance heuristic used to recognize cyclic garbage. Section 4

discusses how we migrate objects efficiently. Section 5 surveys re-

lated work in collection of distributed cyclic garbage, and Section 6

contains our conclusions.

2 The Problem Context

Our algorithm is designed for use in the Thor object-oriented

database system [LDS92], although it is applicable to a wide range

of similar distributed systems. Thor stores persistent objects at geo-

graphically distributed nodes. At any time, an object resides at one

node, although it can be migrated to another node. Objects contain

references to other objects, which may reside at any node. For ef-

ficient access, a reference to an object contains the identity of the

node where the object resides [DLMM93]. Objects are clustered

within nodes so that internode (remote) object references are rarer

than intra-node (local) references.

Persistence of objects is determined by reachability from the

persistent root objects, which may be on any node. An object y is

reachable from z if y is x or if z contains a reference to z and y is

reachable from z. We also say that an object y is locally reachable

from x if y and z are on the same node and y is reachable from z

through only local references.

An object that is not reachable from any persistent root is

garbage. (In this paper, we ignore transient roots such as stack

variables.) If two garbage objects on different nodes are reachable

from each other, they are on a multi-node garbage cycle and are said

to be cyclic distributed garbage. In general, a number of garbage

cycles may be reachable from each other, thus forming a compound

cycle, and further, there may be non-cyclic chains of references in-

cident on or outgoing from a cycle. In our scheme, garbage objects

on chains outgoing from a garbage cycle are treated like objects on

garbage cycles. Therefore, we shall often not distinguish between

the two.

In distributed reference counting schemes, each node does a lo-

cal collection independent of other nodes. The local collection is

based on tracing from a root set that includes the local persistent

root objects as well as local objects that are referenced from other

nodes, called the secondary roots. Different variants of distributed

reference counting employ different methods and information to

track the secondary roots, ranging from one-bit counts [Ali84, JJ92]

to weighted reference counts [Bev87] to reference lists, in which

each node tracks the identities of the nodes that refer to its ob-

jects [Bis77, SDP92, BENOW93].

We use reference listing because it handles catastrophic node

failures and provides better fault-tolerance for messages. (For a full

description see [ML94].) Our scheme works as follows:

1.

2.

3.

4.

3

A node NI keeps, for every other node N2, a list of objects in

N] that Nz may hold references to. We call the list the inlist for

Nz at N].

When a new internode reference is created from node N2 to an

object z at node Ni, N1 is told to enter a reference to z in its

inlist for NZ.

The local collector uses inlist entries as secondary roots. As it

traces, it records all references to remote objects that it encoun-

ters. At the end of collection at node N2, the list of reachable

references to objects in another node N1 is sent to NI. We call

this the outlist for NI at NZ.

When Ni receives an outlist from Nz, it uses it to replace its

inlist for Nz. This serves to remove unnecessary entries from

the inlists.

Distance Heuristic

This section describes how we recognize distributed cyclic garbage.

Our approach is based on estimating the “distances” of objects:

The distance of an object is the minimum number of in-

ternode references in any path from a persistent root to that

object. The distance of an object unreachable from the

persistent roots is infinity.

Figure 1 illustrates the notion of distance. Object r is a persistent

root and therefore has zero distanc~ so does z since it is locally

reachable from a persistent root. Object s is reachable from r

through two paths: one with two internode references and another

with one its distance is therefore one. Objects z and y are garbage

and have infinite distance. Note that even the distance of a live object

is theoretically unbounded: it can be more than the number of nodes

in the system, since references can go back and forth between nodes.

node NI node N2 node N3

Figure 1: Actual distances of objects.

3.1 Estimating Distances

We maintain estimates of object distances as follows. A distance

is associated with each reference in the root set. There may be

multiple references in the root set to the same object, each with

a different distance. The estimated distance of an object is the

minimum distance of any reference in the root set it is reachable

from.

The distance of a persistent root is implicitly zero, and each

reference in an inlist has an associated distance field. When an

inlist entry is created because of a new internode reference, its

distance is initialized to one for want of better information.

58

The local collector propagates distances from roots to outlists,

setting the distance of an outlist entry to one plus the minimum

distance of any root it is reachable from. It accomplishes this by

tracing from the roots in the increasing order of their distances and

tracing completely from one root before going onto the next. This

does not necessitate depth-first traversal; a copying collector can

be used as long as one root is traced completely before the next

untraced root is copied. As with other practical schemes, once an

object has been traced, it is not traced again. When an outlist entry

is created, its distance is set to one plus the distance of the root

being traced. This technique is similar to timestamp propagation

in [Hug85], which is described in Section 5.

As before, outlists are sent to other nodes after a collection.

When a node receives an outlist, it uses it to replace its inlist for the

sender, including the associated distance fields.

This scheme has little space and time overhead. Distance fields

are only associated with inlist and outlist entries, not with all objects,

and require only a few bits (a one-byte field can account for chains

with 255 internode references). No extra messages are required

over those already sent for collecting non-cyclic distributed garbage,

although the outlist messages are a little larger. The inlists can be

traced in distance order efficiently as follows. Each inlist is kept

sorted by distance and the local collector simply merges them on

the fly. Note that the outlists are generated in distance order as well.

Since inlists are updated using outlists, the inlists don’t need to be

soited explicitly.

The scheme does depend on the use of inlists rather than ref-

erence counts. Inlists allow us to maintain different distances for

the same object — one for each node that references it. If the

minimum-distance entry is removed, the next smallest becomes ef-

fective automatically. For instance, in Figure 1, AL contains two

inlist entries for s: in the inlist for NI with distance one and in

the inlist for IVZ with distance two. If the reference from r to s

is deleted, Na will eventually receive an updated outlist from N1,

remove the correspondktg inlist entry, with the result that the esti-

mated distance ofs will change to two. With reference counts, it

would not be possible for Ns to update the dk.tance without querying

other nodes.

3.2 Distance of Cyclic Garbage

Propagation through local collections and outlist messages causes

the distances of cyclic garbage to increase without bound. Intu-

itively, this happens because each local collection increments the

estimates as it propagates them from inlists to outlists, and there is

no persistent root to hold down this increase. This section quantifies

the rate of increase of distance estimates for cyclic garbage.

Nodes do local collections at different times and different rates.

For simplicity of analysis, assume that nodes do at least one local

collection in a certain period of time, called a round. In each

round, nodes update inlists using the outlists received in the previous

round, do a local collection, and send new outlists to other nodes.

(Section 3.4 discusses the implications of slow nodes.)

First consider a simple example. Figure 2 shows a cycle of

C internode references that is “rooted” at some object s, which is

reachable from a persistent root r through a chain of D internode

references. Thus, the distance ofs is D and that of each successive

object in the cycle is one higher, such that the distance of the last

object t in the cycle is D + C – 1.

The cycle turns into garbage when a reference in the chain from

D+C-l

Figure 2: Distances in a cycle of references.

r tos is deleted. Then, the chain of references leading to s will be

removed in at most D rounds through regular distributed collection.

When this happens, the estimated distance ofs jumps from D to

the next best alternative, D + C, due to the reference from t.The

increase in the distance of s starts a wave of increased distances

down the cycle and, C’ rounds later, the wave reaches s again,

increasing its distance to D + 2C. Similarly, after every C rounds,

the distances of objects on the cycle increase by C. Thus, the

distances of all objects on the cycle will cross any given value, T,

in about T rounds.

In fact, the following theorem holds for arbitrary graphs of

garbage objects, including compound cycles with incident and out-

going chains.

Theorem 1

J rounds after an object became garbage, the estimated distance

of the object will be at least J if the object is not collected by then.

Proof (by induction)

Consider an object z that became garbage at some point. At

that time, the set of all objects that z is still reachable from must

be garbage as well. Further, since the mutator does not create new

references to garbage objects, this set cannot grow.

The theorem holds trivially when .l is zero.

Suppose the theorem holds when.7 is K. Then, after K rounds,

the distance estimates for x and all objects it is reachable from must

beat least K. Thus, all outlist entries generated by tracing through

any of these objects must have a distance of at least K + 1.

In round K + 1, the outlists from round K are used to update the

corresponding inlists. If x is not reachable from a local inlist entry, it

will be collected by the local collector, since z is also not reachable

from any persistent root. Otherwise, the estimated distance of z will

be the minimum distance of any inlist entry it is reachable from. But

the distances of all such entries must be at least K + 1. Thus the

theorem holds when.7 is K + 1.

❑

3.3 The Threshold

While Theorem 1 holds for all garbage objects, any non-cyclic

garbage is duly collected by distributed reference counting. Thus,

the distance estimates for cyclic garbage objects increase indefi-

nitely, while those of other objects do not. Therefore it is possible

to select a threshold distance, T, such that all objects with a greater

distance are highly likely to be cyclic garbage. Only those objects

are migrated.

The choice of the threshold depends on the expected dktances

59

of live objects. However, estimated distances of live objects may

deviate temporarily from their actual distances. Figure 3 shows a

somewhat contrived scenario where the deviation may be significant.

Object r is a persistent root; s is reachable from r via 10 internode

references; t is reachable from s along two paths: one with one

internode reference, and another with 10 internode references. The

distance oft is thus 11. Now suppose the mutator creates a reference

from r to s and then removes the direct reference from s to t, so

that the actual distance oft remains 11. When N3 learns that the

reference from s to t has been deleted, the estimated distance to

t jumps up to 20, which would have been the old distance oft if

the reference from s to twere absent. Only after the information

propagates on the path from s to t,is the estimated distance oft

reduced to 11.

node N1

k
(i) ~

o
r

(ii)

node N2 node N3

o 1

??. E

(estimate=20)

s 11 ~

Figure 3: Deviation in the estimates.

Although the deviation of estimates from actual distances cannot

be bounded, it is reasonable to expect that a single chain is unlikely

to have many changes of the sort illustrated in Figure 3 occurring

at the same time. Thus the threshold can be chosen to be only a

small multiple of the expected maximum distance. For example,

if the expected maximum distance is 10, it is reasonable to set the

threshold to 30.

Setting the threshold involves a tradeotl The threshold should be

high enough that non-cyclic garbage is unlikely to be migrated, but

a low threshold will collect cyclic garbage faster. Fortunately, the

penalty on misjudging the threshold is not severe. If the threshold

is too low and live objects with larger di strmces are migrated, safety

is not compromised since the objects will be deleted only if they

are actually unreachable from the roots. If the threshold is too high,

Theorem 1 still guarantees that all cyclic garbage will be detected

eventually.

3.4 Fault Tolerance

Distance propagation has the locality and fault-tolerance of dis-

tributed reference counting the detection of distributed garbage

needs the cooperation of only the nodes that the garbage is reach-

able from. Stated differently, if a node is crashed, partitioned from

others, or otherwise slow in doing local collection, it will hinder the

collection of only the garbage that is reachable from its objects. The

scheme does not require any global mechanism: it makes progress

through decentralized, pair-wise communication between nodes.

When a node NI is uncooperative, the inlists for N1 at other

nodes are not updated. This is safe because the estimated distances

of the objects reachable from such an inlist entry will not increase

above the distance of that entry. An uncooperative node might delay

the recognition of garbage, but that appears to be unavoidable: if

some garbage is reachable from NI, then Nl must play its role in

the detection of that garbage.

4 Migration

This section discusses practical issues that arise in consolidating

a garbage cycle on a single node. We assume the system already

possesses a mechanism for migrating objects and updating the ref-

erences to them in other objects [SGP90, DLMM93]. We discuss

how to batch objects for migration, and how to determine whereto

send the migrating objects. The emphasis is on reducing the num-

ber of object migrations because of their processing cost: sending

messages and updating references.

4.1 Batching Objects

Migrating a remotely referenced object that contains references to

local objects is likely to create more remotely referenced objects that

may have to be migrated later. However, not all objects reachable

from the migrating object should be migrated with it. For example,

when object x in Figure 4 is migrated, we ought to also migrate y

but not z.

node NI node N2 node N3

o- –r

Figure 4: Batching objects to be migrated.

Tracing inlist entries in the increasing order of distances makes it

simple to select objects that should be migrated together. Once the

distance of the root being traced is above the threshold, any object

traced thereafter is likely to be garbage. Then, all objects traced

from the same root reference are migrated together. In Figure 4, z

will be traced from the root r, and z and y will be batched together.

4.2 Where to Migrate

The goal is to migrate all objects on a garbage cycle to a single node.

Some schemes migrate objects to a fixed dump node [GF93], but this

can be a performance or fault-tolerance bottleneck in a large system.

The dump node might be far away from the nodes containing the

garbage cycle, or it might be unavailable when it is time to migrate

the cycle.

60

Other schemes migrate objects to nodes that refer to them. To

ensure that all objects in a cycle converge on the same node instead

of following each other in circles, nodes are totally ordered and

migration is allowed only in one direction [SGP90]. However, ob-

jects on a multi-node cycle may require multiple migrations before

converging on the same destination node. For a simple cycle that

spans C nodes, 0(C2) object migrations may be performed: the

object closest to the final destination node is migrated once, while

the object farthest from it maybe migrated up to C – 1 times. For

example, in Figure 4, assuming that migration is allowed in the

direction from N1 to Nz to Ns, z and y are migrated just once, but

u may be migrated twice (unless u is migrated after z and y have

been migrated).

We too use an ordering on the nodes: migration is only allowed

in the direction of increasing node ids. However, we estimate the

destination node (the node with the maximum id) and migrate all

objects on the cycle directly to it. To this end, we propagate esti-

mates of the destination node along with distances that are above the

threshold, and wait before migrating objects until this information

is likely to have propagated around the cycle.

Inlist and outlist entries with distances greater than the threshold

have an associated destination field. When the collector creates such

an outlist entry, the destination is set to the higher of the following:

1. The id of the node the outlist is for.

2. The destination of the inlist entry it is traced from, or, if the

inlist entry does not have a destination field, the local node id.

As before, the outlists received from other nodes are used to update

inlists.

To propagate the maximum node id, all inlist entries above the

distance threshold are traced in decreasing order of their destination

fields. (It is acceptable to not trace them in distance order because

they are already likely to be cyclic garbage.) If such entries were

traced in distance order, the maximum node id might not propagate

around the cycle. For instance, if there are multiple inlist entries

to an object, the one with the largest destination may be blocked

by another with a lower distance. This situation is illustrated in

Figure 5, which shows a compound garbage cycle; all objects in the

figure are on different nodes. Here, s has two inlist entries: from N1

with distance D1 + 1 and from NZ with distance D2 + 1. If N1 < N2

and D1 < D2, N2 would not propagate beyonds if we propagate in

distance order. This would result in multiple migrations: initially,

some objects would migrate to N1 and others to Nz, and then the

objects migrated to N1 would migrate to Nz. Tracing in destination

order ensures that the maximum id will eventually propagate to

other nodes, even in compound cycles, so that objects do not have

to be migrated multiple times.

Nl, D1 N2, D2

Figure 5: Destination propagation in a compound cycle.

Migration is not necessary for objects that are reachable from

a dkibuted garbage cycle but are not part of the cycle: if these

objects did not migrate, they could still be collected through non-

cyclic collection after the cycle has been collected. Our scheme

does not prevent the migration of such objects, but it does avoid

migrating them multiple times. It may migrate them to different

nodes, however. For instance, consider Figure 5, where a garbage

chain passes through a node Ns that is higher than the highest node

Nz on the cycle proper. The cycle and the front of the chain (object

u) will migrate to NZ, while the trailing part of the chain (object W)

would migrate to Ns. The objects will not migrate further, however,

so multiple migrations are still avoided.

Unlike some leader election algorithms [LeL77], ours does not

incorporate termination detection, so nodes must guess when des-

tination propagation has completed; we discuss how to make this

guess in the next section. The advantage of our scheme is that it is

simple and effective even in compound cycles.

4.3 When to Migrate: the Second Threshold

To avoid migrating objects before receiving the final destination

information, nodes wait until the distances of inlist entries are above

a second threshold, Tz, which is higher than the threshold T used to

detect cyclic garbage. Setting the second threshold, Tz, involves a

tradeoff similar to that for setting T. It should be high enough that

by the time the distance of an entry increases to Tz, its destination

field is likely to be set to the highest node in the cycle. But it should

be low so that cyclic garbage is migrated quickly. In this section we

provide an estimate for how high Tz should be.

First, we quantify the number of rounds destination propagation

takes to complete. From Theorem 1, T rounds after a cycle became

garbage, the distances of all objects on the cycle will be at least T.

Thereafter, all associated inlist entries will be traced in destination

order. In M more rounds, the maximum node id on the cycle will

propagate to the inlist entries on other nodes, where M is the the

maximum length of the shortest path between any two objects —

counted in internode references. Thus, destination propagation in a

cycle completes in T + M rounds after it became garbage.

However, nodes do not have any knowledge of the number of

rounds that have passed; they can only guess it from the distances

of inlist entries. The distances of the various entries on the cycle

may cross the threshold T at different times. As in the example

illustrated in F@ure 2, the distances may actually increase in jumps

of C, the size of the cycle. Thus, when the entry on the highest

node crosses the threshold T, its distance might actually be as high

as T + C – 1. After that, in the M rounds it takes for its id to reach

another node, the distances might increase up to T + C + M. Thus,

an appropriate setting for Tz is T + C + M, where C is the expected

maximum cycle size, and M is the expected maximum internode

distance between two objects as discussed above.

Using a threshold to guess termination is only a heuristic. If

the threshold is reached before destination propagation is complete,

objects on a cycle may initially be migrated to different nodes,

resulting in multiple migrations. This can happen even when the

chosen values of T, C and A4 are conservative. The following

contrived example shows that no fixed setting for threshold Tz can

prevent multiple migrations. Figure 6 shows two cycles, where the

right cycle is reachable from the left cycle. Suppose that the left

cycle becomes garbage before the right cycle. Further, when the

distances of objects on the left cycle are near the second threshold

Tz, those on the right cycle have just crossed T. Since the right

cycle is now traced in destination order, the maximum node on the

61

left cycle, IVl, may propagate to some objects on the right cycle.

Moreover, the distances of these objects will jump above T2, causing

them to migrate to N1. If the maximum node on the right cycle,

A$, is higher than N1, the remaining objects on the right cycle will

migrate to A5. Those that were migrated to IVl will later be migrated

to Nz. If the nodes on the right cycle that migrated objects to NI

had waited longer, Nz would have propagated around the cycle, so

that all objects would have migrated to N2 directly.

“7”=’2-’0--0”2”=’
Figure 6: Destination propagation in connected cycles.

Fortunately, using a fixed threshold to guess termination does

not compromise correctness or liveness. Destination propagation

is used only as an optimization to reduce the number of migrations

before the objects converge.

5 Related Work

Distributed reference counting can be augmented in various ways

to collect cyclic distributed garbage. Some systems periodically

invoke global marking to collect cyclic garbage [Ali84, JJ92]. Lang

et al. proposed marking within groups of nodes such that each round

can tolerate failures of nodes outside the group [LQP92]. However,

the formation, management, and reconfiguration of groups is still

complex and speculative. Ferreira et al. group partitions that are

cached in memory on the same node, and thus collect any inter-

partition cyclic garbage that lies within the group [FS94].

Hughes’s algorithm propagates timestamps from the roots to the

outlists [Hug85]. The timestamps of the persistent roots are ad-

vanced to the current clock time before each local collection. The

persistent and the secondary roots are then traced in the order of de-

creasing timestamps. As outlists are exchanged, each node records

the minimum timestamp that it has yet to propagate. A global al-

gorithm is used to detect the minimum such timestamp recorded by

any node, which is used as a global threshold. Any object whose

timestamp is below this threshold is garbage. The timestamping al-

gorithm is the dual of distance propagation: it continually increases

the timestamps of live objects while the timestamps of the garbage

objects stagnate. If timestamps are not updated, live objects may

have old timestamps, but the low threshold guards against their col-

lection. The main weakness of timestamp propagation is that if

any node is uncooperative, the global threshold will stop advancing,

which will stop garbage collection in the entire system.

Ladin et al. proposed the use of a logically centralized service

that tracks all inter-node references and uses Hughes’s algorithm to

collect cyclic garbage [LL92]. The centralized service avoids the

need for a distributed algorithm to compute the global threshold.

However, collection of cyclic garbage still depends on timely corre-

spondence between the service and all nodes in thes ystem. Further,

the centralized service, albeit replicated, can become a bottleneck

in a large system.

Beckerle et al. proposed that each node send information re-

garding which outlist entries are reachable from each secondary

root to a fixed node in the system [BE86]. The fixed node uses

the information to detect unreachable cycles between nodes. This

scheme has two problems. First, the fixed node is a bottleneck.

Second, to obtain the full set of outlist entries reachable from any

secondary root, the local collector must trace from each secondary

root independently. Thus, if an object is reachable from multiple

secondary roots, it will have to be traced multiple times. If there

are m secondary roots, n objects, and e references contained in

them, then the performance of local collection with multiple tracing

would be O(m(n + e)) instead of the usual O(n + e). Note that

both distance and timestamp propagation exploit an ordering on the

root set to avoid multiple tracings.

Vestal proposed trial deletion of objects suspected to be

garbage [Ves87]. A separate set of reference counts is used to

propagate the effect of trial deletions. If the trial count of a trial-

deleted object drops to zero, it confirms that the object was cyclic

garbage. The scheme is designed for systems where local collec-

tions are based on reference counting and does not extend well to

tracing. In particular, it does not work well if different nodes trial-

delete objects on the same chain. Even if separate sets of trial counts

are maintained for trial deletions started by different nodes, multiple

tracings of the object graph from different roots would be required

to propagate the information. The scheme suggested in [KA93] uses

probes to confirm the liveness of suspected objects. It, too, requires

multiple tracing.

Bishop first proposed migration of objects to collect cycles be-

tween separately traced partitions [Bis77]. In his scheme, locally

unreachable objects are migrated immediately to the partition they

are referenced from. Shapiro et al. proposed restricting the direction

of migration according to a total order among nodes to ensure that

all objects on a cycle converge on the same node [SGP90]. Shapiro

also considered virtual migration to collect cyclic garbage. Here, a

locally unreachable object is not physically moved between nodes;

instead, the object merely changes the logical space it belongs to.

Thus, a logical space may span a number of nodes. Each logical

space is collected by marking, so that a local collection may require

internode marking messages.

Gupta et al. proposed migrating objects to a fixed dump node

in the system [GF93]. This scheme works with reference counts

because it does not require the knowledge of the referencing node.

Also, it does not suffer from the problem of multiple migrations.

However, moving objects to a fixed node is not scalable or fault-

tolerant. To avoid migrating live objects, the scheme ages the locally

unreachable objects for a certain number of local collections before

migrating them. If such an object is accessed (by the mutator) from

another node while it is aging, the mutator is expected to migrate it

to another node. Such a scheme does not prevent live objects from

migrating to the dump node if they are not accessed during the aging

period.

6 Conclusions

This paper has presented a simple and efficient way of using object

migration to allow collection of distributed cyclic garbage. Our

approach is to limit migration to the bare minimum. With high

probability, we migrate only cyclic garbage objects since these are

usually the ones with distances over the threshold. In addhion,

we migrate objects directly to a selected destination node to avoid

multiple migrations.

Our scheme would add little overhead to distributed reference

62

listing for collecting non-cyclic garbage. The techniques for esti-

mating distances and destination nodes are low cost and do not re-

quire extra messages over what must be sent anyway for distributed

garbage collection. Further the scheme retains the fault-tolerance

properties of distributed reference counting: as long as the nodes

containing the garbage cycle cooperate, progress can be made in

collecting the garbage.

The price we pay to achieve these benefits is delay in collecting

cyclic garbage. We wait for estimated distances to rise above the dis-

tance threshold, and then again for the destination node to be known.

We believe that slowness in collecting distributed cyclic garbage is

not a serious practical problem because cyclic garbage is only a small

fraction of the total garbage. Therefore, our scheme makes the ap-

propriate tradeoffi cyclic garbage is collected eventually, without

degrading overall system performance and fault tolerance.

Acknowledgments

The authors are grateful to Miguel Castro, Raymie Stata, James

O’Toole, and the referees for their comments.

References

[Ali84] K. A. M. Ali. Garbage Collection Schemes for Distributed

Storage Systems. Proceedings of Workshop on Implementation

of Functional Languages, pages 422428, Aspenas, Sweden,

February 1985.

[Bag91] N. Bagherzadeh. A Parallel Asynchronous Garbage Col-

lection Algorithm for Distributed Systems. IEEE Transactions

on Knowledge and Data Engineering, Vol. 3, No. 1, March

1991.

[BE86] M. J. Beckerle and K. Eknadham. Distributed Garbage

Collection With No Global Synchronization, Research Report

RC 11667, IBM T. J. Watson Research Center, Yorktown

Heights, New York.

[BENOW93] A. Birrell, D. Evers, G, Nelson, S. Owicki, and E.

Wobber. Distributed Garbage Collection for Network Objects.

Systems Research Center Technical Report 116, Digital, De-

cember 1993.

[Bev87] D. I. Bevan. Distributed Garbage Collection Using Refer-

ence Counting. Lecture Notes in Computer Science 259, pages

176-187, Springer-Verlag, June 1987.

[Bis77] P. B. Bishop. Computer Systems withaVery LargeAddress

Space, and Garbage Collection. Technical Report MIT/LCSflR-

178, MIT Laboratory for Computer Science, Cambridge MA,

May 1977.

[DLMM93] M. Day, B. Llskov, U. Maheshwari, and A. Myers.

References to Remote Mobile Objects in Thor. ACM Letters on

Programming Lunguages and Systems, 1994.

[GF93] A. Guptaand W. K. Fuchs. Garbage Collection in aDis-

tributed Object-Oriented System. IEEE Transactions on Knowl-

edge and Data Engineering, Vol. 5, No.2, April 1993.

[HK82] P. Hudak, and R. Keller. Garbage Collection and Task

Deletion in Distributed Applicative Processing Systems. ACM

Symposium on Lisp and Functional Programming, pages 168-

178, August 1982.

[Hug85] J. Hughes. ADistributed Garbage Collection Algorithm.

Functional Programming and Computer Architecture (Lecture

Notes in Computer Science 201), pages 256-272, Springer-

Verlag, September 1985.

[JJ92] N. C. Juul, E. Jul. Comprehensive and Robust Garbage Col-

lection ina Distributed System. 19921nternational Workshop

on Memory Management, (Lecture Notesin Computer Science

637), Springer-Verlag, 1992.

[KA93] R. Kordale and M. Ahamad. AScalable Cyclic Garbage

Detection Algorithm for Distributed Systems. 00PSLA’93

Workshop on Memory Management and Garbage Collection,

September 1993. Contact: kram@cc.gatech. edu.

[LDS92] B. Liskov, M. Day, and L. Shrira. Distributed Object

Management in Thor. Distributed Object Management, ed. M.

T. Ozsu, U. Dayal, and P. Valduriez, Morgan Kaufmann, 1992.

[LeL77] G. LeLann. Distributed Systems, towards a formal ap-

proach. IFIP Congress, pages 155-160, Torornto, 1977.

[LL92] R. Ladin, and B. Liskov. Garbage Collection of aDis-

tributed Heap. Int. Conference on Distributed Computing Sys-

tems, pages 708-715, Yokohoma, Japan, June 1992.

[LQP92] B. Lang, C. Queinnec, and J. Piquer. Garbage Collecting

the World. Proceedings of the 19th Annaal ACM SIGPLAN-

SIGACTSymp. on Principles of Programming Lunguages, pages

39-50, Albuquerque, Jan 1992.

[ML94] U. Maheshwari, and B. Liskov. Fault-Tolerant Dis-

tributed Garbage Collection in a Client-Server Object-Oriented

Database. Proceedings of the third htternation Conference on

Parallel and Distributed Information Systems, pages 239-248,

September 1994.

[Piq91] J. M. Piquer. Indirect Reference Counting: A Distributed

Garbage Collection Algorithm. PARLE ’91 — Parallel Architec-

ture and Languages (Lecture Notes in Computer Science 505),

pages 150-165, Springer-Verlag, June 1991.

[SDP92] M. Shapiro, P. Dickman, and D. Plainfosse. Robust, Dis-

tributed References and Acyclic garbage Collection. Symposium

on Principles of Distributed Computing, Vancouver, Canada,

August 1992.

[SGP90] M. Shapiro, O. Gruber, and D. Plainfosse. A Garbage

Detection Protocol for a Realistic Distributed Object-Support

System. Research Report 1320, INRIA–Rocquencourt, Novem-

ber 1990.

[Ves87] S. C. Vestal. Garbage Collection: An Exercise in Dis-

tributed, Fault-Tolerant Programming. PhD thesis, University

of Washington, January 1987.

[FS94] P. Ferreira and M. Shapiro. Garbage Collection and DSM

Consistency. Proceedings of the Third International Conference

on Parallel and Distributed Information Systems, pages 229-

241, September 1994.

63

