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1 Introduction

We establish three lower bounds for problems of the fol-

lowing kind: Given n weighted points in Rd and n axis-

parallel boxes, compute the sum of the weights within

each box. Problems of this sort have been extensively

studied: see [6, 8, 13, 14, 16, 19] for surveys or gen-

eral introductions to the subject of range searching. We

prove that:

● If both additions and subtractions are allowed, then

the problem requires Q(n log log n) arithmetic op-

erations. This is the first general result for the

group model. Note, however, that it falls short of

the best known upper bound of O(n log n). The

proof uses the spectral method of [5]. This reduces

the problem to that of finding a set system A such

that the eigenvalues of ATA are large. We do this

nonconstructively by using a mixture of algebraic

and probabilistic arguments. The key ingredient of

the proof is a discrete version of Roth’s method of

orthogonal functions. This is a powerful technique

from discrepancy theory, which we hope will find

further use in complexity theory.

● If subtractions are disallowed (the semigroup

model) then a much stronger lower bound can be

established, i.e., Cl(n(log n/ log log n)d-l), which is

nearly optimal. The semigroup model corresponds

to the monotone arithmetic circuit complexity of

the problem, so one should expect lower bounds

to be easier to prove. Actually, the proof is sur-

prisingly simple: it involves little more than the

Chinese Remainder Theorem and basic properties

of Halton-Hammersley sequences. The on-line ver-
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sion of the problem was treated in [4, 10] and re-

quired fairly complicated arguments. The off-line

case was open,

Our last result concerns the same problem as above,

but with simplices replacing boxes. Again, a quasi-

optimal lower bound can be established in the

semigroup model, i.e., Q(n2-2/[d+]J(log n)–5/2). A

practical observation is that when d is large the

bound is basically quadratic, which shows that the

naive algorithm (checking which point belongs to

which simplex, one pair at a time) is the method

of choice. The proof makes use of recent results on

Heilbronn’s problem [3] and techniques from [7].

Again, the on-line version of the problem has been

(almost completely) solved [3, 11, 18], while the off-

line case was open. See also [9] fclr related results

on Hopcroft’s problem in two dim(msions.

The Group Model

Given n weighted points in the plane, with weights cho-
sen in an Abelian group (G, +), andl n axis-parallel

boxes, we consider the problem of computing the sum

of the weights of the points within each box. Obviously

this is the same as computing Ax, where A is the inci-

dence matrix of the associated set system and x is the

vector of weights.

In the group model, a circuit (or straight-line pro-

gram) encodes the map A and is required to compute

Ax for any z E G“, where (G, -I-) is an arbitrary Abelian

group. There are two types of gates: A regular gate

takes a pair (a, b) as input and it outputs a + b or a – b.

A heip gate outputs ~(a, b), where j is any function from

G2 to G. The motivation behind the use of help gates

is that often the group G can be embedded into a more

complex structure, say, a ring or a field, and other op-

erations might be possible. The use of help gates leaves

open that possibility without restricting the generality

of the model.

For the purpose of the proof we assume that G is the

additive group of real numbers. Let Al ~ . . > &

be the eigenvalues of ATA. The spectral lemma ofa fee and~or spedic permission.
STOC’ 95, Las Ve as, Nevada, USA
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[5] states that any circuit for computing Az is of size

fl(max~ (k – h) log ~~), where h is the number of help

gates. Thus we construct a set of n points and a set of

n axis-parallel boxes such that any eigenvalue of ATA of

rank slightly less than n/4 is at least (log n)a(l). This

immediately implies that computing Ax requires a cir-

cuit of size fl(n log log n), even in the presence of up to

roughly n/4 help gates.

First, we build a large N x n set system B, from which

we extract an n x n set system A that satisfies the lower

bound. To construct B we use a set P of n points given

by a (well-chosen) two-dimensional Halton-Hammersley

subsequence; for boxes we take the southwest quadrants

anchored at the N vertices of a very fine square grid.

Letpl~.._ > ~. be the eigenvalues of BTB. (In the

following we make no distinction between a set system

and its incidence matrix. ) We go through the follow-

ing sequence, from which the lower bound follows by

application of the spectral lemma: 1

●

●

●

Step 1: Show that p~ > (n – k + l) N(logn)/n2

(Lemma 2.3). By the Courant-Fischer character-

ization of eigenvalues, this entails estimating the

minmax value of the Rayleigh quotient II13x 11~/1lxll~

over all (n – k + I)-dimensional subspaces. By us-

ing Roth’s method of orthogonal functions [2, 17]

we derive a lower bound on the hybrid ratio

llBz112/llzlll, for any z # O (Lemma 2.2). Un-

fortunately, we need the L2 norm in the denom-

inator. The standard inequalities relating the L1

and L2 norms are too crude for our purposes, and

we need a probabilistic argument to produce the

desired lower bound (Lemma 2.3).

Step 2: Prove the existence of an n x n subma-

trix A of B such that det ATA = (log n)’–”(”)

(Lemma 2.4). Step 1 yields a lower bound on

det BTB = ~k pk. The Binet-Cauchy formula

leads to the (nonconstructive) existence of A.

Step 3: Show that the k-th largest eigenvalue ~k of

ATA is at least (log n)ntl), for any k up to roughly
n/4 (Lemma 2.5). Since det ATA = ~k ~k, such

a bound follows from the previous step, provided

that we can bound the low-ranked eigenvalues from

above. This is done by exhibiting large enough in-

variant subspaces within which the spectral norm
of the map ATA is low.

Remark: Step 3 makes use (of all things!) of data

structuring techniques for range searching. It is ironic

that proving a lower bound on the complexity of range

searching should require the use of data structures. But,

] We shall use the notation >> or << to denote inequality up to

a constant multiplicative factor.

of course, one consequence of this work is that low spec-

trum is a precondition for the existence of efficient data

structures for linear maps, and hence for range search-

ing. So, with hindsight it is not all that surprising.

Theorem 2.1 Range searchtng with respect to n points

and n azzs-parallel boxes requires Q(n log n log n) group

operations m the worst case. This remains true euen in

the presence of n/4 – m help gates, for any fixed E >0.

The theorem shows that up to n/4 help gates cannot

help. On the other hand, it is easy to see that over

the reals 2n – 1 help gates suffice to make the problem

trivial. One should also note that without help gates the

problem is easily solved in O(n log n) time on a RAM.

The lower bound holds in any dimension higher than 1.

The obvious open question is whether @(n log log n) is

the right bound. The spectral method seems unlikely

to provide an answer to this question. For example,

one would expect the dimension of the ambient space

to play a role, something which the method seems to

rule out.

The Proof of Theorem 2.1

Let m be a large power of two and let n = m/4. The

n-point set P is a subset of the classical bit-reversal

m-point set:

Q = {(1/(2m)+c(I+), l/(2m)+ ~/m) :0 s k < m},
where c(k) = ~i>O b(i)/2i+l and {b(i)} is the binary

expression for k, i~e., k = ~i>o 6(i)2i. For any 1< k <

log n, let Xk be the grid obtai~ed by dividing [0, 1]2 into

m axis-parallel rectangles of size 2–k x (2k/m), Each cell

u of Xk is a rectangle of area l/m that contains exactly

one point q of Q. We say that q is well-centered for Xk

if is lies near the center co of a; specifically, within the

box (a + cO)/2. A simple inductive proof shows that
at least half the points of Q are well-centered for Xk.

It follows that at least m/4 points of Q are each well-

centered for at least (log n)/3 grids Xk. We define P to

consist of these m/4 points.

Consider the (m – 1) x (@ – 1) square grid ~

covering [0, 1]2, where N = (mz + 1)2, Each row of

the N x n matrix B is the characteristic vector of the

subset of P lying in the southwest quadrant anchored

at a distinct grid point; in other words, for each grid

point (z, y) there is a distinct row in B corresponding

to the quadrant (–w, z] x (–co, y]. Note that the N

rows are not all distinct. Next, we show that the set

system B has a high spectrum. We do this in two steps:

we lower-bound successively the L2 norm of Bx and the

eigenvalues of B~B.
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Lemma 2.2 For any z c R“, and by Cauchy-Schwarz,

Proof: Fix z = (*1, . . . . an) E Rn: each x, corresponds

to a distinct point of P; for convenience we shall ignore

this distinction. Without loss of generality, we can as-

sume that

(1)

2,>0

Our approach is a variant of Roth’s method of orthog-

onal functions [2, 17]. Given 1 < k < log n, we say that

u is k-good if it contains a well-centered point xi and

xi > 0. We assign a weight to each grid point q of ~ as

follows: Let o be any cell of Xh that contains q;

●

●

If u is not uniquely defined (because q lies on its

boundary) or if u is not k-good, then assign q a

weight of O.

Else, subdivide a into four equal-size quadrants

(similar to u): Assign q a weight of 1 it it lies

in the interior of the northeast or southwest quad-

rant; assign a weight of —1 it it lies in the interior

of the northwest or southeast quadrant. It q lies

elsewhere, assign it a weight of 0,

One might recognize in the weight assignment a mod-

ification of the standard two-dimensional Rademacher

function. Let gk e R N be the column vector of weights

(with the coordinates in the same order as the corre-

sponding rows of B). It is easily checked that the log n

vectors gk are orthogonal. Let G be the matrix whose

columns are the gh’s and let u be the column vector of

R]”gn whose coordinates are all ones. It follows that

Summing separately over each k-good cell a yields

g~Bx >> ~ ~ {xi C k-good cell of Xk }.

i

To see why, when summing up the weighted coordinates

of Bx over each k-good cell, regroup each point with its

three symmetric translates (one in each subquadrant)

and apply the inclusion-exclusion formula. Finally, use

the well-centeredness to argue for the presence of the

factor N/n. We omit the details, which are straight-

forward. Since each xi >0 is well-centered for at least

(log n)/3 grids, then by (1)

n

We are now ready to complete the first step of our

lower bound proof and estimate the eigenvalues of BTB

from below. Let pl ~ . . . > p. ~ O be the eigenvalues

of BTB.

Lemma 2.3 For any 1< k < n, the k-th largest etgen-

value of B7B satisfies,

~k>(n–k+l)Nlogn
~2

Proofi Let {vi} be an orthonormal eigenbasis for BTB,

where Va is associated with pi, and let f’ be the invari-

ant subspace spanned by vh, . . . . Vn. By the Courant-

Fischer theorem, we know that

llBxll~
~h = max

O#XEF ‘“

The difficulty is that in Lemma 2.2 the L2 norm of Bx

is bounded in terms of the L1 norm of x. On the other

hand, the inequality Ilxlll z Ilzllz is too weak for our

purposes, so we argue (probabilistically) that the sub-

space F is “big” enough that it contains vectors whose

Ll and L2 norms deviate from each other substantially.

Specifically, we argue that the intersection of a large

enough L1-sphere with F must necessarily contain a

short vector (in the L2 sense). Of course, this will fol-

low if the same is true of any one of the hyperplanes

bounding the L1-sphere in question. We show that a

random bounding hyperplane satisfies this property.

Let ( be the column vector obtained by expressing x

in the basis {vi}: we have ~ = Qz, where Q = (qij) is

the orthogonal matrix whose rows are the eigenvectors

vi. Let R = (rij ) be the matrix obtained by replacing

each of the first k— 1 rows of Q by a row of zeros. Now let

?J=(W, . . ..Y?2 ) be a random vector chosen uniformly

in {–1, l}n.

EIPW = h E (5W)2
i=l j=l

n

(Gu)TBz > *II+
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This implies the existence of a vector y 6 {–1, I}n such

that llRyll? z n–k+l, and therefore the (n–k)-flat

defined by-the equations,

{

(,=0 (l<i< /c)

(QY)Tt “ /=7iTT,

cuts the unit-radius ball centered at the origin

be a point of the intersection. Since & = Qx,

Let x

Applying Lemma 2.2, we derive

u

The determinant of BTB is the product of the eigen-

values, therefore

(2)

It is now easy to exhibit a hard set system A for or-

thogonal range searching and complete the second step

of the lower bound proof.

Lemma 2,4 There exists an n x n subrnatrix A of B

such that

det ATA = (log n)n-”(nl.

Proofi By the Binet-Cauchy formula,

( )
2

det BTB =
x

det B
~1 ~2 . . . jn

12. ..n
l~jl<...<j~~N

Therefore by (2) there exists an n x n submatrix A of

B such that

( )
2

det ATA = det B
~1 j2 . . . jn

12... n

()

N
–1

> det B7B

“ n;)” (:)” (:)” (W)n

~ (log n)n-”(n).

•1

We can now move on to the last step of the lower

bound proof. Let Al ~ . . . ~ & ~ O be the eigenvalues

of ATA.

Lemma 2.5 For any fixedc >0 and any k < n/4–en,

we have ~k = (logn)”(l).

Proofi The intuition is this: write down some linear

constraints which, if satisfied, allow us to express the

map A by a matrix with only few ones. Then, by using

standard matrix norm inequalities, argue that within

the subspace satisfying the constraints, IIAzI 12/1 IZI Iz is

always small. The variational characterization of eigen-

values allows us to conclude. We flesh out these ideas

below.

Place the points of P in bijection with the leaves of

a complete binary tree (from left to right): each node

v of the tree is associated with the vertically sorted list

NV of the points stored at the leaves at or below v.

This is a classical range tree construction [14]. Any set

specified by a row of A can be partitioned into fewer

than u = log n + 1 subsets: each one is a prefix of a list

No and all the relevant lists NV are on different levels

of the tree. Thus, we can create v set systems, one

for each level, such that their n x n incidence matrices

Al, ..., AV satisfy A = ~i A;.

For every level i, perform the following operations.

First, check whether some of the rows in Ai are identical:

p identical rows all correspond to the same prefix in

some NV. Take the last element in the prefix (i.e., the

point with highest y-coordinate) and duplicate it p –

1 times within the list N.. Note that the total size

of the augmented lists at level i is at most 2n. Next,

consider each list No (after the previous preprocessing)

and subdivide it into contiguous lists of r (or fewer)

points; r is a parameter to be specified later.

To summarize, at each level we have a collection of

at most 2n/r lists of size exactly r along with a number

of other lists of size less than r. We can now remove

all the duplicates, as their presence was needed only to

calibrate the size of the lists. (Note that in the process

some lists might become empty.) Any subset specified

by a row of Ai can be written as a union of full lists and

a remamder set of size less than r. Thus, if H is the

matrix whose rows are the characteristic vectors of each

full list (over ali Ai ), then the restriction of Ai (viewed

as a linear transformation) to Ker H can be expressed by

an n-by-n matrix Ci, whose rows have each fewer than

r ones. Because of the earlier duplication of points in

the lists, note that similarly no column of C’i can have

more than r ones. The rank of H is at most 2u7z/r,

therefore
2vn

codim Ker H < —.—
r

(3)

It is a standard result in matrix theory [12] that the

spectral norm of a matrix M satisfies

736



and therefore, IIC, II: ~ rz. Using the fact that

we find that, for any x ~ Ker H, by the triangular in-

equality,

By the Courant-Fischer characterization of eigenvalues,

we know that

IIAXII;Jj = m~ max —
O#Ze F 11211: ‘

where the minimum is taken over all subspaces of di-

mension n – j + 1. Fix j such that v ~ j < n; by (3),

setting r = [2vn/(j – 1)1 makes the dimension of Ker H

exceed n – j, therefore, for n large enough,

Aj ~
max IIAxII:

O#z:Ker H —< ‘2”2 < ‘(*)21141:

Note that this inequality remains valid if 1 < j < v,

because of the trivial upper bound, Aj s nz. By Lemma

2.4,

k–1

(rt-k+l)bg~k > log det ATA – ~ log Aj

j=l

> (n - o(n)) loglogn

– k(o(l)+ 210grz-210gk

+ 410glogn).

Choosing k = n/4 – &n, for any fixed & >0, gives ~k =
(logn)~(’). ❑

The lower bound for range searching follows directly

from the spectral lemma, which proves Theorem 2.1.

Note that over the reals the problem can be solved en-

tirely with only 2n – 1 free computations: in n – 1 steps

encode the vector (Z I ~. . . . Xn ) into a real number. Then

in another n steps, answer the n range queries. ❑

3 The Semigroup Model

In the semigroup version of range searching, subtrac-

tions are not allowed (or not defined). In other words,

the model of computation is a straight-line program or

circuit: each (charged) step is the form,

,Z4--Z?+?J,

where z and y are previously computed variables or in-

put weights. It is possible to weaken the model slightly

(and hence, strengthen our results) by relaxing the as-

sumption that the program should work for all commu-

tative semigroups. It suffices to requirs that it should

work for at least one faithful semigroup, This is a semi-

group over which any two identically equal linear forms

must have the same variables (though not necessarily

the same coefficients) – see [3, 4, 18] fc)r formal defini-

tions.

Theorem 3.1 Range searchtng with respect to n points

and n axts-parallel boxes m Itd requires on the order of

n(log n/ log log n)d–l semzgroup operations.

Theorem 3.2 Range searching wzth respect to n points

and n simplices in R,d requires on the order of
#-z/( d+l)(logn )-5/2.

Complicated arguments were used in [3,4] to treat the

on-line cases. As it turns out, the off-line case is consid-

erably easier. The bound of Theorem 3.1 is fairly close

to the known upper bound of n(log n)d-la(n) [7]. The

bound of Theorem 3.2 is within a polylo,garithrnic factor

of the best current upper bound of n ~-~j(d+l)(~ogn)o(l)

[13].

The proofs of both theorems are based on a simple

graph-theoretical lemma. Let A = (a,j ) denote the n x n

incidence matrix of a range searching problem. Suppose

that A has no p x q submatrix of ones, An equivalent

formulation is to say that the correspc,nding bipartite

graph has no (p, q) complete bipartite subgraph.

Lemma 3.3 If A w an n x n incidence matrax with no

p x q submatrix of ones, then the compl~xtty of comput-

ing Ax over a semtgroup is at least on the order of

: (x%) -;
z,3

Proof: Every gate of the circuit adds two linear forms

together: we say that the gate is heavy if the linear form

it outputs, ~j aj Xj (aj ~ N+), involves q variables x~

or more. Given a row i, let AZ = ~j a,j. Because

of faithfulness, the output gate g computing the form

~j a,jxj is connected to A, input variables xi,, xi,, etc.

Consider a subtree T~ of the circuit graph with g as its

root and x~l, xiz, . . . at its leaves. Note that the max-

imal subtrees of Ti with at most q lei~ves (i. e., those

whose root’s parent has more than q descending leaves)

are disjoint. Each such subtree has one fewer 2-child

nodes than leaves, There are at least Ai/q such sub-

trees, so they account for at most A, – A, /q 2-child

nodes. This shows that at least Ai /q — 1 internal nodes

of Ti correspond to heavy gates. By faithfulness again,

no heavy gate can provide a node for p trees Ti. Indeed,

this would create a p x q submatrix of ones in A. The

lower bound follows immediately. ❑
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The Proof of Theorem 3.1

The set of input points is obtained from a Halton-

Hammersley sequence [2]. Let PI < P2 < ~.” < Pal-l

be consecutive primes. Any integer m has a unique de-
composition in base p~: m = ~i>o bk (i)p~. We define

the function,
—

This allows us to construct the input point set:

is a

box

●

●

●

Any interval of the form [M/p~, (M + 1)/#~), where M

nonnegative integer, is said to be of type(k, j). A

B is special if it is of the form 11 x ~. . x Id, where

B g [0, l]d;

~1, . . ..l-l are inter-

vals of type (l, jl), ..., (d – 1, j&~), respectively,

fOr SOme integers jl, . . . . jd- 1 z 0;

Id is of the form [MplQ/n, (M + l)plQ/n), where

Q = P?”~I&-i and ~ isan integer.

We motivate this definition. First, observe that know-

ing which (k, j)-interval contains ~k (m) amounts to the

knowledge of the digits bk (0), . . . . bk(j – 1). Thus, if

we know that the point of P indexed by m lies in the

boxll x... x l&1 x [0, 1], then we know the residues

classes of m modulo d~l, ..., p$_–ll, respectively. BY the

Chinese Remainder Theorem, this implies that we know

m modulo Q. It follows at once that each of the boxes

I~x... x ~&l x [lQ/n, (i+ I)Q/n) contains at most one

point of P. Suppose that

(4)

O<k<d

Because p?; 5 n, for any O < k < d, any special box B
that satisfies (4) contains exactly pl points of P. The

number N of such boxes is equal to

N=
X u & ~Pl~o;.,I&~

il,...,jl?o?o O<k<d

>
x (:- ~ &)

P:l x...xp~_~l <n/2p1
O<k<d

log n d-1

N‘>:k)gp&~)

By choosing pl to be around (log n)d-l, we can find n

boxes that define a set system whose incidence matrix

A has at least n(log n/ logp~-l)d-l ones (note that we

may have to pad with rows of zeroes). We will now

show that A is square-free (i.e., has no 2 x 2 submatrix

of ones).

Consider the intersection of the special box B with

another special box B’ with parameters (j~, ..., j~_ ~).

Without loss of generality, assume that Q < Q’. (Note

that the case Q = Q’ corresponds to an empty inter-
section.) The intersection of two intervals of type (k, j)
and (k, j’), j’ < j, is either empty or an interval of type

(k, j), This implies that B n B’ is a box JI x ~.0 x 1~,

where Jk (k < d) is an interval of type (k, ELX{jk, j~ }),

and Jd has length at most PI Q/n. Assume that the box

B n B’ contains a point of P and let m be its index.

By the Chinese Remainder Theorem, m is completely
max{jk,j~}

specified modulo ~ pk , and hence modulo pi Q,

for some O < i < d. We know that the point’s d-th

coordinate m/n lies in an interval Jd of length at most

P1 Q/n, therefore m is uniquely determined. Thus, two
special boxes intersect in at most one point of P. It

follows that A is square-free, and by Lemma 3.3, the

proof of Theorem 3.1 is complete. ❑

The Proof of Theorem 3.2

We exhibit a set P of n points in Rd along with a col-

lection {Sg } of n slabs, such that: (i) each slab contains
roughly “1 ‘2/(d+lJ points, and (ii) the intersection of

any k z log n slabs contains at most a logarithmic num-

ber of points. The proof technique is similar to [7]; there

are some differences, however, so we provide the details

below.

Let Iiq be the hyperplane of equation (p, q) – llgll~ =

O: this is the hyperplane normal to Oq passing through

q. Fix a parameter w; we let S~ denote the slab of

width w consisting of all the points at most w/2 away

from 11~. To specify the collection of slabs {S~ }, it

thus suffices to provide a set Q of n points q. First,

we show that if any d of the points of Q are sufficiently

spread apart (in a sense to be formalized below) then

the corresponding slabs have a small intersection. Next,

by appealing to the results on Heilbronn’s problem of

[3], we are able to exhibit a suitable set Q. Finally,
throwing in a set of random points in the unit cube

provides P and completes the construction of the set

system. We now give the details of the construction of

Q. (We use the notation void (A) and conv (A) to refer
to the d-dimensional volume and the convex hull of A,

respectively. )

Lemma 3.4 Let ql, . . . . qd be d points in [0, l]d,and

assume that the central projection q: of each qi on the
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hyperplane ZI = 1 also lies in [0, l]~. Then

d

Void ({
)

n Sg, << Wd/VO]d_l Conv ~~, . . . . ~~} .

%=1

Proofi Let [uI, ..., Ud] denote the matrix whose

columns are the vectors Ui spanning the parallelepipeds

(1 S’q,. Note that each “ui has the direction specified by

the intersection of hyperplanes bounding the slabs S~,,

for all j # i. We easily derive

(
det [ul, . . ..~d]T[~l. . . .,qd]) = wd~llqi112,

8

and therefore

<< wd/ldet [q~, . . ..q~]l.

from which the lemma easily follows. ❑

Choose an integer rn = lconwj, for some constant

co > 0. By [3] (Theorem 4.10), we can place m points

in(l, O,..., O)+ [0, l]d-l so that the convex hull of any

k z log m points has (d – 1)-dimensional volume at

least Q(k/m). For each such point q’, place points on

the segment Oq’ at intervals of length w. This gives us

O(con) points q: if w is small enough then, for at least

a constant fraction of them, the slab S’q intersects the

cube [0, l]d in a polytope of volume Q(w). By choosing

co large enough, we can find n such points, which thus

form the set Q. To summarize, the set Q consists of n

points such that for any q c Q,

VOld Sq n [0, I]d >> W. (5)

Also, for any ql, . . . . qk c Q, with k 2 logn, either at

least two qi’s have the same central projection q~, in

which case void n~=l S’q, = O, or else

Void–l (conv{q~, . . .,q~}) >> ~.

By triangulating the convex hull of q;, . . . . qj, using
O(kMd-1)/z~ ) simplices, we derive the existence of d

points, say, qj, . . . , q~, whose convex hull has volume

at least f2(k2– [dlzl /m). By Lemma 3.4, this shows that

in all cases

k d

VOld n & < VOb n Sq, << nwd+lkrd’2’–2. (6)

2=1 t=l

We define the point set P by choosing n points in

[0, I]d at random uniformly and independently. Let

w=bn -W~+l)(logn)c, for some fixed b > 0 and

c = (3 — [d/21 )/(d + 1). Set k ❑= Pogn]; we can

ensure that k-wise intersections of ~slabs contain only

O(log n) points. We use standard Chernoff bounds be-

low; see e.g., [1]. By (6) there exists a constant c1 >0

such that the probability that n~=l Sg, contains more

than c1n2wd+lk[di21-2 = @(log n) lpoints is less than
e-fl(bd+l logn)

, which is less than n-d for b large enough.

Thus, with probability greater than 1 – (~) n-d, no k-

wise intersection of slabs contains more than O(log n)

points. Note that by (6) the factor of ~) can be re-

placed by ~), so the probability is actually greater than

1/2.

Similarly, by (5) the probability that a given S* con-

tains fewer than c2wn points is less than e–n(w”~ <

e ‘n”4, for some constant C2 >0. So, with probability

greater than 1/2, all the slabs S’q contain C2wn points or

more. We derive the existence of a set P such that every

slab S, (q c Q) contains Q(wn) points and no subset of
[log nl slabs has an intersection containing more than

O(log n) points.

The set P and the slabs S, form a set system A

with no p x q submatrix of ones, where p = [log nl

and q = a log n, for some constant a large enough.

It follows from Lemma 3.3 that the semigroup com-

plexity of the map z ~ Az is Q(wn2/ log2 n). Since

the constant c is at least –1/2, this bound is at least

f2(n2-2/(d+lJ(log n)-5/2), which prcwes Theorem 3.2.

Note that the polylogarithmic factor can be tightened

a little by keeping the exact value of c. ❑

4 Concluding Remarks

One of the most intriging open problems is, of course,
to improve the O(n log log n) lower bound, or to ex-

tend it to rings or fields. A more modest goal might

be to increase the number of allowiible help gates to,

say, (1 – c)n. Also, the discrepancy theory literature is

vast and rich in powerful mathematical techniques. To

establish further links to complexity theory would be

very interesting.
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