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Abstract. Hybrid automata model systems with both
digital and analog components, such az embedded con-
trol programs. Many verification tasks for such programs
can be expressed as reachability problems for hybrid au-
tomata. By improving on previous decidability and un-
decidability results, we identify the precise boundary be-
tween decidability and undecidability of the reachability
problem for hybrid automata.

On the positive side, we give an (optimal) PSPACE
reachability algorithm for the case of initialized rectangu-
lar automata, where all analog variables follow trajecto-
ries within piecewise-linear envelopes and are reinitialized
whenever the envelope changes. Our algorithm is based
on a translation of an initialized rectangular automaton
into a timed automaton that defines the same timed lan-
guage. The translation has practical significance for verifi-
cation, because it guarantees the termination of symbolic
procedures for the reachability analysis of initialized rect-
angular automata.

On the negative side, we show that several slight gen-

eralizations of initialized rectangular automata lead to an

undecidable reachability problem. In particular, we prove

that the reachability problem is undecidable for timed au-

tomata with a single stopwatch.

1 Introduction

A hybrid automaton [ACHH93] combines the dis-

crete dynamics of a finite automaton with the con-

tinuous dynamics of a dynamical system. Hybrid au-

tomata thus provide a mathematical model for dig-

ital computer systems that interact with an ana-

log environment in real time. Case studies indi-

cate that the model of hybrid automata is useful
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for the analysis of embedded software and hard-

ware, including distributed processes with drifting

clocks, real-time schedulers, and protocols for the

control of manufacturing plants, vehicles, and robots
[AHH93, NOSY93, BPV94, HH94, HRP94, MV94,

PV94b, ACH+94, MPS95]. Two problems that are

central to the analysis of hybrid automata are the

reachability problem and the more general timed

language-inclusion problem 4. These problems check

if the trajectories of a given hybrid automaton meet

a given safety or real-time requirement. While a scat-

tering of previous results show that bothl problems are

decidable in certain special cases, and undecidable in

certain general cases, this paper provides a system-

atic identification of the boundary between decidabil-

ity and undecidability.

Hybrid automata genertilze timed automata.

Timed automata [AD94] equip finite automata with

clocks, which are real-valued variables that follow

continuous trajectories with constant slope 1. Hy-

brid automata equip finite automata with real-valued

variables whose trajectories follow more general dy-

namical laws. For each class of dynamical laws,

we obtain a class of hybrid automata. A partic-

ularly interesting clam of dynamical laws confines

the set of possible trajectories to piecewise-linear en-

velopes. Suppose, for example, that the variable

z represents the water level in a tank. Depending

on the position of a control valve (i,,e., the state

of a finite control automaton), the water level ei-

ther falls nondeterministically at any rate between

2 and 4 cm s-l, or rises at any rate between 1 and 3

cm s-l. We model these two situations by the dynam-

ical laws i c [–4, –2] and i 6 [1, 3]—so-called rect-

angular activities [AHH93, PV94a]—which enforce

piecewise-linear envelopes on the water-level trajec-

tories. Rectangular-activity automata are interesting

from a practical point of view, as they permit the

modeling of clocks with bounded drift and the con-

servative approximation of arbitrary trajectory sets

[OSY94, PV94b, HH95], and from a theoretical point

of view, as they lie at the boundary of decidability.

Our results are twofold. First, we give an (op-

timal) PSPACE algorithm for the timed language-

inclusion problem for rectangular-activity automata

with two restrictions: (1) whenever the activity of a

41n the case of timed language inclusion, we assume we are
given the complement of the requirement.

373

http://crossmark.crossref.org/dialog/?doi=10.1145%2F225058.225162&domain=pdf&date_stamp=1995-05-29


variable changes, the value of the variable is reini-

tialized; (2) the values of two variables with differ-

ent activities are never compared. Second, we prove

that the reachability problem becomes undecidable if

either restriction is relaxed, or if more general, tri-

angular activities are admitted. To explain the sig-

nificance of both results, they must be placed in the

context of previous work.

Decidabilit y [Section 3]. The first decidability re-

sult for hybrid automata was obtained for timed

automata, whose reachability and timed language-

inclusion problems are PSPACE-complete [AD94].

Under restrictions (1) and (2), that result was

later generalized to multirate automata, with vari-

ables that run at any constant positive slopes

[ACHH93, NOSY93], and to the reachability prob-

lem for rectangular-activity automata [PV94a]. The

latter result, however, fell short in several respects,

because its proof was based on the discretization of

time. First, the result applied only to automata with

closed rectangular activities. Second, the result ap-
plied only to the reachability problem and not to

the timed-language inclusion problem. Third, the

result did not suggest a practical verification algo-

rithm. Fourth, and perhaps most importantly, the

result did not imply the termination of existing semi-

decision procedures for the reachability problem of

hybrid automata, such as those implemented in the

HYTECH verification tool [AHH93, ACH+94]. Our

main decidability result remedies all four of these

shortcomings, because its proof is based on a trans-

lation of rectangular-activity automata via multirate

automata into timed automata. As a corollary, we

obtain a PSPACE algorithm for the timed language-

inclusion problem of rectangular-activity automata

under restrictions (1) and (2).

Undecidabilit y [Section 4]. Over the past few years,

there have been several ad hoc undecidability results

about hybrid automata. A constant-slope variable

with slope other than O or 1 is called a skewed clock,

and a two-slope variable with slopes O and 1 is a stop-

watch. In [ACHH93], it is shown that reachability

is undecidable for timed automata with two skewed

clocks. In [KPSY93], it is shown that reachability

is undecidable for timed automata with two three-

slope variables and restriction (2). In [Cer92], it is
shown that reachability is undecidable for timed au-

tomata with three stopwatches and restriction (2). In

[ACH93, BES93, KPSY93, BER94], it is shown that,

under various strong side conditions, reachability is

decidable for timed automata with one stopwatch,

but the general problem is left open, We strengthen

these results and give a uniform characterization of

the undecidability frontier. First, we prove that any

relaxation of restriction (1) leads to the undecidabil-

ity of the reachability problem for timed automata

with a single two-slope variable, such as a stopwatch.

Second, we prove that any relaxation of restriction (2)

leads to the undecidability of the reachability problem

for timed automata with a single skewed clock. As a

corollary, we obtain the undecidability of the reacha-

bility problem for triangular-activity automata, even

under restrictions (1) and (2).

Other related work. In [OSY94], rectangular-

activity automata are translated into more abstract

timed automata. Our translation, by contrast, pre-

serves timed languages and therefore leads to exact

verification and decidability results. In [MP93], de-

cidability and undecidability results are obtained for

a deterministic model of hybrid systems with strong

side conditions on the discrete dynamics. The hy-

brid automaton model, by contrast, is nondetermin-

istic and its discrete dynamics is unconstrained. Fi-

nally, our results do not cover the case considered

in [AHV93], where reachability is shown to be unde-

cidable for timed automata with slope O variables.

2 Rectangular Automata

A hybrid automaton of dimension n is an infinite-

state machine whose state has a discrete part, which

ranges over the vertices of a graph, and a continuous

part, which ranges over the n-dimensional euclidean

space IV_’ [ACHH93]. A run of a hybrid automa-

ton is a sequence of transition steps and time steps,

During a transition step, the discrete and continuous

states are updated according to a guarded command.

During a time step, the discrete state remains un-

changed, and the continuous state changes according

to a dynamical law, say, a differential equation. In

this paper, we are concerned with decidability ques-

tions about hybrid automata, and therefore consider

restricted classes of guarded commands and dynami-

cal laws. This leads us to the definition of rectangular

automata.

Rectangular regions. Given a positive integer n, a

subset of Rn is called a region. A closed and bounded

region is compact. A rectangular region B c I?n is a

cartesian product of (possibly unbounded) intervals
on R, all of whose endpoints are rational. We write Bi

for the projection of B on the ith coordinate, so that

B = ~~=1 Bi. The rectangular region B is bounded

if all of the intervals Bi are bounded. The set of all

rectangular regions in I?n is denoted Bn, and the set

of all bounded rectangular regions is denoted Z?#.

Definition of rectangular automata. An n-

dimenaional rectangular automaton A consists of a
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directed Multigraph (VA, EA), a finite observation al-

phabet 2A, two vertex labeling functions inUA: VA +

~~d and act.4 : VA + %, and four edge label-

ing functions pre A : EA + B., po8tA : EA + B.,

UpdA : EA + 2~1’”””’‘), and obs A: EA + ~~, where

xl = ~A U {7} augments X,4 with the null obser-

vation r @ 2A. We suppress the subscript A if it is

clear from context.

The preguard function pre, the postguard function

post, and the update function upd constrain the be-

havior of the automaton state during transition steps.

An edge e = (v, w) may be traversed only if the dis-

crete state resides at v and the continuous state lies

in pre (e). For each i @ upd(e), the ith coordinate of

the continuous state is not changed and must lie in

post (e)~. For each i c upd (e), the ith coordinate of

the continuous state is nondeterministicaJly assigned

a new value in post(e)i. The observation function

obs identifies every edge traversal with an observation

from E“. The invariant function inv and the activitg

finction act constrain the behavior of the automa-

ton state during time steps. While the discrete state

resides at vertex v, the continuous state nondeter-

ministically follows a smooth (Cm) trajectory within

inv(v), and its first derivative remains within act(v).

The rectangular automaton A is initialized if for

every edge e = (v, w), and for all i with act (v)i #

act (w)~, we have i c upd (e). It follows that when-

ever the ith continuous coordinate of an inititilzed

automaton changes its dynamics, as given by the ac-

tivity function, then its value is nondeterministically

reinitialized according to the post guard function. The

rectangular automaton A is global if the activity func-

tion of A is a constant function on the set of vertices;

that is, for all v, w c V, act(v) = act(w). Every

global rectangular automaton is inititilzed.

The labeled transition system of a rectangular

automaton. The rectangular automaton A defines

a labeled transition system on an infinite state space.

A state (v, x) of A consists of a discrete part v c V

and a continuous part x E R“ such that x E inv (v).

The state space QA c V x R“ of A is the set of all

states of A. A subset of QA is called a zone. Each

zone R c QA can be uniquely decomposed into a

collection UVCV{V} x IL of regions &, one for each

vertex v. The zone R is rectangular if each region &

is rectangular.

For each observation u E Z“, we define the

transition-step relation $ on QA by (v, x) & (w, y)

iff there is an edge e = (v, w) in E such that

ohs(e) = u, x ● pre(e), y c post(e), and for each

i @ upd(e), xi = vi. Hence x and y differ only at
coordinates in the update set upd(e). The stutter

closure Z c Q% of the transition-step relation ~

isdefined as&* o&o& *if u#r, and Z=&*,

where ** is the reflexive-transitive clcsure of *.

For each nonnegative real t E IR>o, we define the

time-step relation $ on QA by (v, x) ~ (w, y) iff

(1) v = w and (2) either t = O and x = y, or

t > 0 and ~ G act(v). Notice that due to

the convexity of rectangular regions, (v, x) ~ (w, y)

iff there is a smooth function ~ : [0, t] + inv (v)

with ~(0) = x, f(t) = y, and for all s c (O, t),

f(s) G act(v). Hence the continuous state may

evolve from x to y via any smooth trajectory sat-

isfying the constraints imposed by inv (v) and act(v).

The stutter closure ~ c Q~ of the time-step re-

lation =$ is defined as follows: q &q’ iff there are

nonnegative ;eals tl,..~,tm and states ql,. ~. , q2m-2

such that q~ql~qz~qs$...~q!z~q~q’ and

t = Z~l ‘i.
The transition relation *AC Q~ of A is the union

of all transition-step and time-step relations: * =

U{s [UC 2T}ulJ{~ It >0}. Given a zone
R c QA, let ~OStA(~) = {q E QA I ~r E R.r *A q}

be the zone of states that are reachable in one step

from R, and let ~reA(R’) = {q E QA I gr E R’. q *A

r} be the zone of states from which R’ is reachable in

one step. We define Post~(R) = lJi~N Post~(R) and

Prej(R) = ui~~ Pre’A(R). Then Post~(R) is the
zone of all states reachable from R. For two zones

R, R’ c QA, define R ~; R’ iff Post~i(R) rl R’ # 0.

The language of a rectangular automaton. Let

A be a rectangular automaton, and let R c QA

be a zone. A timed word for A is a finite or infi-

nite sequence over the alphabet R~CI x ~,4 of time-

stamped observations. $n R-run ~ of.! is a finite se-

quence of the form q. 2 ql 2 qz 2 q3 :A “.., 2 qz~,

where q. E R, and for all i, qi C ~jAj ti G Rzo~

and ui E EA. The run p accepts the timed word

(tl,ul),(t2,a2),(t3,u3),......,(tm,em.). The timed

R-language of A, denoted LangA(R), k the set of all

timed words that are accepted by R-runs of A.

Example. In examples, we refer to a coordinate of

the continuous state as a variable, and we name vari-

ables a b c) ) ?.. . instead of zl, ZZ, Z3, . . . If the vari-

able a corresponds to the ith coordinate, we write

act(v)(a) for ad(~)i,etc. In figures, we annotate

each vertex with its activity function For example,

if act(v)(a) = [3,5] and act(v)(b) = [4, 4], we write

“6 c [3, 5]” and “b = 4“ inside of v. Edges are an-

notated with observations and guarded commands.

A guarded command # defines regions pre(+) and

post (~), and an update set tipd(@), in a natural man-

ner. For example, if 4 is the guarded command

a<5Ab=4+b:=7; c:G [0,5],
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then pre(+)(a) = (-c0,5], pre(+)(b) = [4,4],

pre(~)(c) = (-cm, 00), upd(~) = {b, c}, post(@)(a)=

(-cm, 5], post(~)(b) = [7,7], and post(~)(c)= [0,5].

Co~sider, for instance, the 2D rectangular automa-

ton A of Figure 1. The observation alphabet of ~ is

{al, UZ, us, u4}, and the invariant function of A is the

constant function Av. [–20, 20]2 (not shown in the fig-

ure). The automaton A is initidlzed, as the values

of the two variables c and d are reinitialized when-

ever their activities change. Figure 4 shows a sam-

ple trajectory of ~ from the zone R = {(vI, (O, l))}.

Each arc is labeled with a vertex giving the dis-

crete state, while the continuous state follows the

arc. The discontinuities between the arcs labeled vz

and V3 correspond to the update of variable d from

-5 to –4 upon ~raversal of the edge from uz to vs.

A timed word R-accepted by the automaton ~ is

((4, uI), (I, az), (1,0s), (1,04)), with the correspond-

ing state sequence

((W,(O,1)),(VI,(5,-1O)),(W,(4,-1O)),
(VZ, (O, –12.5)), (v~} (O, -4)), (7)s, (–3, –2)),

(V4, (–1, –2)), (U, (0,0)), (v,, (o, l))).

CNF edge families. We sometimes annotate edges

of rectangular automata with positive boolean com-

binations of guarded commands. Consider the two

guarded commands @l and $2. First, the edge la-

bel @l A 42 stands for a guarded command $3 with

pre(~s) = pre(@l) n pre(+z), post(@3) = post(~l) n
post (&), and upd(~s) = upd(+l) U upd(@2). Second,

an edge with the label ?$1V $2 stands for two edges

that share source vertex, target vertex, and obser-

vation; one labeled with TJl and the other with +2.

These conventions generalize to DNF expressions of

guarded commands. An edge labeled with a CNF

expression of guarded commands is interpreted by

first converting the expression into DNF. A CNF edge

jarnily, then, consists of a pair (v, w) of vertices, an

observation a, and a CNF expression of guarded com-
mands. Consider, for instance, the CNF edge family

with the vertex pair (v, w), the observation u, and

the CNF expression

((z, < k + z, :=k)V(k~zl<k’))A
((q > k’ + z, := k’) V (k <22< k’)).

This edge family corresponds to four edges from v

to w, each labeled with the observation o and one of

the following guarded commands:

In this way, an n-dimensional rectangular automaton

may be specified by a set of vertices, an observation

alphabet, invariant and activity functions, and a set

of CNF edge families.

The reverse automaton. Let A be an n-

dimensional rectangular automaton. The reverse au-

tomaton -A is an n-dimensional rectangular automa-

ton that defines the same state space as A, but

with the transition relation reversed. The compo-

nents of –A are those of A, except for the follow-

ing: for each vertex v, act–.4(~) = {x E R!m I –x C

act A(v)}; for each edge e = (v, w) of A, –A has

the edge -e = (w, v) with pre_A(-e) = po$tA(e),

?Jpd_~(-e) = ~pdA(e), and p&?t_A(-e) = pre~(e).

Proposition 2.1 For eve~ rectangular automaton

A, and every zone R C QA, P?’e,4(R) = Post_~(R)

and POStA(R) = Pre_A(R).

We consider the following two problems.

Reachability. Given a rectangular automaton A,

and two rectangular zones R, RI c QA, is some state

in RI reachable from some state in R (i.e., R *I

R’)?

Language inclusion. Given a rectangular automa-

ton A, a rectangular zone R c QA, and a deter-

minizable timed automaton T [AD94, AFH94] (or a

formula T of the temporal logic MITL [AFH91]), is

the timed language LangA(R) contained in the timed

language defined by T? This problem is more gen-

eral than the reachability problem, and a solution

permits the verification of timed and untimed safety
requirements for systems that are modeled as rectan-

gular automata. When measuring the complexity of

the language-inclusion problem, we assume that T is

given as a deterministic timed automaton.

For initialized automata, we provide a decision proce-

dure for the language-inclusion problem (and there-

fore for reachability). We then show that the reacha-

bility problem (and therefore language inclusion) is

undecidable for very restricted classes of uninitial-

ized rectangular automata, and also for initialized

automata with slightly gener~lzed invariant, activ-

ity, preguard, postguard, or update functions.

3 Decidability

We translate initiahzed rectangular automata into

timed automata [AD94]. The translation preserves

timed languages, and therefore reduces the language-

inclusion problem for initialized rectangular au-

tomata to the language-inclusion problem for timed

automata, which is well understood. The translation

proceeds in two steps, which are presented in the fol-

lowing two subsections.

376



3.1 Multirate To Timed Automata

Multirate and timed aut omat a. The variable c is

a memorg cell of the rectangular automaton A if c has

slope O in every vertex of A; that is, act(v)(c) = [0, O]

for all v c V. The variable c is a clock if c has slope

1 in every vertex. The variable c is a skewed clock

if there is a rational k c Q \ {O, 1} such that c has

slope k in every vertex. The variable c is a two-slope

clock if there is a rational k E Q such that for each

vertex v, either act(v)(c) = [k, k] or act(v)(c) = [1, 1].

A stopwatch is a two-slope clock with k = O.

The rectangular automaton A is a multirate au-

tomaton if act(v) is a singleton for all vertices v of A.

The multirate automaton A is a timed automaton if

each variable of A is either a clock or a memory cell.

Every timed automaton is global, and therefore ini-

tialized. The reachability problem and the language-

inclusion problem are PSPACE-complete for timed

automata [AD94].1

Clock translation of initialized mult irat e au-
tomata. We reduce problems for initialized multi-

rate automata to problems for timed automata, by

translating a given initialized multirate automaton

M into a timed automaton TM such that itf and TM

are timed bisimilar.6

Let kf be an n-dimensional initialized multirate

automaton. For each vertex v G V, assuming

act~(~) = J&[ki, ki], define au : IV ~ BY by
clv(zl,. ..,%) = (~,...,~), where m~ = ki if
k~ # O, and m~ = 1 if ki = O. The maps ct. are

extended to regions in the natural way. The compo-

nents of the timed automaton TM are those of ikf,

except for the following: for each w E V, and all i,
invT~ (v) = crd(inv~(v)) and act~~ (v)i = [Ii, ~i]~

where li = O if ki = O, and li = 1 if k; # O; and for

each edge e = (v, w), pre~~(e) = %(p?’e&f(e)) and

~ostT~ (e) = a~(post~(e)). Define a~: QM ~ QTM

such that a~(v, x) = (v, crv(x)).

Lemma 3.1 Let M be an initialized multirate au-

tomaton. Then for every pair of states q, q’ G QM,

and for everg label r G ~df U ~~o, q $ q! in M ifl

cr~(q) S ~~(q’) in TM.

It follows that the relation {(q, ~M(q)) ] q G QM} k

a timed bisimulation between M and TM.

Theorem 3.2 Let M be an initialized multirate au-

tomaton. FOT evew zone R C QM, Postb(R) =

p@M (aM(R)), pkb(R) = Pre& (~M(@ j, ‘and
LangM(R) = LangT~ (aM(R)).

1The [AD94] definition of timed automata does not allow

memory cells, but their results can be extended to our csae.

6 We use the notions of timed and time-abstract (bi)-
simulations as defined in [ACH94] for timed automata.

Corollary 3.3 [ACHH93, NOSY93] The reachabilit~

problem and the language-inclusion problem for ini-

tialized multirate automata are PSPA CE-complete.

3.2 Rectangular to Multirate Automata

Skewed-clock translation of initialized rectan-
gular automata. We reduce problems about initial-

ized rectangular automata to problems about timed

automata, by translating a given initialized rectan-

gular automaton A of dimension n into an initial-

ized multirate automaton MA of dimension 2n such

that MA forward simulates A, and A backward sim-

ulates MA.

Consider an n-dimensional inititilzed rectangular

automaton A. We restrict our attention to the case

where all values of inv A, act.4, pre A, and ~&$tA are

compact. The generahzation to arbitrary rectangu-

lar regions is straightforward and detailed in the full

paper. Without loss of generaEty, wc assume that

for each edge e = (v, w) of A, preA(’e) C invA(’V),

~ostA(e) c ~nVA(w), and for each z $/ updA(e),

preA(e)~ = postA(e)~.

The idea is to replace each variable a with two vari-

ables aZ and au such that when actA(lU) (a) = [k, k’],

then actM~ (V)(az) = [k, k] and adMA (V)(ati) =

[k’, k’]. Consider Figure 5. With each time step, the

activity of a creates an envelope, whc~se boundaries

are tracked by al and au. Wlt h each transition step,

the values of al and au are updated so that the in-

terval [al, au] is precisely the range of possible values

of a. In Figure 5, at time t a transition is taken along

an edge e with preA (e)(a) = [m, 00). since the value

of al is below m at time t,al is updated to the new

value m. In the following formal definit ion of the mul-

tirate automaton MA, if the variable a corresponds to

the ith coordinate of R“, we encode al by coordinate
2i – 1,and aU by coordinate 2i, for 1 !~ i < n.

The multirate automaton MA has dimension 2n.

It has the same observation alphabet i~ A, and uses

four copies of each vertex of A, so VMA = VAx{(),l}2.

The invariant function invMA is inherited from A: for

each vertex v c VA, for all p, v E {O, 1}, and for all

1 < i < n, inv&f~(v, P, ~)zi–1 = invlf~(v,P,~)z~ =

invA(v)i. On the vertices in VA x {O} x {O}, the ac-

tivity function actM~ is defined as outlined above,

the vertices in VA x {1} x {O, 1} are used to prevent

~zi–1 from moving below min invA (v)~, and the ver-

tices in VA x {O, 1} x {1} are used to prevent ~2i from

moving above m~invA(W)i: if actA(~)i= [k, k’],

then for all ~, v c {O, 1}, actM~(~,O,~~)%l = [k, k],
actM~ (?),~, ())z~ = [k’, k’], and actM~(v, 1, ~)2i-1 =

actM~ (~, p, l)zi = [0, O].
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We are left with defining a set of CNF edge fam-

ilies for MA. For each edge e = (v, w) of A, the

multirate automaton MA has the CNF edge family

((~, Q 0), (VJ,0, O), ObSA(e), Ye) that shares the obser-
vation of e. The CNF expression ~c is a conjunc-

tion &l=l Y: of n CNF expressions ~~. Suppose

that p?’eA(e)~ = [k, k’] and podA(e)~ = [m, m’]. If
i G ttpdA(e), then the CNF expression ~~ is the

guarded command

z~i-l s k’ A x2; > k + z2i-1 := m; Z2i := m’.

The values of ~2i-1 and x2i satisfy the guard iff

[~!&l, ~%] intersects preA(e)~. Since i ~ tipdA(e),

the range of values of z~ after traversal of e in A is

exactly @A (c)i, and hence ZZ~_l is set to the mini-

mum of this interval, and Z2~ is set to the maximum,

If i @ ~pdA(e), then by assumption [k, k’] = [m, m’],

and the CNF expression ~~ is

((zsi-1 < k + ~si-1 := k) V (k ~ Zji-l < k’)) A
((z2, > k’ + X2, := k’) V (k ~ izz; ~ k’)).

The idea is that if the edge e is traversed in A, new

information becomes available about the value of Zi,

namely, that it lies within the interval [k, k’]. There-

fore, if x2i_1 < k, it must be updated to k, and if

xz~ > k’, itmust be updated to k’, in order to keep

[22x-1, 2?x] in MA the range of possible values of Zi
in A.

If the invariant function of A is trivial, the con-

struction of MA is complete. Otherwise, the multi-

rate automaton MA has additional r edges to stop

its skewed clocks from leaving the regions imposed

by invA. Suppose that acfA(~)~ = [k, k’] and

invA(~)~ = [m, m’]. If k < 0, then there is an

edge e from (v, O, v) to (v, 1, v) with obs~~ (e) = T,

pre~~(e)z;-l = [m, m], and pre~~ (e)j = R for all
j # 2i – 1. If k’ >0, then there is an edge e from

(v, p,O) to (?J,P, 1) with obs~~(e) = ~, pre~~(e)zi =
[m’, m’], and pre~~ (e)~ = R for all j # 2i. In addi-

tion, the multirate automaton MA has an edge e with

Ob$MA (e) = 7 and preMA (e) = R“ from everY vertex

(v, 1, v) to (v, O, v), and from every vertex (v,p, 1) to

(v, p, O). For all of these r edges e, updMA (e) = 0 and
post~~ (e) = pre~~ (e).

This completes the definition of the multirate au-

tomaton MA. The multirate automaton MA has
dn-lwf(e)l edges for each edge e of A, and O(IVAI)

additional r edges. The multirate automaton MA is

initialized. For example, Figure 2 gives the inititized

multirate automaton MA that corresponds to the ini-

t~alized rectangular automaton A of Figure 1 (since
A haa the trivial invariant, only four vertices of MA

are relevant ). Figure 3 shows the timed automaton

TMh that corresponds to MA.

Reachability and language inclusion for ini-
tialized rectangular automata. We define the

m~p PA : QM~ ~ 2QA by f?A((Z), p, ~), X) = {v} X

~i=I[~2i-1, z2i]. The map 6A is extended to zones
in the natural way. For two zones R, R) c QA, and a

label m c 2A U R~o, define R ~ R’ iff R’ is the zone

of states that are reachable from R in one ~-step;

that is, R’ = {q’ G QA I 3q G R. q ~ q’]. The up-

per half-space UMh of MA is the zone of all states

((~, P, I/),X) E QM~ such that zzi-1 s xx for all
l~i~n.

Lemma 3.4 Let A be an initialized rectangular au-

tomaton. Then for every pair of states q, q’ E UjUA,

and for every label ~ c IIA U R20, q ~ q’ in MA iff

@A(9) ~ pA(9’) h A.

Theorem 3.5 Let A be an initialized rectangular au-

tomaton. For everg zone R c UMA, Post~(~A(R)) =

PA(POS&A(R)), Pre~(@A(R)) = ~A(PreZ(M_AJ(R)),
and LangA(~A(R)) = LangMA (R).

While the multirate automaton MA has exponentially

more edges than the rectangular automaton A, it has

only four times the number of vertices, and only twice

as many variables.

Corollary 3.6 The reachability problem and the

language-inclusion problem for initialized rectangular

automata are PSPA CE-complete.

The verification tool HYTECH contains a Semi-

decision procedure that attacks the reachability prOb-

lem for hybrid automata by iterating Pre and

Post operations on zones [AHH93]. The HYTECH

procedure is known to terminate on timed au-

tomata [HNSY94]. We obtain the following corollary,

which asserts that the HYTECH procedure terminates

on all initialized rectangular automata.

Corollary 3.’? Let A be an initialized rectangular

automaton. For eve~ rectangular zone R c QA,

the~e is a natural number i c N such that Pre~(R) =

Pre~(R) and Post~(R) = Post~(R).

Simulation relations. While the initialized rectan-

gular automaton A and the multirate automaton MA

define the same timed languages, they are not timed

bisimilar. Lemma 3.4 implies only that MA forward

simulates A, and A backward simulates MA. To see
this, we need a few definitions. Let A and A’ be two

rectangular automata with the state spaces QA and

QAI, respectively. A relation ~ c QA x QA, is a for.
ward simulation of At by A if for each state q’ E QAI,

there is a state q G QA with (q, q’) E ~; and when-

ever q’3 r’ in A’, and (q, q’) G ~, then there is a

state r c QA such that (r, r’) c ~ and q ~ r in A.
The relation y is a backward simulation of A’ by A if

for each state q’ c QAI, there is a state q ~ QA with
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(q, q’) c ‘y; and whenever q’ ~ r’ in A’, and (r, r’) c ~,
then there is a state q c QA such that (g, q’) E ? and
q ~ r in A. Notice that ~ is a forward simulation of

A’ by A iff q is a backward simulation of –A’ by –A.

We define the relation 7A c QMA x QA by (q, q’) c
7A ifi qt ~ ~A(g). For backward simulations, we re-

strict our attention to the upper half-space of MA
(replace QMA by UM~ in the definition of backward

simulation).

Proposition 3.8 Let A be an initialized rectangular

automaton. The relation ‘7A is a forward simulation

of A by h’f,4, and 711 is a backward simulation of

MA, restricted to its upper half-space, by A.

Now consider a ID rectangular automaton A. Sup-

pose A has two edges e and e’ that share the source

v with pre (e) = [k, k] and pre (e’) = [m, m], where

m > k. While no state of A can traverse both

edges, the state ((v, O,O), k, m) can traverse both cor-

responding edges in kf.4.

Proposition 3.9 There exists an initialized rectan-

gular automaton A such that there is no forward sim-

ulation of MA bg A, and no backward simulation of

A bg h!iA.e

4 Undecidability

The n-dimensional rectangular automaton A is simple

if the following restrictions are met:

1. The invariant function inv is constant and its

value is compact.

2. For every edge e c E, and for all 1 S i S n, if i G

upd(e) then post(e)i = [0, O], and if i # upd(e)
then post(e)i = pre(e)i.

3. For every edge e c E, pre (e) is compact.

4. At most one variable of A is not a clock.

The automaton A is k-simple if it meets restric-

tions 1–3, and at most k variables of A are not

clocks. We use simple automata for our undecid-

ability results. Restrictions 1 and 2 imply that

invariants, postguards, and nondeterministic vari-

able updates do not contribute to our undecidabil-

ity results. Many limited decidability results are

based on the digitization of real-numbered delays
[HMP92, BES93, BER94, PV94a]. Since the digitiza-

tion technique requires closed preguards and invari-

ant, restrictions 1 and 3 imply that the technique

does not generalize beyond very special cases. Many

limited decidability results apply to automata with a

single stopwatch [ACH93, BES93, KPSY93, BER94].

ewhile we have defined timed simulations, OUrproof shows

that Proposition 3.9 also holds for time-abstract simulations.

Restriction 4 implies that these results do not gener-

alize beyond very special cases.

All of our undecidability proofs are reductions from

the halting problem for two-counter machines to the

reachability problem for rectangular automata. Each

counter is modeled by a clock. Counter value k corre-

1 ‘. Hence decrementing (in-sponds to clock value 2 -

cementing) a counter corresponds to doubling (halv-

ing) the value of the corresponding clock. We imple-

ment halving via doubling, so the latter is the key to

the proofs.

4.1 Uninitifllzed Automata

We show that initialization is necessary for a decid-

able reachability problem.

Theorem 4.1 For every slope k c Q\ .[1}, the reach-

ability problem is undecidable for simple rectangular

automata with one two-slope clock of slopes 1 and k.

We first prove three lemmas that are basic to all of

our undecidability proofs. In figures of simple au-

tomata, all variables whose slopes are not listed are

clocks—they have slope 1. A rectangular automa-

ton is wrapping if (1) for each edge e = (v, w), and

each variable a, pre(e)(a) c [0,4. act(v)(u)], and (2)

for every vertex v, and every variable a, inv (v)(a) =

[0, 4ka], where ka = maxWev max act (w)(a) is the

largest slope allowed to a in any vertex. In fig-

ures we leave these wrapping conditions implicit. We

use the following wrapping technique fcmnd originally

in [Cer92].

Wrapping lemma. Let kl, ks ~ Q>o, and consider
the simple wrapping automaton fragment of Figure 6.

Suppose that when edge el is traversed into v1, c = 7

andd=6, where O<7S2kl and 0<i552kz.

Then the next time e~ is traversed out of VI, c has

value ~ and d has value 6.

The following device allows us to test if two variables

with the same slope have the same value.

Equality lemma. Let kl E Q>o, and consider

the simple wrapping automaton fragment of Figure 7.

Suppose that when edge el is traversed into VI, c = v

and d = 6, where O <7,6 s 2kl. Then edge es can

later be traversed iff 7 = 6, and the next time es is

traversed, both c and d have value ~ (:= 6).

Similarly, given two skewed clocks c and d with slopes

kl and ks, respectively, it is possible to assign to d

the value of c multiplied by the ratio of their slopes.

Assignment lemma. Let kl, kz c IQZO, and con-

sider the simple wrapping automaton fragment of Fig-

ure 8. Suppose that when edge el is traversed into VI.
c = 7, where O < ~ s 2kl. Then the {next time

traversed, c has value 7 and d has value 27.

-,
es is
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We now prove Theorem 4.1. Let a, b, c, and d be

clocks, and let z be a two-slope clock of slopes 1 and

k. We first prove the result for k > 0. Without

loss of generality, assume k = 2. We encode the val-

ues of the two counters C and D using the clocks

c and d, respectively, The test result C’ = O cor-

responds to an edge e with pre (e)(c) = [2, 2], and

the test result C # O corresponds to an edge e with

pre (e)(c) = [0, 1]. Using the equfllty lemma, halv-

ing can be implemented by guessing, doubling, and

checking; so once we have implemented doubling, the

proof will be complete. To double the value of c while

maintaining the value of d, we put two assignment-

lemma fragments in series (see Figure 9). In the first,

.2 = 2; it assigns to z twice the original value of c. In

the second, i = 1; it assigns to c the value of z, which

is twice the original value of c. The original value of

d is maintained upon exit.

The case k < 0 can be handled similarly, and is

detailed in the full paper.

We now turn to the case k = O. The encoding

of the two-counter machine is the same as before. In

Figure 10, we give a simple wrapping automaton frag-

ment that doubles the value of clock c while maintain-

ing the value of clock d, using two synchronization

clocks a and b, and stopwatch z (to avoid clutter, we
have omitted the wrapping edges from each vertex).

4.2 Generalized Automata

A slight generalization of the invariant, activity, pre-

guard, postguard, or update function leads to the un-

decidability of rectangular automata, even under the

stringent restrictions of simplicity and initialization.

Assignment updates. The update function can be

generalized to allow the value of one variable to be

assigned to another variable. An assignment update

assigns to each edge e both an update set upd(e) c

{l,..., n} and an assignment function assign(e) :
{l,..., n} + {l,. . . , n}. The transition-step rela-

tion $ is then redefined as follows: (v, x) $ (w, y)

if there is an edge e = (v, w) with obs (e) = m,

x G pre(v), y E post(w), and for all i @ upd(e),
y;=x assign(i). Using assignment updates and one

skewed clock, or assignment updates and one mem-
ory cell, the proof of Theorem 4.1 can be duplicated.

The latter gives a new proof of a result from [Cer92].

Corollary 4.2 For everp slope k c Q \ {O, 1}, the

reachability problem is undecidable for simple initial-
ized automata with one skewed clock of slope k (resp.

one memory cell) and assignment updates.

Triangular preguards, post guards, invariant.

The preguard, postguard, and invariant functions can

be generalized to allow comparisons between the val-

ues of variables. A tm”angular restm”ction s is a par-

tial order on {1,..., nj. A triangular preguard [resp.

postguard) assigns to each edge e both a rectangular

region pre (e) (resp. post(e)) and a triangular restric-

tion se. The transition-step relation ~ is then re-

defined as follows: (v, x) $- (w, y) iff there is an edge

e = (v, w) with ohs(e)= a, x G pre(v), y c post(w),

for all i { upd(e), G = Vi, and for all i and j with

i <e j, Xi 5 Xj (rmp. ~i < ~j). A triangular invaTi-
antassigns to each vertex v both a rectangular region

inv (v) and a triangular restriction SO. The set QA of

admissible states is then redefined to contain a state

(v, x) c V x I?n iff x E inv(v) and for all i and j with

i <v j, Xi ~ Xj. Using one skewed clock and any of

these three types of triangular conditions, the proof

of Theorem 4.1 can be duplicated.

Corollary 4.3 For eve~ slope k c Q \ {O, 1}, the

reachability problem is undecidable for simple initial-

ized automata with one skewed clock of slope k and

triangular pTeguards (resp. postguards; invariant).

Triangular activities. The activity functions can

be generalized to impose an order on the derivatives

of variables. A triangular activitg assigns to each ver-

tex v both a rectangular region act(v) and a trian-

gular restriction <.. For t >0, the time-step rela-

tion a is then redefined as follows: (v, x) ~ (w, y) iff

v = w, ~ c act(v), and for all i and j with i SV j,

yi– Xi<$lj-Xj. A triangular activity is global if the

functions act and h. <. are both constant functions

on the set of vertices. Using three variables and a

global triangular activity, we can simulate the behav-

ior of the two-slope clock from Theorem 4.1.

Corollary 4.4 The reachability problem is undecid-

able for 3-simple automata with a global triangular

activitg.

A decidable class of triangular activities. A
clock-partition activitg is a global triangular activity

that aasigns to each vertex v the rectangular region

[0, oo)n and a symmetric triangular restriction <.

Note that s induces a partition of {1,..., n}, which

can be viewed as a partition of a distributed system

into individual processes. Clock-partition activities,

then, model distributed systems that are composed

of perfectly asynchronous processes, where the clocks
within each process are perfectly synchronized.

Theorem 4.5 The Teachability problem and the

language-inclusion problem for rectangular automata

with clock-partition activities aTe PSPA CE-complete.

We prove Theorem 4.5 by showing that every rectan-

gular automaton with a clock-partition activity has a
finite time-abstract bisimulation, which is a product

of region equivalences for timed automata [AD94].
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Figure 9: Doubling c using the two-slope clock z
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-fy==o--=f-!j
Z=4+C, Z:=(3

C=44C, Z:=(J

Figure 10: Doubling c using the stopwatch z
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