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Abstract

This paper provides some new lower and upper
bounds on computing bilinear forms by arith-
metic circuits. The complexity measures consid-
ered are circuit size, formula size and time-space
trade-offs.

1 Introduction

This paper is concerned with the arithmetic com-
plexity of bilinear forms. Such a function f(x, y)
over vectors of variables x, y is naturally defined
by a matrix M with f(x, y) = yMx. Note that
the same M also defines a set of linear forms in
the x variables, namely Mx. This paper con-
tains several new bounds on the complexity of
computing such functions. The complexity mea-
sures of interest are circuit and formula size, as
well as time-space trade-offs.

In the second section of the paper we are in-
terested in general computation over arbitrary
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fields, and focus on the smallest product TS of
time and space required. Our main result here
is proving that for every field and every n there
are n × n matrices M for which computing the
linear forms Mx requires nearly quadratic TS,
while the bilinear form yMx can be computed in
nearly linear TS. The proof uses small, depth
2 superconcentrators to construct matrices M in
which all minors have high rank.

The motivation for this result comes for a
question of Borodin [Bo94], who asked if there
is an space-efficient implementation of the Baur-
Strassen theorem [BS82]. This remarkable the-
orem asserts that the time (or size) it takes to
compute all n partial derivatives (one for each
variable) of a polynomial f is only larger by a
constant factor then the time to compute f it-
self. Thus time lower bounds on computing n
functions can (and do) yield lower bounds for
computing a single function.

One frustration of (both arithmetic and Boolean)
circuit complexity is that we have quadratic lower
bounds on TS for computing n functions (even
n linear functions) on n variables, but no simi-
lar bounds are known for computing a single one.
Observe that the set of linear functions Mx is the
set of derivatives according to the y variables of
the single bilinear form yMx. Thus an analog of
the Baur-Srassen construction, which is efficient
in the TS measure, would resolve that particu-
lar frustration. However, the result stated above
shows that no such analog can exist. In fact,
in contrast to time complexity, the gap in time
space product between computing a function and
computing all its derivatives is almost n, as bad
as possible.
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Despite the above, we can give some weak
lower bounds on time-space trade-offs, for the
same bilinear forms used to exhibit the gap above.
We show that they require 2T/nTS = Ω(n2).
This follows a simple adaptation of the Alon-
Maass technique ([AM88]), originally devised for
oblivious branching programs.

In section 3 we switch gears and move to
discuss circuits over the real or complex fields,
which can use only bounded constants in the
computation. This may be a severe restriction.
However, considering this model has several mo-
tivations. First and foremost, we have no su-
perlinear lower bounds even on formula size of
bilinear forms in the general model, so we might
as well start with this restricted one. Second,
it was suggested as a natural model (for com-
puting linear functions) by Morgenstern [Mo73]
and Chazelle [Ch94]. Morgenstern observes that
natural algorithms like FFT use only small con-
stants, and actually proves that under this re-
striction the n log n time bound it is optimal.
Chazelle argues that for algorithms in comuta-
tional geometry, the finite representation of num-
bers is essenntially equivalent to bounded co-
efficients, and then proves similar n log n lower
bounds in this model for geometric range-query
problems.

The above mentioned results apply only to
computing many (linear) functions. We provide
lower bounds on the circuit and formula size of
single explicit bilinear form, e.g. the one asso-
ciated with any Hadamard or Discrete Fourier
Transform matrices.

We first obtain an Ω(n log n) circuit lower
bound. It follows a simple observation that the
afore mentioned Baur-Strassen construction can
be carried over in the restricted model, and thus
the above results of, e.g., Morgenstern [Mo73]
imply it directly.

We then obtain an n5/4 lower bound on the
formula size for these bilinear forms, as well as
n1+ε lower bounds for other explicit matrices,
arising from projective geometries and other block
designs. The proof uses the Hoffmann-Wielandt
Inequality, which bounds the effect of perturba-
tions on the eigenvalues of a matrix.

2 Definitions and Basic Facts

2.1 Circuits

Let F be a field, and X = {x1, x2, · · · , xn} be
indeterminates. A circuit over F with variables
X is a directed acyclic graph whose input nodes
are labeled with the elements of X. Every in-
ternal node of the circuit computes either a +
gate or a × gate. A + gate, with arbitrary coef-
ficients from F on its input wires, computes that
linear combination of its inputs. A × gate com-
putes the product of its inputs. (Note that we
explicitely allow unbounded fan-in.) Thus every
node computes a polynomial in F [X]. A poly-
nomial f ∈ F [X] is said to be computed by a
circuit A if it is computed by one of the nodes of
A.

The most basic complexity measure of a func-
tion is its circuit size. The size of a circuit is the
number of edges it has. For any polynomial f we
denote by C(f) the size of the smallest circuit
computing f . This notion is extended to com-
puting several polynomials: C(f1, f2, · · · , fm) is
the size of the smallest circuit computing them
all.
Note: Technically, for the measure C and other
measures we will define, we will distinguish the
field F over which the circuit is computing by the
notation CF . However, as F will almost always
be clear from the context, we shall ususally omit
this subscript.

Another fundamental measure is the depth
of a circuit A, denoted D(A), which is the length
of the longest directed path in A. The depth
complexity of a polynomial f , D(f), is the small-
est depth of a circuit computing f (and similarly
for computing many polynomials).

Two restricted notions of circuits give rise to
two other complexity measures: formula size and
time-space tradeoffs.

A formula is a circuit in which every node
has at most one outgoing edge (fan-out 1), thus
the graph is a tree. The formula size of f , L(f)
is the size of the smallest formula computing f .

Any circuit can be ”implemented” by a straight-
line program over the input variables and a set
of ”registers” variables. Such a program is a se-
quence of instructions X ← Y ◦ Z, with ◦ ∈
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{+,×} 1, X a register, and each of Y, Z being ei-
ther a register of input variable. Such a program
A computes all polynomials that occupy a regis-
ter at some point in the program. Its space S(A)
is the total number of different register used, and
its time is the total number of instructions.

For any polynomial f denote by TS(f) the
smallest value of the product of T (A) × S(A)
over all programs A computing f . For several
functions TS(f1, · · · , fm) is similarly defined.

Two simple relations between these measure
are:

Proposition 1 • For every f , C(f) ≤ TS(f) ≤
C(f)2.

• If f is computed by a formula A, then TS(f) ≤
C(A)D(A).

2.2 Derivatives

Let f ∈ F [X] be a polynomial. Denote by ∆f
the set of n partial derivatives of f according
to each of the variables in X. This is a set of
polynomials in F [X] and it is natural to relate
its circuit complexity to the of f . It is not hard
to see that each derivative can be computed with
size C(f), so for every f , C(∆f) ≤ nC(f). A
remarkable theorem of Baur and Strassen [BS82]
(see a simple proof by Morgenstern [Mo85]) says
that there is no need to lose the factor of n.

Theorem 1 [BS82] For every f , C(∆f) ≤ 3C(f).

This theorem was used in [BS82] to convert
lower bounds for computing a set of polynomials
into a lower bound for a single function. For ex-
ample, Strassen’s lower bound [St73] C(xn1 , x

n
2 , · · · , xnn) =

Ω(n log n) immediately implies that C(xn1 +xn2 +
· · ·+ xnn) = Ω(n log n).

2.3 Linear functions

Let M be an n×n matrix with entries in F . We
associate with M the vector of n linear functions
lM on variables X defined by the matrix vector
product lM (x̄) = Mx̄, where x̄ = (x1, x2, · · · , xn).

1Again, + has arbitrary coefficients

Clearly, every M can be computed by lin-
ear circuits, i.e. circuits that do not use mul-
tiplication. Let C l(lM ) denote the size of the
smallest linear circuit computing lM . While it is
open whether using multiplications can be sig-
nificantly useful over finite fiels, it is easy to see
that over infinite fields it cannot.

Proposition 2 For every infinite field F , and
every matrix M , C l(lM ) = C(lM ).

While simple counting shows that for most
matrices M , C(lM ) is nearly quadratic in n, it
is a major open problem to exhibit an explicit
infinite family of matrices for which C(lM ) is su-
perlinear. However, for the TS measure such
bounds can be obtained, via the elegant suffi-
cient condition of Valiant [Va76], (see also Tompa
[To80]).

Theorem 2 [Va76]

• Let M be an n × n matrix in which ev-
ery square submatrix is nonsingular. Then
TS(lM ) = Ω(n2).

• Let M be an m × n matrix with m ≤ n.
Assume that for every s ≤ m, every s ×
(n−m/2) submatrix of M has rank at least
s/2. Then TS(lM ) = Ω(m2).

We conclude by remarking that there are many
explicit families of matrices with all minors non-
singular, and thus quadratic lower bounds on
TS(lM ) are available. Examples include all n×n
matrices M of the form:

• Mij = ωij , with ω a pth root of unity, and
p > n a prime.

• Mij = 1/(i+ j).

2.4 Bilinear functions

Again let M be a matrix over F . We associate
with it the bilinear form bM over the 2n , vari-
ables {x1, · · · , xn, y1, · · · , yn} by defining bM (x̄, ȳ) =
ȳMx̄.

A bilinear circuit on variables {x1, · · · , xn, y1, · · · , yn}
is one in which every multiplication gate has ex-
actly two inputs, one of which is a linear function
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of the x variables and the other a linear function
of the y’s. Again it is clear that every bilinear
function is computed by such a circuit, and we
denote by Cb(bM ) the size of the smallest bilinear
circuit for bM .

Again, it is not known if significant savings
are possible in general using arbitrary circuits for
computing bilinear forms, but for infinite fields
they don’t.

Proposition 3 For every infinite field F and
every matrix M , Cb(bM ) = O(C(bM )).

Now observe that for any matrix M , the set
of linear functions lM is a subset of the deriva-
tives ∆bM of the bilinear function bM . Thus, an
immediate corollary to Theorem 1 is

Corollary 1 For every matrix M over any field,
C(lM ) ≤ 3C(bM ).

In a similar way to bilinear fcircuits we define
bilinear formulae, and Lb(bM ). It is interesting to
note that no analog of proposition 3 is known for
this measure. Note that bilinear formulae have a
very simple structure - without loss of generality
they have depth 3: a sum of (t, say) products of
two linear forms. Formally, any such formula for
bM gives the decomposition:

Equation 1 M =
∑t
i=1Mi, with Mi = ūi ⊗ v̄i.

Here ⊗ denotes exterior product and thus each
Mi has rank 1. The size of the formula with
this decomposition is simply the total number of
nonzero entries in all vectors ūi, v̄i. Equivalently,
setting U to be the n× t matrix whose columns
are ūi, and V the t × n matrix whose rows are
v̄i, we have

Equation 2 M = UV

Again, the size of the formula giving this decom-
position is the total number of nonzero entries in
U and V .

2.5 Superconcentrators

For a dircted acyclic graph G(V,E) denote by I
(resp. O) the subset of vertices V with indegree
(resp. outdegree) 0, and call them inputs (resp.

outputs). The size of G, C(G), is its number of
edges, and the depth of G, D(G) is the length
of the longest directed path in G (necessarily be-
tween from an input to an output).

G is called an n-superconcentrator if |I| =
|O| = n, and for every k and every two subsets
I ′ ⊆ I and O′ ⊆ O with |I ′| = |O′| = k there are
k vertex disjoint paths from I ′ to O′ in G.

Let cd(n) denote the size of the of the small-
est n-superconcentrator of depth d. Determin-
ing the functions cd for various values of d, as
well as finding explicit small and shallow super-
concentrators has been a major object of study
[Pi78, Pi82, DDPW]. We shall need the following
two upper bounds on the size of superconcentra-
tors of depth 2, the first being nonconstructive
and the second explicit.

Theorem 3 [Pi82] c2(n) = O(n(log n)2).

Theorem 4 [WZ93] There is a polynomial time
algorithm which for every n outputs an n-superconcentrator
of depth 2 and size n1+o(1). (The best bound on
the o(1) term is actually (log n)−1/2 [SZ94].)

In any depth 2 graph G, the vertices decom-
pose to three sets, V = I ∪ R ∪ O, which are
resp. the inputs, middle vertices, and outputs
(for any direct edge between I and O we can
insert a new vertex to split it in two, without ef-
fecting the size by more than a factor of 2). Let
|I| = |O| = n and |R| = t. Any assignment of
weights w (from a field F ) to the edges of G (i.e.
w : E → F ), naturally defines a matrix over F
as follows. First, replace every non-edge of G by
an edge of weight 0. Then, for every i ≤ t define
two n-vectors ūi (resp. v̄i) by ūik (resp. v̄ik) is the
weight on the edge (Ik, Ri) (resp. (Ri, Oj). De-
fine Mi = ūi⊗v̄i, and M = M(G,w) =

∑t
i=1Mi.

This gives a decomposition as in Equation 1, and
thus the fomula size upper bound:

Lemma 1 For every depth 2 graph G and weights
w, Lb(bM(G,w)) ≤ |E|.

2.6 Schwartz’s Lemma

An extremely useful lemma regarding the zeros
of multivariate polynomials was proved by Schwartz
[Sc80].
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Theorem 5 [Sc80] Let f ∈ F [X] be a polyno-
mial of total degree d, which is not identically
zero. Let H be any finite subset of F . Let w :
X → H be a random function, assigning to each
variable an independent random, uniformly dis-
tributed element of F . Then Pr[f(w) = 0] ≤
d/|H|.

2.7 Algebra

For this section our field is the reals R. For v̄ ∈
Rn, let

• |v̄| =
∑n
i=1 |vi| be the l1 norm of v̄,

• ||v̄|| = (
∑n
i=1 v

2
i )

1
2 be the l2 norm of v̄,

• |v̄|∞ = maxi |vi| be the l∞ norm of v̄.

Let A be an n×m matrix. |A|, |A|∞ and ||A||
will denote the norms of A viewed as an n·m vec-
tor. Assume A is symmetric. Then A is diagonal-
izable, i.e. there is an unitary matrix P such that
P tAP = λ̄(A)I, where λ̄(A) = (λ1, λ2, · · · , λn) is
the vector of eigenvalues of A, and we assume
that λ1 ≥ λ2 ≥ · · ·λn.

An important relation between the effect of
perturbing a matrix on its eigenvalues is the Hoffman-
Wielandt inequality (see e.g. [Wi65]).

Theorem 6 (Hoffman-Weilandt Inequality) Let
A,B be matrices with A−B symmetric. Then

||λ(A)− λ(B)|| ≤ ||A−B||

Some n× n matrices we shall see later are:

• H — the Sylvester matrix. Here n = 2k,
and considering the indices as subsets of
[k], Hij = (−1)i∩j . For all i ∈ [n], |λi(H)| =√
n

• DFT — the Discrete Fourier Transform.
Here ω is an nth primitive root of unity,
and DFTij = ωij . For all i ∈ [n], |λi(DFT )| =√
n

• PP — the Projective Plane (see [Ha86]).
Here n = p2 + p+ 1 for some prime p. PP
is a Boolean matrix, with exactly p+ 1 1’s
in every row and column. For all i ∈ [n],
|λi(PP )| = p ' n1/4

3 Times-Space Tradeoffs

In this section we show that there is no efficient
analog to Theorem 1 of Baur and Strassen. In
fact, the gap between TS(f) and TS(∆f) can
be nearly linear - the worst possible. We exhin-
bit families of matrices M for which TS(lM ) is
almost quadratic, while TS(bM ) is nearly linear.
The best gap we can achieve will depend on how
large entries in M are allowed to be (and hence
on the size of the base field F ), as well as how
explicit the matrices are.

Lemma 2 Let G(V,E) be any n-superconcentrator.
Let F be any field, and H any finite subset of it.
Let w : E → H be chosen uniformly at random.
Then

1. The probability that all square minors in
M(G,w) are nonsingular is at least 1 −
2n22n/|H|.

2. The probability that all square minors in
M(G,w) have at least half the maximum
rank is at least 1− n3/|H|.

Proof: Let V = I ∪ R ∪ O as before, the in-
pus, middle and output vertices of G, resp. Fix
s and an s× s minor N of M(G,w), say on rows
I ′ ⊆ I and columns O′ ⊆ O. Since G is a super-
concentrator, there are s vertex disjoint paths
from I ′ to O′. By renaming, we can assume wlog
that I ′ (resp. O′ ) are the first s vertices of I
(resp. O), and moreover that the disjoint paths
are formed by the edges (Ik, Rk) and (Rk, Ok) for
all 1 ≤ k ≤ s.

Fix the weights assigned by w to all other
edges in E in an arbitrary way, and let ak (resp.
bk) be variables (indeterminates) whose value will
be the weight assigned to (Ik, Rk) (resp. (Rk, Ok)).
Call this set of 2s variables Z. Thus our new
probability space now assignes independent ran-
dom weights from H to Z.

Let N̂ be our minor N before assigning values
to Z so the entries N̂k,m are polynomials over
these variables. ¿From the definition of M in
subsection 2.5 the following should be clear.

Claim 1 • For every 1 ≤ k 6= m ≤ s, N̂k,m

is a linear function.
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• For every k, N̂k,k is a quadratic polyno-
mial with exactly one monomial of degree
2 having a nonzero coefficient: the mono-
mial akbk.

Now we are ready to prove the two parts of
the theorem, starting with part (1). Consider
det(N̂), again as a polynomial in F [Z]. Clearly it
is not identically zero, as the monomial Πs

k=1akbk
has a nonzero coefficient, and is of degree 2n.
By Theorem 5 we know that Pr[det(N) = 0] =
Pr[det(N̂(w)) = 0] ≤ 2n/|H|.

Since the bound above holds conditioned on
every fixed choice of values w assignes outside Z,
it also holds over the whole probability space for
this fixed minor N . Thus the final bound follows
from the fact that there are 22n minors.

Proving part (2) is slightly more complicated.
Fix N , and values outside Z again. We shall as-
sign the values to ak, bk for a single k at a time,
going from 1 to s. If Nk denotes the k × k prin-
cipal minor of N (with N0 = 1), we will prove:

Claim 2 Pr[rk(Nk) = rk(Nk−1)] ≤ 2/|H|, where
the probability is taken for every fixed choice of
a1, b1, · · · , ak−1, bk−1, and a random choice of ak, bk.

Let us see why this implies part (2). Note
that the probability that the event in the claim
happens at least s/2 times (which will cause rk(N) ≤
s/2) is at most 2s(2/|H|)s/2. There are at most
n2s minors of size s, and it is easy to calculate
the validity of the bound in (2) by summing this
estimate over all s ≤ n.

To prove the claim, assume rk(Nk−1) = t,
and let P be any t× t nonsingular minor of Nk−1

(taking Q = N0 if t = 0. Add to P the (ap-
propriate entries of) kth row and column of N
(resp. N̂), to create the matrix Q (resp. ma-
trix of variables Q̂). It is clear that Pr[rk(Nk) =
t] = Pr[rk(Q) = t] = Pr[det(Q̂) = 0]. But
observe that det(Q̂) is a quadratic polynomial
in the two variables ak, bk. Moreover the only
degree 2 monomial (akbk) has coefficient det(P )
whcih is nonzero by the choice of P , so the claim
follows again form Schwartz’s lemma.

2

¿From Lemma 2, together with Theorem 2,
Theorem 3, Lemma 1 and Proposition 1 we de-

duce the main result of this section, namely a
nearly linear gap between TS(f) and TS(∆f).

Theorem 7 For every n, if |F | > n4, there is
an n× n matrix M with entries in F satisfying:

• Lb(bM ) = O(n(log n)2), and hence TS(bM ) =
O(n(log n)2).

• TS(lM ) = Ω(n2)

The last theorem in this section achieves a
similar gap can be obtained for small finite fields.
We demonstarte it only for F = GF (2).

Theorem 8 For every n, there is an n × n bi-
nary matrix M ′ so that the following bounds hold
for computations both over F = GF (2) and F =
Q.

• Lb(bM ′) = O(n(log n)2), and hence TS(bM ′) =
O(n(log n)2).

• TS(lM ′) = Ω(n2/(log n)2)

Proof: For any m set t = 4 logm, n = mt,
and G(V,E) a depth 2 m-superconcentrator. By
Theorem 2 there is an assignement w : E →
GF (2t), such that for every s ≤ m, every s × s
minor of M = M(G,w) has rank ≥ s/2 over the
field GF (2t). Now define the m × n matrix M ′

over GF (2), simply by expanding every entry in
M into its standard t-bit representation. The
bounds in the theorem hold for this M ′.

To obtain the lower bound on TS view the
columns of M ′ as partitioned into m blocks (each
corresponding to an original column in M), of t
bits each. Now consider any s× (n−m/2) minor
of M ′. It must contain at least m/2 complete
blocks. Since the sum of any subset of these rows
will yield 0t in any complete block iff that sum
yields 0 overGF (2t) in the corresponding column
of M , we immediately see that the rank of this
minor is at least s/2 over GF (2) (and thus also
over Q). Using the second part of Theorem 2,
and n = 4m logm the lower bound on TS(bM ′)
follow.

To obtain the upper bound on the formula
size, consider now the columns of M ′ as parti-
tioned to t blocks (corresponding to each bit po-
sition in the t-bit representation of elements in
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GF (2t)), of m columns each. Call the t matrices
derived from this decomposition M ′i (1 ≤ i ≤ t).
Let wi(e) be the ith bit of the weight assigned
by w to the edge e of G. It is clear that for ev-
ery i, M ′i = M(G,wi). But note that Lb(bM ′) ≤∑t
i=1 L

b(bM ′i ) ≤ tC(G). By taking G from The-
orem 3, and using n = O(m logm) again we get
the upper bound. 2

Note: In describing the matrices M(G,w) there
were two nonconstructive parts: the supercon-
centratorG (constructed probabilistically in The-
orem 3) and w that was chosen at random. As
we have explicit superconcentrators that are not
much larger (Theorem 4), it would be extremely
interesting to find an explicit weight assignment
w to the edges of any depth 2 superconcentrator
G, that will make all minors of M(G,w) nonsin-
gular. A way around this problem was suggested
to us by Ben-Or: simply use new variables for
the weights. This creates a polynomial of degree
4, but does establish the separation for explicit
functions. Formally, combining this idea with
Theorems 4, 8 gives:

Corollary 2 For every field there is a polyno-
mial time algorithm that for every n outputs a
degree 4 polynomial fn on n variables, satisfying
TS(fn) = O(n1+o(1)), and TS(∆fn) = Ω(n2−o(1)).

We conclude this section with a weak lower
bound on time-space trade-offs. While weak,
note that it implies that linear time algorithms
require linear space.

Theorem 9 Let M = M(G,w) be an n × n
matrix with all minors nonsingular (over some
field F ). Assume A is a bilinear straight line
program (over the same field F ) computing bM ,
with T (A) = T and S(A) = S. Then 2T/nTS =
Ω(n2).

Proof: Let T = nk/4. The straight line pro-
gram A defines a sequence σ of variables from
{x1, · · · , xn, y1, · · · , yn} of length at most nk/4,
in the order they appear in A. By the main
lemma in [AM88], there are subsets X0, Y0 of
the x and y variables, respectively, such that
|X0| = |Y0| = n/(2k) satisfying the following
property: if we remove all other variables from

σ, the resulting subsequence has at most k alter-
nations between x and y variables.

Setting the remaining variables to 0, we get a
reduced program A0 computing the bilinear form
on the variables X0, Y0, defined by the submatrix
M0 of M on rows X0 and columns Y0. Note that
rk(M0) = n/(2k). Assume wlog that A uses a
different set of registers for linear forms of the
x’s (say RX) and of the y’s (say RY ). Then A0,
by the property above, can be partitioned into k
“stages” such that in any x-stage multiplications
can involve only registers from RY (but not y
variables), and conversely for y-stages.

The lower bound now follows from the fol-
lowing easy facts.

1. Every multiplication gate creates one bilin-
ear form of rank 1.

2. Since |RY | ≤ S, the dimension of the span
of rank 1 bilinear forms generated in one
x-stage is at most S (and analogously for
y-stages).

3. The rank of the output of A0 is at most the
dimension of the span of all rank 1 bilinear
forms it computes.

4. Rank is subadditive, so the total dimension
is at most Sk, yielding Sk ≥ n/(2k).

2

4 Circuits and formulae with small
constants

For this section we restrict attention to the real
and complex number fields. We impose the fol-
lowing restriction on our circuit: any plus gate
computes a linear combination of its inputs, with
coefficients of absolute value at most 1. For any
polynomial f , (and similarly for a set of polyno-
mials) denote by C1(f) and L1(f) the size of the
smallest circuit and formula computing f . We
note that the analogs of Propositions 2, 3 hold
for C1 as well.

As we look at asymptotic complexity, the choice
of bound 1 is clearly arbitrary, and can be re-
placed by any other constant. Also, it is clearly
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interesting to study C1 and L1 only for poly-
nomials with small coefficients. There are no
examples of such polynomials for which the re-
stricted model is significantly weaker than the
general one. This question becomes especially
interesting, since nontrivial lower bounds can be
proved in the restricted model.

The first to prove such lower bounds was Mor-
genstern [Mo73]. He observed that the standard
FFT algorithm for the Discrete Fourier Trans-
form works in the restricted model. If DFT de-
notes the n × n DFT matrix, then C1(lDFT ) ≤
1
2n log n. Morgenstern showed that this is best
possible.

Theorem 10 [Mo73] C1(lDFT ) ≥ 1
2n log n

The proof uses a very elegant volume argu-
ment. In fact, his proof yield, for any matrix M ,
the lower bound

Theorem 11 C1(lM ) ≥ log |det(M)|

Note that det(M) = Πiλi, where the λi’s
are the eigenvalues of M . For the DFT and
Hadamard mtrices all eigenvalues are

√
n in ab-

solute value.
Very recently Chazelle [Ch94] used more re-

fined entropy argumnets to derive similar bounds
in a slightly stronger model, for problems arising
from 2-dimentional range-query computations.

An immediate question, is whether such lower
bounds can be proved for one function (rather
then a set of functions). The immediate answer
follows from observing that the construction of
Baur and Strassen (Theorem 1) does not intro-
duce any new constants (except 1). This implies
the following circuit lower bounds on explicit bi-
linear functions.

Corollary 3 For every M C1(bM ) = Ω(log |det(M)|).
In particular, C1(bDFT ), C1(bH), C1(bPP ) = Ω(n log n).

Next we turn attention to formula size of bi-
linear functions. We again stress that in the un-
restricted model, the only nontrivial lower bound
on explicit bilinear forms is the the Ω(n log n)
bound in the end of the previous section. For
the restricted model, such a lower bound trivially
follows the circuit lower bound above. However,

we can do much better, in the main theorem of
this section.

Theorem 12 Lb1(bH) = Ω(n
5
4 ), Lb1(bPP ) = Ω(n

9
8 )

Comments While we cannot obtain a general
clean expression for the formula lower bound in
the above Theorem 12, the proof will reveal that
the clean form for the examples we have is

Lb1(bA) = Ω(
∑
i

√
|λi(A)|)

There are a few things to note with respect to
this form.

• It is very interesting to compare it to the
circuit size lower bounds in Theorem 11
and Corollary 3, in their dependence on the
spectrum of the matrix, namely

C1(bA) = Ω(
∑
i

log |λi(A)|)

• It will be clear from the proof below that a
similar formula lower bound can be proved
for other ”regular” matrices A. These in-
clude, for example, all incidence matrices
of points vs. subspaces in projective ge-
ometries, and more generally block designs
[Ha86].

• This form of a formula lower bound is tight
in general. For any diagonal matrix A it
can be easily seen that Lb1(bA) = O(

∑
i

√
|λi(A)|).

• Recently [Lo95] generalized our proof and
was also able to obtain size-depth tradeoffs
for the the liner function lA.

Now we return to the proof of Theorem 12.
Before proving it, we need the following simple
lemma.

Lemma 3 For every U, V matrices such that UV
diagonalizable,

||U ||2 + ||V ||2 ≥ 2|λ(UV )|

Proof: First we observe that without loss of gen-
erality, UV = λ(UV )I. (Otherwise, let P be
the unitary matrix for which PUV P = λ(UV )I,
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and set U ′ ← PU , V ′ ← V P and note that
||U ′|| = ||U || and ||V ′|| = ||V ||.) The rest fol-
lows from the basic fact that a2 + b2 ≥ 2ab for
any two reals a, b.

2

Proof: (of Theorem 12) Assume that Lb1(bA) ≤
1
10nd, for some n×n diagonalizable matrix A and
some parameter d. Then by the decomposition
of Equation 2, and the fact that the formula uses
only bounded constants, ∃U, V s.t. UV = A and
|U | + |V | ≤ 1

10nd. Let SU (resp. SV ) be the
set of rows of U (resp. columns of V ) having
entries larger than d in absolute value. Clearly,
|SU |, |SV | ≤ n

10 , so S = SU ∪SV satisfies |S| ≤ n
5 .

Let U ′ (resp. V ′) be the matrix U (resp. V )
in which we replace the rows (resp. columns) of
S by zeros. Thus |U ′|∞, |V ′|∞ ≤ d and with the
bound above we have ||U ′||2 + ||V ′||2 ≤ nd2.

Let A′ = U ′V ′. Note that A and A′ differ
only in the rows and columns indexed by S. Thus
we have:

• For A = H , ||A−A′||2 ≤ 2
5n

2

• For A = PP, ||A−A′||2 ≤ 2
5n

3/2

By the Hoffman-Wielandt inequality, and the
properties of these matrices listed at the end of
section 2.7, at most 4

5 of the λis in H’ (resp.
PP’) differ from the corresponding ones in H

(resp. PP) by more than
√
n/2 (resp. (n/2)

1
4

; note that this bound uses the fact that every
row and column in PP has only O(

√
n) 1’s).

Thus |λ(H ′)| = Ω(n3/2), and |λ(PP’)|Ω(n5/4).
By Lemma 3, we are done. 2
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