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Abstract

We consider the problem of approximating the maximum number of distinguished terminal pairs in a graph thatcan be
simultaneously connected via edge-disjoint paths. This isa classical NP-complete problem for which no general ap-
proximation techniques are known; it has recently been brought into focus in papers discussing applications to admis-
sion control in high-speed networks and to routing in all-optical networks. We provide an O(log n)-approximation
for the class of nearly-Fulerian, uniformly high-diameter planar graphs, which includes two-dimensional meshes and
other common planar interconnection networks. We also give an O(log n)-approximation to the minimum number
of wavelengths needed to route a collection of terminal pairs in the “optical routing” model considered by Raghavan
and Upfal, and others; this improves on an O(log2 n)-approximation for the special case of the mesh obtained
by Aumann and Rabani. Our algorithm makes use of a number of new techniques, including the construction of
a “crossbar” structure in any nearly-Eulerian planar graph, and develops some connections with classical matroid

algorithms.

1 Introduction

A basic problem that arises in large-scale communication net-
works is that of assigning paths to connection requests. Each
connection request is a pair of physically separated nodes that
wish to communicate over a path through the network; given a
list of such requests, one wants to assign paths to as many as
possible in such a way that no two paths “interfere” with each
other. Thus, for a given list of requests, we can ask a number
of natural questions. How many requests are simultaneously
realizable using paths that are mutually edge-disjoint? How
many rounds of communication are required to satisfy all re-
quests, when all paths assigned in a single round must be edge-
disjoint? These turn out to be classical NP-complete problems;
previously known approximation techniques for these problems
are limited either to very special graphs, or to “high-bandwidth”
models in which a large number of paths can share asingle edge.

The intractability of the disjoint paths problem does not
appear to be simply a theoretical phenomenon. Awerbuch,
Gawlick, et. al. [4] observe that much of the difficulty in estab-
lishing virtual circuits in large-scale communication networks
comes from the lack of good heuristics for finding disjoint
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paths. In practice, admission control and routing for virtual cir-
cuits are typically performed using greedy algorithms, which
perform badly on a number of very common interconnection
patterns. Establishing disjoint paths between terminal pairs is
also a basic step in routing algorithms for optical networks,
considered in [1, 20, 21; this is discussed below.

In this paper we develop approximation algorithms for both
of the problems mentioned above for a fairly general class
of planar graphs, illustrating along the way some algorithmic
tools that appear to be of use in understanding the disjoint paths
problem in other cases as well.

We can make these problems precise as follows. Given
a graph G = (V, E), each connection request is specified
by a pair of terminals s; and ¢;, where s;,1; € V. Let T
be the set of all terminal pairs (s1,%1), ..., (sk,tx). We say
that 7T is realizable in G if there exist mutually edge-disjoint
paths P, ..., Py such that P; has endpoints s; and ¢;. Given
G, k, and 7, determining whether 7 is realizable in G is
one of Karp’s original NP-complete problems [13]; it remains
NP-complete even when the underlying graph G is the two-
dimensional mesh [14].

A number of recent papers have discussed the natural maxi-
mization version of this problem — the maximum disjoint paths
problem — in which one wishes to find a maximum size subset
of 7T that is realizable in G. If 7* is a realizable set of maxi-
mum cardinality, then a c-approximation algorithm is one that
always produces a realizable set of size at least [7*|/c. All the
approximation algorithms we discuss run in polynomial time.

Much of the previous work on this problem has considered
the case in which each path consumes only a small fraction of
the available bandwidth on an edge; this can be modeled by
requiring (logn) parallel copies of each edge. Within this
framework, the randomized rounding technique of Raghavan
and Thompson [19, 18] gives good approximations. On-line



algorithms for this case are given in Awerbuch et al. [3].

In many applications, however, each communication path
consumes a large fraction of the available bandwidth on a link;
thus it makes sense to consider approximation algorithms for
graphs without a large number of parallel edges. Previous
approximation algorithms in this setting have only been de-
veloped for restricted types of graphs. Garg, Vazirani, and
Yannakakis [12] give a 2-approximation for trees with paral-
lel edges (the maximization problem is NP-complete, though
deciding realizability is easy). For the special case of the
two-dimensional mesh, Awerbuch, Gawlick, Leighton, and
Rabani [4] give an on-line O(logn log logn)-approximation
algorithm, and independently of our work Aumann and Ra-
bani [2] give an (off-line) O(log n)-approximation algorithm.

Here we consider the class of nearly-Eulerian, uniformly
high-diameter planar graphs (defined precisely below), which
includes most common high-diameter planar interconnection
networks such as the mesh and the hex. Indeed, in Section 2 we
show that all “geometrically well-formed” graphs are uniformly
high-diameter. The nearly-Eulerian condition requires that all
nodes not on the outer face have even degree. This is not
particularly limiting in practice, as it can be achieved simply by
doubling every edge; it roughly corresponds to assuming that
a communication path does not consume more than half of the
bandwidth on a link. We note that such evenness conditions
have proved crucial in much previous work on exactly solvable
special cases of this problem (see the survey by Frank [1 iD.

Our first main resultis an O(log n)-approximation algorithm
for the maximum disjoint paths problem, in nearly-Eulerian,
uniformly high-diameter planar graphs. We feel that developing
approximation algorithms for general classes of graphs such as
this is important for a number of reasons. First of all, networks
arising in the context of virtual circuit routing problems do not
tend to have a structure as regular as that of the mesh, and so it is
desirable to look for approaches that make as few assumptions
as possible about the nature of the underlying graph. But
perhaps more importantly, the disjoint paths problem is an area
in which little work has been done on approximation algorithms,
despite a great deal of early work devoted to exactly solvable
special cases. Essentially no general approximation methods
are known, even at a heuristic level. We feel that a contribution
of this work is the development of a number of new techniques
that appear to be interesting in their own right, as they provide
tools for constructing disjoint paths in more general settings.
These techniques are surveyed in Section 2.

The second of the questions raised in the opening paragraph
can be described as the minimum path coloring problem; here
we must assign to every terminal pair a path P; and a “color”
¢; so that no two paths that share an edge are assigned the
same color. More succinctly, we are trying to find the fewest
number of realizable subsets into which the set 7 of termi-
nal pairs can be partitioned. Let us denote this minimum by
x(T). Approximation algorithms for x(7’) have been consid-
ered in a number of previous papers concerned with routing
in all-optical networks: Raghavan and Upfal [20] give a 3/2-

approximation algorithm when the underlying graph is a tree,
and a 2-approximation when the underlying graph is a cycle.
Aumann and Rabani [2] give an O(log® n) approximation when
the underlying graph is the two-dimensional mesh.

The second of our main results is an O(logn) approxi-
mation to x(7") when G is any nearly-Eulerian, uniformly
high-diameter planar graph. When specialized to the two-
dimensional mesh our algorithm is similar to that of Aumann
and Rabani, but improves their bound by a factor of logn. See
Section 2 for more on the comparison of the algorithms.

Finally, a different line of work related to the construction of
disjoint paths can be found in papers of Broder, Frieze, Peleg,
Suen, and Upfal [5, 6, 17]. Here the underlying graph Gis
assumed to have strong expansion properties; in this case one
can prove that any set of terminal pairs of at most a given size
must be realizable in G. The goal then is to find the paths in
(randomized) polynomial time. In this paper we deal only with
planar graphs, which of course are not expanders.

2  Qutline

In this section we define the class of graphs considered in this
paper and give an outline of our algorithm.

The class of graphs. Let the distance d(u, v) between
vertices u and v in G be the fewest number of edges in a u-v
path; let By(v) denote the set of all u with d(v,u) < d. By
a plane graph, we mean a planar graph with a specified plane
embedding. We say that a simple plane graph is uniformly
high-diameter with parameters o, ( and L (sometimes written
(e, B, L)-uHD) if

(i) for all v and d, |Ba(v)| < Bd?, and

(ii) for all v, v/, and d, | B2a(v)|/|Ba(v')| < «, and

(iii) all internal faces have size at most L.

Expressed more simply, we require that (i) d-step neighbor-
hoods of a vertex have at most quadratic size, and (ii) any two
neighborhoods of about the same radius should have about the
same size. Condition (iii) is a necessary technical assumption,
since one can take any low-diameter graph and subdivide its
edges to produce a high-diameter graph whose disjoint-paths
structure is identical. Note that since G is a simple graph,
the diameter condition implies that G has maximum degree
A< pB—1,a A+ 1= max,|Bi(v)| < B. We can also
handle graphs in this class with parallel edges. When each edge
can appear with bounded multiplicity, our algorithm can be im-
plemented without modification and still achieves an O(logn)
approximation ratio.

We need a further assumption that the degree of every internal
vertex (i.e. those not on the outer face) is even. This is a version
of the parity condition that appears in a large number of previous
results on exactly solvable special cases of the disjoint paths
problem [11]. We will call a plane graph for which the degree
of every internal vertex is even nearly-Eulerian.

It is easy to verify that the two-dimensional mesh and hex are



nearly-Eulerian UHD plane graphs. In fact, UHD plane graphs
encompass a fairly broad range of graphs, as the following
geometric construction shows. Fix a simple polygon P,and a
positive constant p > 1. We say that a graph G is geometrically
well-formed with parameters p and P if G has a plane embed-
ding in which the boundary of the outer face of G is equalto P,
and for some positive constant r, every internal face contains
a disc of radius r and is contained in a disc of radius pr (so
every internal face has geometrically about the same size). If
we “fuse” the edges incident to degree-2 vertices of G (such
vertices are irrelevant for the disjoint paths problem), it is not
difficult to verify that for fixed p and P, there are constants «,
3 and L, so that every (p, P)-geometrically well-formed graph
is an («, 8, L)-UHD plane graph. While this geometric class
of graphs was the primary motivation for our definition of UHD
graphs, it is easy to construct families of UHD plane graphs that
are not geometrically well-formed.

Overview of the Algorithm. In Section 4, we describe
the disjoint paths algorithm in detail; here we give an overview
of the main techniques used. The O(log n) approximation will
be a consequence of obtaining a constant-factor approximation
for the special case in which all terminal pairs are about the
same distance apart: there is a d so that for every £, d(s¢, t¢) is
between d/2 and d. Once we are in this special case, we fix a
sufficiently small constant y < 1/2 and construct overlapping
“clusters” B.q(v;) for vertices v; that we choose greedily until
every vertex of G is contained in some cluster.

A single subproblem is now associated with a single pair
(C1,C2) of clusters: we wish to route all terminal pairs with
one end (say s¢) in C; and the other end (te) in Cy. We can
grow the clusters so that it is possible to solve a constant fraction
of these subproblems without any two of them “interfering”;
thus it is enough to obtain a constant-factor approximation for
the subproblem associated with a fixed pair (C1, Ca).

Our approximation algorithm for such a subproblem is based
loosely the following three-step process: first we route a subset
of the terminals s; € C} to the boundary of C1, then we route
the corresponding subset of the terminals ¢, € (', to the bound-
ary of C», and finally we connect the corresponding endpoints
of these paths via edge-disjoint paths from the boundary of Cy
to the boundary of Co. There are a number of problems in
getting such an approach to work: there is the “coordination”
problem of choosing a large set of terminal pairs so that both s,
and t, can be routed to their respective cluster boundaries; and
we have to ensure that the pairs routed to the respective bound-
aries can be connected with each other. At this high level, the
above outline is analogous to the outline of the algorithm of
Aumann and Rabani [2] for the special case of the mesh. For
our general class of graphs, a number of additional difficulties
arise, for which we develop the following techniques.

First consider the problem of routing paths from the boundary
of C} to the boundary of Ca. We define a crossbar to be a
collection of edge-disjoint paths from C} to C», such that each
pair of paths in the collection meets at some veriex; we call

the endpoints of these paths the crossbar ports. A crossbar
has the very useful property that given any bijection from the
crossbar ports on C to the crossbar ports on Cy, a constant
fraction of the pairs of ports can be routed using edge-disjoint
paths. Notice that the n x 2n mesh has a crossbar of size
n — 1 connecting the two smaller sides. We use a theorem of
Okamura and Seymour [16] to prove that in any nearly-Eulerian
planar graph, if C and C; are sufficiently far apart, then there
is crossbar from C; to C3 of size at least half the maximum
number of edge-disjoint C-C'z paths.

Now consider the “coordination problem” of making sure
that s, is routed to the boundary if and only if its partner 7,
is routed. Aumann and Rabani [2] use a maximum flow com-
putation to select a maximum size subset of the terminals that
can be simultaneously routed to the boundary of C'; and Cs.
For the coloring problem (optical routing) they use the greedy
set-covering approach of repeatedly selecting large realizable
sets; this costs an extra O(log n) factor in the quality of approx-
imation. We handle the coordination problem by exploiting a
certain matroidal structure of disjoint paths and thereby save
the log n cost of the greedy set-cover algorithm.

Our algorithm will route the selected set of terminals in Cy
and C; to the crossbar ports, and use the crossbar to connect up
the paths. This brings into focus a final difficulty that arises in
general UHD plane graphs: since not all vertices onthe boundary
of C; and C, will generally be crossbar ports, we have to argue
that the optimal routing cannot gain a lot by using paths that
cross the boundary of C; and Cs at vertices other than our
particular crossbar ports. (Note that in the mesh, one can take
almost the entire boundary to be the set of crossbar ports, and
this problem does not arise.) To make sure that our solution
is close to optimal, we show how to modify each cluster C;
using a procedure we call e-linking. A cluster with an e-linked
boundary has the property that for any subsets S and §' of the
boundary of C; with |S| = |S’|, if a subset U of the terminals
s¢ can be routed to S then a constant fraction of these terminals
can also be routed to S’. Thus, the placement of crossbar ports
on the boundary of an e-linked cluster will not affect the quality
of approximation by more than a constant factor.

3 Preliminaries

In this section we discuss two known results from combinatorial
optimization that we will use for our algorithms. The firstis a
theorem of Okamura and Seymour [16] concerning an exactly
solvable special case of the disjoint paths problem; the second
gives us some useful tools from matroid theory.

An exactly solvable special case. A large amount of
work has been done on identifying special cases of the disjoint
paths problem that are solvable in polynomial time. Much of
this previous work has dealt with the case in which the under-
lying graph G is planar and satisfies a certain crucial parity
condition: if we form an augmented graph by adding to G



an edge from s; to ¢; for each terminal pair, then the parity
condition tequires that the augmented graph be Eulerian. It
is interesting that very little is known about the existence of
polynomial-time algorithms in cases not satisfying this parity
condition; some variants become NP-complete when the con-
dition is lifted [15]. In a relatively early paper, Okamura and
Seymour [16] gave a polynomial-time algorithm for the case
in which G is planar and satisfies the parity condition, and all
terminals lie on a single face of (G. The algorithm is obtained
along with a proof that the following cut condition is suffi-
cient for realizability: one cannot remove j edges and separate
more than j terminal pairs in G. A linear time algorithm for
this problem has been recently obtained by Wagner and Weihe
[21]. We will use an extension of the Okamura-Seymour theo-
rem due to Frank [10] to build the “crossbar” mentioned above.
For other results on polynomially solvable special cases of the
realizability problem see the survey by Frank {11].

Matroidal tools. The connection between paths and ma-
troids that we use here stems from the following construction
(see e.g. [22]). Let G be a graph, and S and 7" two subsets of
the vertices. Call aset S’ C S independent if there are edge-
disjoint paths that connect the vertices in 5’ to different vertices
in 7. Then it is not difficult to show that these sets form the
independent sets of a matroid M¢(S,T') over the ground set
S; matroids arising by this construction are called gammoids.

We make use of Edmonds’ matroid intersection theorem [9].
For a matroid M, let p(U') denote the rank of a subset U of
the ground set; this is the size of the largest independent set
contained in U. Let M and M> be two matroids over the
same ground set S with p; and p, the corresponding rank
functions; the matroid intersection theorem implies that if for
every §' C S we have min(p1(S’), p2(S')) > £15'], then S
contains a set of cardinality at least 4 |'S| which is independent
in both matroids.

For the optical routing problem we need a stronger version
of the above fact: instead of finding one large set that is in-
dependent in both M and Mo, we need to cover the ground
set by k common independent sets. Gammoids are strongly
base-orderable matroids; this means that if B; and By are two
bases of a gammoid, then there is a bijection ¢ : By — B>
such that for any X C Bj, the sets (By — X)) U #(X) and
(B2 — %(X)) UX are both bases. Davies and McDiarmid [7]
proved that if My and M are two strongly base-orderable ma-
troids over the same ground set S, then .S can be covered by k
sets each of which is independent in both M, and M5 if and only
if S canbe covered by k independent sets of A and by k inde-
pendent sets of M. Moreover, such a covering can be found in
polynomial time. Combined with Edmonds’ matroid covering
theorem [8] the Davies-McDiarmid theorem implies that if for
every S’ C S we have min(p1(S’), p2(S")) > £15|, then S
can be covered by k sets each of which is independent in both
M 1 and M. 2.

4 The Disjoint Paths Approximation

Fix d > 2, and let 7¢ denote the set of all terminal pairs
(i, ;) for which d/2 < d(s;,t;) < d. The maximum dis-
joint paths problem with input G and 7¢ will be called the
subproblem associated with distance d. In this section we
obtain a constant-factor approximation for such subproblems.
This will give an O(log n) approximation for the original prob-
lem, by first solving the O(log n) subproblems associated with
2,4,8, ..., 2Mogdiam(G)] and then only routing pairs in the
subproblem in which we find the largest realizable subset.

Some additional notation will be useful: if S C V, then
GI[S] denotes the subgraph of G induced by the vertices of
S; §(S) denotes the set of edges with exactly one endpoint in
S; w(S) denotes the set of vertices of .S incident to an edge
in §(S); and S° = S — 7(S). Observe that removing 7(S)
from S disconnects it from the rest of the graph, and m(Bga(v))
consists of vertices at exactly distance d from v.

Decomposing the Graph. The first step of the algorithm
will be to decompose the graph into a collection of clusters
{C;}; we will then solve a subproblem for each pair of clusters
(Ci ’ Cj )

The decomposition is done by the following straightforward
procedure. Fix a small constant y > 0; we make no attempt
to optimize the constants here, and use v = [12(LA% + 1)]~1.
We pick a vertex v; € V, add C; = B,4(v;) to our collection
of clusters, and label the vertices in C; “covered.” We then iter-
ate, choosing an uncovered vertex and growing another cluster,
until no vertices remain uncovered. Note that the clusters can
overlap, but that the “roots” v; of the clusters are at least vd
apart from one another. Thus we have the following lemma.

Lemma4.1 The sets B%7d(v5) are pairwise disjoint, where
{v;} is the set of roots of the clusters.

e-Linking the Boundaries. Now consider a pair of clus-
ters (Cj, C;); let T;; denote the collection of all terminal pairs
with one terminal in C; and the other in C;. We work toward
obtaining a constant-factor approximation to the maximum re-
alizable subset of 7;;. First we refine the clusters {Ci} by
growing around each an “augmented cluster” C} with e-linked
boundary components. Appropriately linked boundaries will
guarantee that disjoint paths can be routed to the crossbar ports
essentially as easily as to any other vertices on the boundary of
the cluster.

Before we can precisely define ¢-linkage we need some
additional notation. Let G be a graph; as is standard, if
U,W C V(G) we define a U-W flow to be a collection of
edge-disjoint paths, each of which has one endpoint in U and
the other in W. Let f(U, W) denote the maximum value of
a U-W flow. A related notion is that of a simple U-W flow,
which we define to be a U-W flow in which the endpoints of the
flow paths are all distinct. Let f,(U, W) denote the maximum
value of a simple U-W flow. (Both f(U, W) and f,(U, W)
can be computed by a single-source, single-sink maximum flow



computation: we compute a maximum flow from an additional
vertex v’ to an additional vertex w’, such that graph edges have
capacity 1, and ' (resp. w’) is connected to each vertex in U
(resp. W) via an edge of infinite capacity in case of f(U, W)
and capacity 1 in case of f, (U, W).) We say that U is e-linked
to W if forevery U’ C U,

(U, W) > elU'].

Abusing terminology somewhat, let us say that a single set S C
V is e-linked if it satisfies the following guarantee: if U and
W are subsets of S with |I/| < |W|, then f,(U, W) > ¢|U]|.

The next lemma shows that e-linkage is a useful notion,
because it allows us to re-route flow from one part of & t0
another while preserving a constant fraction of it. We will use
this property in arguing that by routing the paths through the
crossbar ports we do not lose more than a constant fraction of
the flow.

Lemmad.2 Let U W C V(G) with U e-linked to W, and
S C V(G). Then f,(8,W) > 15 fs(S,U).

Proof. We will show that for any S-W cut, there is an S-U cut
of at most 1 + -} times its value; this implies the statement of
the lemma. In this setting, an arbitrary S-U cut can be obtained
by deleting some vertices in S and U, and some edges of G.
Let Y be an S-W cut, and let U/’ be the set of vertices of U that
are reachable from S after the removal of Y. We construct an
S-U cut Y’ by simply adding U’ to Y.

By our assumption, there is a collection of edge-disjoint paths
P of cardinality at least e|U’| from U’ into W. Y must contain
at least one edge (or the endpoint in W) from each member
of P, for otherwise it would not separate S from W —if ¥’
were to miss P € P with endpoint ' € U’, then we could
construct an S-W path missing Y by concatenating an S-u’
path avoiding Y with the path P.

Thus |Y] > |P| > €|U’| and hence

1
¥ = Y+ < A+l

Before we give our procedure to ¢-link the boundary of a
cluster C; we need a little more notation. Let .S denote a set of
vertices. If C is a connected subset of G — S, then C clearly
belongs to a single connected component of G — .5; we use
I'(S, C) to denote this component. The set of vertices in (5)
which have a neighbor in T'(S, C') will be called the segment of
7(S) bordering C and denoted o(S, C). Consider a segment
(S, C). By contracting all of T'(S, C) to a vertex we see that
the vertices in (S, C) all belong to a single face of G[S]; thus
the vertices of o(S, C) inherit the natural (cyclic) ordering <
around this face. Call asubsetof (S, C') contiguous if it forms
an interval with respectto <.

The following lemma provides a procedure to “slice off”
parts of a cluster boundary that are not e-linked.

Lemma 4.3 Assume that all faces of G[S] other than the outer
face have size at most L. If o(S,C) is not e-linked then
there exists a contiguous subset T C ¢(S,C) and a path P’
in S, such that |P'| < Le|T| and the removal of P' from

Figure 1: Linking the boundary

S disconnects T from the rest of o(S,C). Furthermore, if
(S, C) is not e-linked, then such a set T and path P' can be
found in polynomial time.

Proof. Observe that in order for o(S, C) to be e-linked, it is
enough to require that for U, W C (S, C), with U and W
non-overlapping in < and |U| < |W/|, one has f,(U, W) >
2¢|U]|. For thenif U, W C o(S, C) are overlapping sets, we
can first obtain non-overlapping subsets U’ and W' of half
the respective sizes of U and W. (Start from somewhere in
(S, C) and walk around clockwise until you’ve seen half of
one of U or W; say U. Let the vertices of U seen so farbe U’
and the vertices of W not seen so far be W’.)

Assume there are non-overlapping subsets U and W of
o(S, C) with |U] < |W|and f,(U, W) < 2¢|U|; hence there
is a U-W cut Y of value less than 2¢|U|. Recall that such a
cut consists of vertices of I/ and W, as well as edges of G[S];
however,if welet U/ = U — Y and W/ = W - Y, itis easy
to show that U’ and W' are separated by an edge cut Y’ of
value less than 2¢|U’|. Let F be the set of all internal faces
of G[S] touched by edges in Y’. Then the set of faces F' and
edges Y contain a path in the planar dual graph with endpoints
equal to the outer face. By going around the faces in this path
the “short way” (each face has size at most L), we get a path
Pin G[V(F)] of length at most |P| < $L|F| < Le|U’| with
endpoints on the outer face of G[.S] whose removal disconnects
U’ from W'.

Furthermore, there is some subpath P’ of P with only its
endpoints on the outer face of G[S], which disconnects some
setT C o(S, C;)fromtherestof o(S, C; ) and satisfies | P'| <
Le|T| as required by the lemma. To find such a set 7" and path
P’ in polynomial time we have to find the minimum cut value
for every contiguous subset 7" of o(S,C). B

We are working on the subproblem defined by the pair
(C;,Cj). We want C; and Cj; to have the property that
o(C;, Cj) and o(Cj, C;) are e-linked for some constant & > 0.
There is no reason why the clusters should have this prop-
erty as constructed; thus we grow “augmented clusters™ C
and C]f which are not much larger and do have this prop-
erty. Again making no attempt at optimizing constants we
use ¢ = (98L) 7 (1 — 35)-

Theorem 4.4 There exists a set C{ such that



(i) C; C C! C Baya(vi),
(ii) the segment o(C!, C;) is e-linked, and
(iii) |0 (Cy, Cj)| < 9Bvd.

Proof. To construct Cj, we begin by continuing the radial
growth process by which C; was created. We choose a dis-
tance s between 2vd and 3+vd such that |7(Bs(v:))| < 987d;
this is possible since otherwise we would have |Baya(vi)| >
(987d)(7d) = B(3yd)*.

Assume for now that removing the set S = B, {vi) does not
separate the graph; so o(S, C;) is all of 7(S). We now have
a set S which will ultimately contain C}; the remainder of the
process only decreases S and the size of 7(S) by pulling 7(5)
back towards C;. This will establish part (iii) and the second
half of part ().

We produce the final cluster by using Lemma 4 31oiteratively
slice off parts of the boundary of .S that are not e-linked. The
difficult part of the proof is to show the first part of (i), i.e., to
guarantee that the slicing off process terminates before all of
the cluster disappears.

Since removing S does not disconnect the graph, all internal
faces of G[S] are also faces of G and therefore have size at
most L; thus Lemma 4.3 applies. If we find aset T and path
P’ such that |P'| < Le|T|, and removing the vertices of P
from S disconnects T from the rest of 7(S), then we delete
the T-side of this cut from S. The “updated” cluster has P’
as part of its boundary. We then iterate on the new cluster,
finding a contiguous set 7" as in Lemma 4.3 and slicing it off;
Lemma 4.3 implies that if this slicing off process terminates
then the boundary S is e-linked.

We need to show that all the vertices on the new boundary
of S are “close” to the boundary of B,(v;) (at most yd away),
and therefore “far” from C;. This will imply the first part of
(i). In the first iteration of the slicing off process this follows
from the definition, since the new boundary is connected to the
boundary of B,(v;) by the path P’ of length at most Le|TY,
and |T] < |o(S,C;)| < 98yd. We now show by induction
on the number of iterations of slicing off that all vertices on the
boundary of the final cluster S are at most ~d away from the
boundary of B, (v;), and hence that S 2 Ci.

We divide the slicing off process into phases. As long as
portions of the original boundary w(Bs (v;)) remain on the
outer face of S, we will say that we are in the first phase; other
phases will be defined later. Atany given point in the first phase,
x(S) will consist of alternating intervals P, 0o, ..., Pr, 07,
where 0, C m(B,(v;)) and the interval o, of 7(Bs(vi))
lying between o¢ and 041 (with indices understood mod r)
has been sliced off by the new vertices Pp41. See Figure 1,
which shows a cluster after five iterations of slicing off.

Let h = Le. Ineach iteration, some subpath of the boundary
is being replaced by a new path that is h < 1 times as long.
By induction on the number of iterations in the first phase, one
can thus verify that |P;| < hloj| for all £. This establishes
that throughout the first phase, every vertex on 7(S) can reach
(B, (v;)) by a path of length at most vd.

This finishes the proof in case the iterations come to an

end before the end of the first phase. Otherwise, consider the
iteration on which the first phase comes to an end. In this
iteration, the path P has both endpoints on Py, which then
covers all the remaining boundary 7(B, (v;)). Again it is not
hard to show that | P;| < h|w(B;(vi))|; moreover, any vertex
on the new boundary P; can reach the old boundary by a path
of length at most k| (B (vi))l.

Each subsequent phase now proceeds exactly like the pre-
vious phase, except that it begins with an initial set whose
boundary is at most h times the length of the boundary at the
start of the previous phase. Thus the phases will terminate with
a set C} each of whose boundary vertices can reach the original
boundary by a path of length at most

o0

[n(Bs(ui)) - S h¢ < (h+2h?)|m(Bs (vi))l
=1

1
<
< 9L 98Lyd

= ~d.
This finishes the proof in the special case when removing
B (v;) does not disconnect G.

Now consider the case in which removing B (v;) discon-
nects (. The idea is similar to the case discussed above. Notice
that in this case Lemma 4.3 does not apply, as some segments
of 7(S) can define faces of G[S] that are not faces of G, and
hence might have size larger than L. To solve this problem
we do not start the slicing off process with S = B;(v;), but
instead, we continue growing Bj (v;) into every component of
G — B,(v;) except T'(B;(v;), C;) for an extra distance of vd,
and let S be the resulting set. Note that (S, C;) is at this
point a distance of at least yd from any vertex belonging to any
other segment of 7(.S). Thus we can apply the above slicing off
process to the resulting set S; although G[S] can have internal
faces larger than L, these faces are initially at least yd away
from the boundary of S and hence too far to be reached by the
slicing off process. W

Building a Crossbar. We now prove that every nearly-
Eulerian high-diameter plane graph is rich in crossbar struc-
tures. If G = (V, E) is a graph, and U and W are disjoint
subsets of V, then a U-W crossbar is a set of edge disjoint
paths from U to W (i.e., a not necessarily simple U-W flow)
for which each pair of paths meets in at least one vertex. The
value of a crossbar is the number of paths it contains. A simple
crossbaris a crossbar defined by a simple flow.
The following lemma shows why crossbars are useful.

Lemma 4.5 Let F be asimple U-W crossbar of value k = |U |
and ¥ = {1,...,k} — {1,...,k} a bijection. Then the
collection of terminal pairs {(ui, wy(i))} can be partitioned
into three sets, T, T2, and T3, each of which can be routed via
edge-disjoint paths.

Proof. We route the pair (u;, wy(iy) on a path P; constructed
as follows: begin by following the u;-w; flow path, and switch
to the uy(i)-wy () flow path at their first intersection. Now



Figure 2: The crossbar construction

observe that the path P; only shares edges with Py(;) and
Py-1(i); we can therefore 3-color the collection of paths so
that no two paths of the same color share an edge. B

The two-dimensional mesh is the canonical example of a

graph with crossbars; we now show that crossbars are present
in any plane graph with small internal face size and even internal
degree. Let G = (V, E) be a nearly-Eulerian plane graph with
internal face size at most L. Let A, B be two connected subsets
of V,let A’ = n(4), B' = n(B), G' = G[V — A® - B,
and f = fg/ (A, B).
Theorem 4.6 Let A, B, A', B',G' and f defined above. As-
sume that G is a nearly-Eulerian plane graph and has maximum
internal face size at most L. Then if d(A', B') > L(f +3),
there is an A'-B' crossbar in G of value at least 3 f.

Proof. We begin with an A’-B’ flow in G’ of value f; sup-
pose that it consists of edge-disjoint paths Py, ..., Py, with P;
joining u; € A’ and w; € B’ (these endpoints need not be all
distinct). If P; and P; cross at some vertex, we can form new
u;-w; and uj-w; paths with one fewer crossing; in this way
we eventually obtain a collection of paths which do not cross.
Relabeling, we can assume again that P; is a u;-w; path.

It is essentially no loss of generality to assume that the relative
position of A and B is as depicted in Figure 2 — deleting either
A or B from G does not disconnect the graph. If we contract
A° and B° in G to single vertices, the neighbors of these
vertices will be A’ and B’ respectively. Thus the vertices of A’
(resp. B’) all lie on a common face @1 (resp. ¢2) of G, Since
the P; do not cross, the cyclic order of the vertices {u;} is the
reverse of the cyclic order of the {w;}.

Let g denote the outer face. Since the paths F; do not cross,
we can find a polygonal curve C in the plane which meets G’
only at vertices, such that its endpoints lie on ¢o and ¢, and
no P; crosses C. Let @ be the set of vertices of G that meet C.
We “cut open” the graph G’ along C, splitting the vertices in Q.
We repeat this process for the faces po and @3, using a curve
C' meeting vertices (', and thereby obtain a graph G} whose
outer face ¢ consists of wo U 1 U g3, a8 well as the vertices
on faces crossed by the curves C and C’, with the vertices in Q
and Q' appearing twice. A crucial point is that there is still an
A’-B’' flow of value f in G%. Say the order of A’ U B’ on the
outer face of G is uy,. .., up, Wy, ..., W

To find the A’-B’ crossbar, we set up an edge-disjoint
paths problem in G} with terminal pairs 7' consisting of
(ui,wypr-i)fori=1,..., f. If we are able to route '<rf
pairs, then since each pair of paths in the routing must meet
at some vertex, this provides a crossbar of value f’. Thus, the
following claim implies the theorem. M

Claim 4.7 There are edge-disjoint paths in G connecting at
least -;— f of the terminal pairsin T'.

Proof. For S C V(GY), let D(S) denote the set of terminals
in S whose corresponding source or sink does not also belong to
S. Recall that the cut condition, which is clearly necessary for
the existence of the edge-disjoint paths, requires that |6(S)| >
|D(S)| for all S. Let us verify that the cut condition holds in
the present case, for the entire terminal set 7 !

By a standard argument, it is enough to consider sets S with
Sand V — S both connected, and for which D(.S) # ¢. First
note that if there were some set S with |D(S)| > [6(S)] for
which D(S) C A’ (or equivalently D(S) C B’), then this
would contradict the fact that there is an A’-B’ flow of value
f. Now suppose there is a connected set S for which D(S)
meets both A’ and B’. Contracting V — S to a single vertex,
we see that the vertices of (S, V — S) alllie on the outer face
¢4 of G4[S]. Let P denote the simple path Vied] — Vg on
the outer face of G} [S] (i.e. P consists of those vertices newly
added to the outer face). Note that ¢(S,V — S) C P, and
since the endpoints of P share faces with members of A’ and B
respectively, we have |P| > d(A’, B')—2L > L(f+1).Ifwe
walk along P from one endpoint to the other, we must encounter
avertex of o(S,V — S) atleast every L steps; otherwise there
would be an internal face of G and hence of G containing too
many vertices. But each such boundary vertex we encounter
adds at least 1 to |6(S)|; since |P| > L(f + 1), we have
16(S)| > f+1 > |D(S)]. Note this proves |5(.5)| > |D(S)|
for every set S such that D(.S) meets both A’ and B'.

Observe that G, is nearly-Eulerian, and all terminals lie on
its outer face. In such a situation, an extension of the Okamura—
Seymour theorem due to Frank [10] says that the following strict
cut condition is sufficient for realizablity: |§(S)| > |D(S)|
for all S # ¢. We have already verified the (non-strict) cut
condition, and hence consider this as follows. Call a set S tight
if |6(S)| = | D(S)}; our goal is to remove fewer than half the
terminal pairs so that there will be no non-empty tight sets.

We noted above that no set S for which D(S) meets both A’
and B’ can be tight. So each non-empty tight set S in G canbe
labeled either “A’-tight” or “ B’-tight,” depending on whether
D(S) meets A’ or B'. Let S and S’ be two arbitrary A’-tight
sets. Then using the submodularity of & and the fact that there
can be no demand between S and ', it is easy to show that
SNS and SU S are both tight as well. (Note that S N S’
may be empty.) This implies the following: the inclusionwise-
minimal A’-tight sets are all disjoint. The analogous statement
holds for the B’-tight sets. Moreover, we may assume that all
minimal tight sets contain at least two terminals; if a tight set
S contains only u; then [6(S)| = 1, and so we can “slide” u;



across the single edge in §(S), producing an equivalent problem
with fewer nodes.

Let Si,...,S, denote the minimal Al-tight sets, and
T, ..., T, denote the minimal B'-tight sets. Since the car-
dinality of each of these sets is at least 2, it is not hard to show
(directly or using the matroid intersection theorem) that there
is a set of indices J C {1,..., f} with |J| < 3 such that
{u; : i € J} meets each S, and {w; : 7 € J '} meets each 7j.
Thus, deleting the terminal pairs with indices in J, we produce
a routing problem with no minimal tight sets, and hence with
no non-empty tight sets at all.

Thus we now have a set of at least % f terminal pairs for
which the strict cut condition holds; by Frank’s Theorem, there
exist edge-disjoint paths connecting these pairs. B

In order to use Theorem 4.6 in our approximation algorithm
we need an A’-B' crossbar that does not use edges far away
from A’ and B'. Let G" be the graph induced only on vertices
of V — A° — B° that are within a distance 2d(A’, B') of
[A’U B']. Thensince d(A’, B') > L(f + 3), itis not difficult
to show that any A’-B’ cutin G” whichis not also an A'-B’ cut
in & must have value at least f, and hence f = fer(4’, B =
fen(A’, B'). Animmediate consequence of this is 2 technical
strengthening of Theorem 4.6: the crossbar can be obtained in
the reduced graph G"'.

Furthermore, we are interested in constructing simple cross-
bars. Viewing the terminal pairs in this crossbar as the edges of
a bipartite graph, we can color the crossbar paths with A colors
so that no two paths that share an endpoint have the same color.
This implies the following corollary.

Corollary 4.8 Let A, B, A', B', G" and f be as defined above.
If d(A, B) > L(f + 3), there is a simple A'-B’ crossbar in
G" of value at least f[2A.

Routing the Terminal Pairs. We now use the tech-
niques developed in the previous sections to obtain a constant-
factor approximation for the subproblem associated with clus-
ters C; and C;, and subsequently for the subproblem associated
with distance d. As before, let 7;; denote the set of terminal
pairs with one end in C; and the other in Cj; for each such
pair (s¢,1¢), say that s¢ € C; and t; € Cj. Let T; denote the
set of s, € C; and 7T; the set of t, € Cj. Our approximation
algorithm for a fixed cluster pair (Cj, Cj) is as follows.

(1) Around the clusters C; and C; we build augmented clus-
ters Cj and Cj as given by the proof of Theorem 4.4. Let
;] = U'(Cf,Cj) and g; = U(C;,Ci).

(2) We use Corollary 4.8 to build a simple ¢;-0; crossbar.
First we compute a maximum ;-0 flow value f;; in the graph
G" as defined above the Corollary with A = Cj and B = Cj.
Since the cardinalities of o; and o; are at most 908+vd, the value
of this flow value is at most

9(A — 1)Bvd < 98%vd < d(C;, C})/L - 3.

Thus we can invoke Corollary 4.8 to obtain a simple ;-0
crossbar of value f;; /2A. LetU C o; and W C o; denote

the endpoints of the flow paths in the crossbar; these will be
called the crossbar ports.

B3)LetU' C o;and W' C 0. A T;-U’1T;-W'-coordinated
flow consists of two flows: a flow in C! from a subset of termi-
nals 7; to the set U, and a flow in C? from the corresponding
set of terminals in 7; to the set W;. A coordinated flow is
simple if both of the flows involved are simple; its value is
the value of the two flows. In this step we compute a simple
T;-U | T;-W -coordinated flow of maximum value.

Aumann and Rabani [2] observed that a computing a max-
imum simple coordinated flow can be reduced to a maximum
flow computation. Alternately, one can note that the subsets of
terminals in C; that can be routed by disjoint paths to the cross-
bar ports U form a matroid M¢:(7;, U), as discussed in Sec-
tion 3. Thus the problem of constructing a maximum simple co-
ordinated simple flow is a special case of Edmonds’ matroid in-
tersection theorem; another consequence of this matroid struc-
ture is that the greedy algorithm gives a fast 2-approximation
to the maximum simple coordinated flow.

(4) We route at least a third of the connections that have
reached the crossbar ports at U and W by the coordinated flow
in step (3) on the edges of the crossbar using Lemma 4.5.

We claim that the resulting solution is at least an &1 =
6&7%}’5 fraction of the optimal.

Theorem 4.9 The above procedure is an afl-approximation
algorithm for the subproblem involving terminal pairs T;;. The
paths constructed by the procedure stay within distance at most
2d of C; and Cj.

Proof. The second statement is obvious. To prove the first one,
consider a realizable subset 7* of 7;; of maximum cardinality,
and let P* denote the associated collection of edge disjoint
paths. Obviously, the maximum value fij of a oj-0; flow in
G' = G — (C!)° — (C})° is an upper bound on |T*]. By
Corollary 4.8 we see that the simple crossbar constructed in
step (2) is of size at least f;; /2 and hence at least [7*]/2A.

Consider the structure of the optimal solution P*. A T;-
0:/T;-0j-coordinated flow of value |T*| is defined by the parts
of the paths Py € P from s¢ to the first intersection with o,
and from the last intersection with o; to t;. By the same bipar-
tite coloring argument used in Corollary 4.8, there is a simple
T;-0:/T;-j-coordinated flow G of value |T™|/2A, which s at
most |U}.

We now use the e-linkage of the boundaries o; and o to
prove that the value of the maximum simple coordinated flow
constructed in step (3) is at least mﬁ—;&—; |T*|. Let 7; and 7}
denote the set of terminals routed by the coordinated flow G,
and let U’ and W’ denote the endpoints of these flow paths
on o; and o; Tespectively. Recall that |U | < |U]. For any
T ¢ T}, wehave f(T;",U") = |7}'|; since o; is e-linked,
Lemma 4.2 implies

& [
fs(’Z;T”:U) 2 m : fs(’Ti”>Ul) = 'i:__g . W'i"l'

So in the matroid Mg~ (7}, U), every subset has rank at least

1-€t- -~ times its cardinality. Since the same argument applies to




Figure 3: Approximating a subproblem

Mgn (7}’, W), the matroid intersection theorem implies there
is a simple 7;-U/7;-W coordinated flow of value at least e
7| = satsey |T*|. Thus the size of the coordinated flow
that reaches the crossbar ports in step (3) is at least 3¢1{7*|.
By Lemma 4.5, step (4) routes at least a third of this flow. B

Next we give an O(1)-approximation algorithm for the sub-
problem associated with distance d. By Lemma4.9 the solution
to the (C;, C;) subproblem interferes only with other subprob-
lems at most 4d distance away. We build an interference graph
K on the set of pairs (C;, C;), joining two pairs if there is
some edge within distance 2d of each. The uniform-diameter
condition (ii) and Lemma 4.1 imply that each cluster pair has a
constant number of neighbors in the graph K. So by Brooks’
Theorem, we can color the cluster pairs with a constant number
of colors, so that no two pairs in the same color class inter-
fere. Thus the above algorithm can be applied to all cluster
pairs in one color class simultaneously. Taking the maximum
number of terminals routed in any color class, we get an O(1)-
approximation for the subproblem associated with distance d.

Finally, the original routing problem consists of at most
O(log n) subproblems associated with a fixed distance d, so by
taking the maximum value found in any subproblem, we obtain
the main result of this section.

Theorem 4.10 There is a polynomial-time O(log n) approxi-
mation for the problem of finding a maximum realizable subset
of T in a nearly-Eulerian uniformly high-diameter plane graph.

5 Optical Routing

The techniques developed in the previous section allow us to
give an O(logn) approximation for optical routing as well.
Recall that given G and a set of terminal pairs T, we seek to
minimize the number of subsets into which 7" must be parti-
tioned such that each subset is realizable in G. This minimum
is denoted x (7).

One way to approach this partitioning problem is as a set-
cover problem. That is, one greedily uses an approximation
for the maximization problem, assigning a new color for each
realizable subset that is found this way. This approach was used
in the case of the mesh by Aumann and Rabani [2] and leads to
an O(log? n)-approximation algorithms for the problem. Here

we show how the matroidal tools mentioned in Section 3 lead
to an O(log n) approximation algorithm.

Asin the previous section, we break 7 into O(log ) subsets,
such that d(s;, t;) and d(s; , t;) are within a constant factor of
each other if they belong to the same subset. We use differ-
ent colors on each of these O(logn) subproblems. We further
break a single subproblem into problems 7;; for each pair of
clusters (C;, C;). The Brooks’ Theorem argument of the pre-
vious section shows that it is enough to get a constant factor
approximation for each 7;; subproblem; using different col-
ors on different color classes of the interference graph K, we
thereby get a constant-factor approximation for the subprob-
lem associated with a given distance and hence an O(logn)
approximation for (7). We therefore turn to the problem of
obtaining a constant approximation for x(7i5)-

(1-2) As was done in the routing algorithm, we first build the
augmented clusters C] and C}, and a simple 0;-07; crossbar of
value at least f;;/2A, with endpoints U C o; and W C 0.

(3) We next compute a minimum cardinality cover of Ti;
by simple 7;-U/7;-W -coordinated flows — since this involves
covering a set by common independent sets in the two strongly
base-orderable matroids Mg« (7;,U) and Mg (T;, W), we
can use the algorithm of Davies and McDiarmid to find such a
minimum cover in polynomial time. Terminal pairs routed by
different coordinated flows will receive different colors.

(4) We use Lemma 4.5 to break each coordinated flow into
three color classes, each of which is routable using edge-disjoint
paths on the crossbar. This is the coloring of the terminal pairs,
with associated paths constructed in the obvious way by pasting
the coordinated flow paths to the paths in the crossbar.

Theorem 5.1 The number of colors used by the above algo-
rithmis at most 6A(1+e~1)x(Ti;). The paths constructed by
the procedure stay within distance at most 2d of Ci and C;.
Proof. Parts of the paths in each color class in an optical routing
constitute a 7;-0;/7;-0j-coordinated flow. Clearly the size of
such a coordinated flow is at most f;;. Therefore, 7;; can be
covered by at most x(7;;) (not necessarily simple) 7;-04/7;-
o;-coordinated flows each of which is of size at most fij. Bya
simple bipartite coloring argument this implies that 7;; can be
covered by at most 2Ax(7;;) simple T;-0/7; -0 j-coordinated
flows each of which is of size at most f;; /2A.

We use the e-linked property of the boundaries ¢; and o;
and the Davies-McDiarmid theorem to show that the number



of coordinated flows used in step (3) is at most 2A(5"1 +
1)x(T;;). Consider a simple coordinated 7;-0:/T;-0; flow of
size at most f;; /24, and let 7! C T; and ’[j' C 7; denote
the set of terminals covered by this flow. By Lemma 4.2 the
rank of any subset 7; C T} in the matroid Mg« (7;,U )is at
least 15 |7}’|. The analogous statement holds for subsets of
T;. Therefore by the Davies-McDiarmid theorem the T/-T}
terminal pairs can be covered by at most (1 +¢~*) simple 7'~
UIT}-W coordinated flows, and hence 7;; can be covered by
at most 2A(1 + e~ 1)x(T;;) simple T;-U/T;-W coordinated
flows. Therefore, step (3) covers 7;; by at most this many
coordinated flows. Finally, step (4) splits every coordinated
flow into at most 3 colors. W

Theorem 5.2 There is a polynomial-time algorithm that in any
nearly-Eulerian uniformly high-diameter plane graph routes a
set of terminal pairs T, using at most O(logn) times x(T)
colors.

6 Conclusion

We have given an O(logn) approximation for the maximum
disjoint paths problem in a fairly general class of planar graphs.
It is our hope that the techniques developed here — e-linking,
the crossbar construction, and the use of matroid algorithms —
will be useful in attacking more general cases of this problem.
One natural goal is an approximation for edge-disjoint paths in
an arbitrary even-degree planar graph. Though this seems quite
difficult, we note that our main tools apply to any even-degree
planar graph. If we remove the evenness condition, then we
must be prepared to deal with 3-regular graphs, for which an
approach based on crossbars is clearly of no use.

Beyond this lies the prospect of a polylogarithmic approxi-
mation for general graphs. Essentially the only work that has
been done in the setting of general graphs has been on exact
algorithms for a fixed number of terminal pairs or for special
cases involving a graph embedded on a fixed surface, asin work
of Robertson and Seymour and of Schrijver (see [1 1]). Most of
the techniques presented in this paper cannotbe directly applied
in the non-planar case; but it is possible that analogous notions
could prove useful.

Finally, we note that in many applications of the disjoint paths
problem, terminal pairs actually appear on-line, and must be
routed or rejected immediately. It would be interesting to obtain
a polylogarithmic performance guarantee in this framework for
the class of graphs considered here; note that one must allow
randomized algorithms to obtain such bounds [3]. 1t is not
hard to show in fact that our results reduce this problem to the
following: given individual terminals that appear on-line in a
planar graph, route as many as possible to some specified subset
of the outer face.
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