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Abstract

We propose and analyze a distribution learning al-

gorithm for a subclass of Acyclic Probabilistic Fi-

tzite Automata (APFA). This subclass is character-

ized by a certain distinguishability property of the

automata’s states.

Though hardness results are known for learning

distributions generated by general APFAs, we prove

that our algorithm can indeed efficiently learn dis-

tributions generated by the subclass of APFAs we

consider. In particular, we show that the KL-

divergence between the distribution generated by

the target source and the distribution generated by

our hypothesis can be made small with high confi-

dence in polynomial time.

We present two applications of our algorithm. In

the first, we show how to model cursively written

letters. The resulting models are part of a com-

plete cursive handwriting recognition system. In

the second application we demonstrate ho w APFAs

can be used to build multiple-pronunciation mod-

els for spoken words. We evaluate the APFA based

pronunciation models on labeled speech data, The

good performance (in terms of the log-likelihood

obtained on test data) achieved by the APFAs and

the incredibly small amount of time needed for

learning suggests that the learning algorithm of AP-

FAs might be a powerful alternative to commonly

used probabilistic models.

1 Introduction

An important class of problems that arise in machine learn-

ing applications is that of modeling classes of short sequences

with their possibly complex variations. Such sequence mod-

els are essential, for instance, in handwriting and speech

recognition, natural language processing, and biochemical
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sequence analysis. Our interest here is specifically

cling short sequences, that correspond to objects

“words” in a language or short protein sequences.

in mod-

such as

The common approaches to the modeling and recognition

of such sequences are string matching algorithms (e.g., Dy-

namic Time Warping [16]) on the one hand. and Hidden

Markov Models (in particular ‘left-to-right’ HMMs) on the

other hand [11, 12]. The string matching approach usually

assumes the existence of a sequence prototype (reference

template) together with a local noise model, from which the

probabilities of deletions, insertions, and substitutions, can

be deduced. The main weakness of this approach is that

it does not treat any context dependent, or non-local varia-

tions. without making the noise model much more complex.

This property is unrealistic for many of the above applica-

tions due to phenomena such as “coarticulation” in speech

and handwriting, or long range chemical interactions (due to

geometric effects) in biochemistry.

On the other hand, HMMs, which are popular in speech

recognition and have better ability to capture context de-

pendent variations. suffer from both practical and theoreti-

cal drawbacks. The commonly used training procedure for

HMMs is based on theforward-backward algorithm [2]. This

algorithm is guaranteed to converge only to a [ocal maximum

of the likelihood function. Furthermore, there are theoretical

results indicating that the problem of learning distributions

generated by HMMs is hard [1, 71. In addition, the success-

ful applications of the HMM approach occur mostly in cases

where its full power is not utilized. Namely, there is one,

most probable, state sequence (the Vlterbi sequence) which

captures most of the likelihood of the model given the obser-

vations, so that practically the states are not trtrl y hidden [8].

Another drawback of HMMs is that the current HMM train-

ing algorithms are neither online nor adaptive in the model’s

topology, These weak aspects of the hidden Markov model

motivate our present modeling technique.

The alternative we consider here is using Acyclic Probabilis-

tic Finite Automata (APFA) for modeling distributions on

short sequences such as those mentioned above. These au-

tomata seem to capture well the context dependent variability

of such sequences. We present and analyze an efficient and

easily implementable learning algorithm for a subclass of

APFAs that have a certain distinguishability property which

is defined subsequently. We describe two applications of our
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algorithm. In the tirst applicahon we construct models for

cursive handwritten letters. and in the second we build pro-

nunciation models for spoken words. These application use

in part an online version of our algorithm which is also given

in this paper.

In a previous work [ 14] we introduced an algorithm for

learning distributions (on long strings) generated by ergodic

NIarkovian sources which can be described by a different

subclass of PFAs which we refer to as ‘Variable Memory’

PFAs. Our two learning algorithm complement each other.

Whereas the variable memory PFAs capture the long range,

stationary. statistical properties of the source. the APFAs cap-

ture the short sequence statistics. Together, these algorithm

constitute a complete language modeling scheme, which we

applied to cursive handwriting recognition and similar prob-

lems [ 18].

More formally, we present an algorithm for efficiently learn-

ing distributions on strings generated by a subclass of APFAs

which have the following property. For every pair of states

in an automaton ,Vf belonging to this class. the distance in the

L~. norm between the distributions generated starting from

these two states is non-negligible. Namely, this distance is

an inverse polynomial in the size of AI,

Our result should be contrasted with the intractability result

for learning PFAs described by Kearns et. al. [7]. They

show that PFAs are not efficiently learnable under the widely

acceptable assumption that there is no efficient algorithm for

learning noisy parity functions in the PAC model. Further-

more, the subclass of PFAs which they show are hard to learn,

are (width two) APFAs in which the distance in the L 1 norm

(and hence also the KIJdivergence) between the distributions

generated starting from every pair of states is large.

One of the key techniques applied in this work is that of

using some form of signatures of states in order to distinguish

between the states of the target automaton. This technique

was presented in the pioneering work of Trakhtenbrot and

Brazdin’ [2 I ] in the context of learning deterministic finite

automata (DFAs). The same idea was later applied by Freund

et. al. [6] in their work on learning typical DFAs1. In the

same work they proposed to apply the notion of statistical
signatures to learning typical PFAs.

The outline of our learning algorithm is roughly the follow-

ing. In the course of the algorithm we maintain a sequence of

directed edge-labeled acyclic graphs. The first graph in this

sequence, named the sample tree, is constructed based on the

a sample generated by the target APFA, while the last graph

in the sequence is the underlying graph of our hypothesis

APFA. Each graph in this sequence is transformed into the

next graph by afolding operation in which a pair of nodes that

have passed a certain similarity test are merged into a single

node (and so are the pairs of their respective successors).

The paper is organized as follows. In Sections 2 and 3

we give several definitions related to APFAs, and define

our learning model. In Section 4 we present our learning

algorithm.In Section 5 we state our main theorem concerning

1DFAs in which the underlying graph is arbitrary, but the ac-

ceptkeject labels on the states are chosen randomly.

the correctness of the learning algorithm. and give a skeleton

of its proof. The full proofs of our main theorem and all

additional lemmas are given in [15]. In Section 6 we describe

two applications of our algorithm. and in Section 7 we give

m online version of the algorithm.

Other Related Work: A similar technique of merging states

was also applied by Carrasco and Oncina [4], and by Stolcke

and Omohundro [19]. Carrasco and Oncina give an algorithm

which identifies in the limit distributions generated by PFAs.

Stolcke and Omohundro describe a learning algorithm for

HMMs which merges states based on a Bayesian approach,

and apply their algorithm to build pronunciation models for

spoken words. Examples and reviews of practical models and

algorithms for multiple-pronunciation can be found in [5. 13],

and for cursive handwriting recognition in [10. 9, 20, 3].

2 Preliminaries

A Probabilistic Finite Automaton (PFA) M is a 7-tuple

(Q, qO, qf, Z,~, T,~)2 where:

w Q is a finite set of states;

* (io E Q is the starting state;

● q~ $ Q isthefinalStalei
. Z is a fimte alphabet;

● < ‘@E is thejnal symbol;

●T: QxXU{(}— QU{yt } isthetran.~itiorLf~n~~~O~;
● T : Q x Z U{<} — [0, 1] is the next symbolprobability

function.

The function ~ must satisfy the following requirement: for

every q E Q, Zacz y(q, o) = 1. We allow the transition
function r to be undefined only on states q and symbols n.

for which y(q, a) = O. We require that for every q 6 Q such

that -y(q, <) > 0, ~(q, () = qf. We also require that qf can

be reached (i.e., with non-zero probability) from every state

q which can be reached from the starting state, qo. r can

be extended to be defined on Q x Z* in the following recur-

sive manner: ~(q, s1s2. .s~) = ~(r(q, sl .sl–l), s{), and

T-(q, e) = q where e is the empty string.

A PFA Af generates strings of finite length ending with the

symbol <, in the following sequential manner. Starting from

qo, until qf is reached, if q, is the current state, then the next

symbol is chosen (probabilistically) according to y(q,, .). If

a E X is the symbol generated. then the next state, qi+ 1, is

T( q~. ~). Thus, the probability M generates a string s =

51 . .st–Is~, where SI = <, denoted by FM(s) is
1–1

P(s) ~fl--J7(qt.st+, ) (1)

This definition implies that P1l( ) is in fact a probability

distributions over strings ending with the symbol (, i.e.,

& ,,

SGD<

2The definition we use is slightly non-standard m the sense that
we assume a final symboI and a final state,
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For a string s = s] . . . S1 where SI # ( we choose to use
the same notation PA1 (s) to denote the probability that s
is a prejix of some generated string s’ = SS”(. Namely,

~(~) = I-J:: J(W%+l).

Given a state q in Q, and a string s = S1 . . .s{ (that does
not necessarily end with <), let Pgflf (s) denote the probability
thats is (a prefix of a string) generated starting from y. More
formally

l–l

P~(s)xf ~T(T(sl ,”..,
q

S,), SZ+])

7=0

The following definition is central to this work.

Definition 1 For O ~ p <, 1, we say that two states, q j

attd q2 itz Q are p-dlstingwhable, if there exists a strittg

s for which [Pq~~(s) – Pg~~(s) I ~ p. We say that a PFA

AJ is ~-distinguishable, if eve~ pair of states in M are

~-distinguishable.3

We shall restrict our attention to a subclass of PFAs which
have the following property: the underlying graph of every
PFA in this subclass is acyclic. The depth of an acyclic PFA
is defined to be the length of the longest path from gO to ~l,t.
In particular, we consider leveled acyclic PFAs. In such a
PFA, each state belongs to a single level d, where the starting
state, qo is the only state in level O, and the final state, y,f. is
the only state in level D. where D is the depth of the PFA.
All transitions from a state in level d must be to states in level
d + 1, except for transitions labeled by the final symbol, <,
which need not be restricted in this way. We denote the set
of states belonging to level d, by Qd. The following claim
can easily be verified.

Lemma 2 For even acyclic PFA Af having n states and

depth D, there exists an equivalent leveled acyclic PFA, 1~1,

with at most n (D — 1) states.

3 The Learning Model

In this section we describe our learning model which is sim-
ilar to the one introduced in [7]. We start by defining an
c-good hypothesis PFA with respect to a given target PFA.

Definition 3 Let M be the target PFA and let .~ be a lzy -

‘~ be the two pro babi~ty dis -pothesis PFA. Let Pfil and P

tributions they generate respectively We say that ~T is an

e-good hypothesis with respect to M, for ~ >0, if

DJ{LIP~rllPfi] < E

where ‘DAL [PM I lP”] is the Kullback Liebler (KL) diver-
gence (also known as the cross-entropy) between the distri-

butions and is dejined as follows:

PAI(S)
~~{L[P’’ll@~] ~f ~ P’t~(5) log —

Se z-( Pfi(s)

‘~As noted in the analysis of our algorithm in Section 5, we
can use a slightly weaker version of the above defimtlon, m wh]ch
we require that only pairs of states with non-negligble weight be

distinguishable

Our learning algorithm for PFAs is given a confidence param-
eter O <6< 1, and an approximation parameter e > ‘O. The
algorithm is also given an upper bound n on the number of
states in A1. and a distinguishability parameter O < p < 1.
indicating that the target automaton is p-distinguishable.4
The algorithm has access to strings generated by the target
PFA, and we ask that it output with probability at least 1 – r$
an ~-good hypothesis with respect to the target PFA. We also
require that the learning algorithm be ejjicient, i.e., that it
runs in time polynomial in ~. log ~. IX. and in the bounds on

~ andn.

4 The Learning Algorithm

In this section we describe our algorithm for learning acyclic
PFAs. An online version of this algorithm is described in
Section 7.

Let ,S be a given multiset of sample strings generated by the
target PFA AI In the course of the algorithm we maintain a
series of directed leveled acyclic graphs Go, G 1. . . . . GN+ 1,
where the final graph, ~;IV+ 1, is the underlying graph of
the hypothesis automaton. In each of these graphs, there

is one node, Uo, which we refer to as the starting node.

Every directed edge in a graph G, is labeled by a symbol

u c z I_J{< }. There may be more than one directed edge
between a pair of nodes. but for every node, there is at most
one outgoing edge labeled by each symbol. If there is an
edge labeled by cr connecting a node v to a node u, then we

denote it by v ~ u. If there is a labeled (directed) path from
~ to u corresponding to a strings, then we denote it similarly

byr%u.

Each node c is virtually associated with a multiset of strings
S(t) ) ~ S. These are the strings in the sample which

correspond to the (directed) paths in the graph that pass

through u when starting from UO, i.e., S(v) ‘~’ {s : s =

s’s” e s! V()5’ v}mu{t,. We define an additional, re-

lated, multi set, Sge~ (v ), that includes the substrings in the
sample which can be seen as generated from ~J. Namely,

Sge~(f!) ‘~f {s” : 3s’ s.t. s’s” E S and vo ~ v}~~it,. For

each node t), and each symbol ~, we associate a count, 771,,(a),
with v’s outgoing edge labeled by u. If v does not have any

outgoing edges labeled by a, then we define m,,(a) to be O.
We denote XC m,, (o-) by m,, and it always holds by cOn-

structionthat m,, = IS’(Z) I (= lsgen(~)l)> and w(~) equals

the number of strings in S$~~(V) whose first symbol is C.

The initial graph Go is the sample tree, TS. Each node in
Ts is associated with a single string which is a prefix of a
string in S. The root of TS. Vo, corresponds to the empty
string, and every other node, v, is associated with the prefix
corresponding to the labeled path from vo to v.

4These last two assumption can be removed by searchg for
an upper bound on n and a lower bound on p. This search is
performed by testing the hypotheses the algorithm outputs when It
runs with growing values of n, and decreasing values of ,u Such a
test can be done by comparing the log-likelihood of the hypotheses
on additional test data
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We now describe our learning algorithm. For a more detailed
description see the pseudo-code that follows. We would like
to stress that the multisets of strings, S(v). are maintained
only virtually, thus the data structure used along the run of

the algorithm is only the current graph G’,, together with the
counts on the edges. For i = 0, . . . . N – 1, we associate with
G’, a level, d(i), where d(0) = 1, and d(i) ~ d(i – 1). This
is the level in G, we plan to operate on in the transformation
from G, to G,+ 1. We transform G, into G,+ ~ by what we
call a ,jokiuzg operation. In this operation we choose a pair
of nodes u and t’, both belonging to d(i), which have the
following properties: for a predefine threshold m. (that is
set in the analysis of the algorithm) both m. ~ mO and
m,, > mo, and the nodes are similar in a sense defined

subsequently. We then merge u and v. and all pairs of nodes
they reach, respective] y. If u and v are merged into a new
node, u, then for every o, we let mu, (v) = m. (~) + % (~).

The virtual mtdtiset of strings corresponding to w, ,S(w ]. is
simply the union of S(u) with S( u). An illustration of the
folding operation is depicted in Figure 1.

(-’7? (’-T-?

r200 I00 n’!100 00

&
Figure 1: An illustration of the folding operation. The graph
on the right is constructed from the graph on the left by
merging the nodes VI and ZJZ.The different edges represent
different output symbols: gray is O, black is 1 and bold black
edge is <.

Let GN be the last graph in this series for which there does
not exist such a pair of nodes. We transform ~N into G,v+1.
by performing the following operations. First, we merge all
leaves in Ghr into a single node Zf. Next, for each level din
GN, we merge all nodes u in level d for which mu < mo.

Let this node be denoted by small(d). Lastly, for each node
u, and for each symbol a such that mu (a) = 0, if a = C,
then we add an edge labeled by < from u to u f, and if u G Z
then we add an edge labeled by a from u to smull(d + 1)
where d is the level u belongs to.

Finally, we define our hypothesis PFA M based on GN+ 1.

We let GN+ 1 be the underlying graph of M, where vo corre-
sponds to qo. and Z>fcorresponds to qj. For every state q in
level d that corresponds to a node u, and for every symbol
a E 21J{<}. we define

34

where y~,t~ is set in the analysis of the algorithm.

It remains to define the notion of similar nodes used in the
algorithm, Roughly speaking, two nodes are considered sim-

ilar if the statistics according to the sample, of the strings
which can be seen as generated from these nodes, is simi-
lar. More formally, for a given node v and a string s, let

?71,,(s) ‘:f I{t : t c Sgen(w),t = St’}mdti[. We say that a
given pair of nodes u and v, are similiar if for every string
s, lrn!, (s)/rnV — rnU(s)/rnU ] < p/2. As noted before, the
algorithm does ~,ot maintain the multisets of strings Sgen ( ‘t)).
However, the values m. (s)/mV and mu (s )/rnU can be com-
puted efficiently using the counts on the edges of the graphs,
as described in the function Similiar presented below.

For sake of simplicity of the pseudo-code below, we associate
with each node in agraph G,, anumberin { 1. . . . . lGi\}. The

algorithm proceeds level by level. At each level, it searches
for pairs of nodes, belonging to that same level, which can
be folded. It does so by calling the function Similar on
every pair of nodes u and v, whose counts, mU and mu, are
above the threshold mo. If the function returns similar, then
the algorithm merges u and v using the routine Fold. Each
call to Fold creates a new (smaller) graph. When level D

is reached, the last graph, GN, is transformed into GN+ 1 as
described below in the routine AddSlack. The final graph.
GN4 1 is then transformed into. a PFA while smoothing the
transition probabilities (Procedure GraphToPFA)

Mgorithm Learn-Acvclic-PFA.

1. Initialize z .= O, G(I := Ts, d(0) = 1,D := depth of Ts ,

2. While d(z) < D do:

(a)

(b)

(c)

Look for nodes j and j’ from level d(i) in G, which

have the following properties”

I, ml > ml] andmlt > mcj ;

Ii Similar(j, 1, j‘, 1) = similar ;

If such a palrm not found let d(z) ‘= J(z) + J :

/* return to while statement*/

Else: /* Such a pair is found: transform G, into G,+ I *I

i, G,~~ = Gt ;

ii. Call Fold(j. j’, G,+lj .
in, Renumber the states of G,+ i to be consecutivenum.

bersin the range l,. ... IG,+I[ ;

iv. d(z+l)=d (t) . 2:=2+1:

3. Set N := t ; Call AddS1ack(Giv,GN+I ,D) :

4. Call GraphToPFA(G~+ 1,~)

Function Similar(u, p., t’, p.,)

1

2.

3.

4,

If lp~ – p.\ > IA/2 Return non-simdar ;

Else-If pu < p/2 and pu < p~2 Return similar ;

Else Vm~X(J(cto

(a) p; = p.m. (u)jm,, ; p; = pVmv(u)/mu ;

(b) If mU(a) = O u’ := undej%ed else u’ := T(U, a) ;

(c) If m,,(a) = O v’ := wdejind else u’ := T[V, C) :

(d) If Similar(u’, p:, v’, p;) == non-similar

Return non-sirndar;

Return similar. P Recursive calls ended and found similar *



Subroutine Fold(j, j’, G)

1. For all the nodes k in G and Vu c Z such that k ~ j’, change

the comesponding edge to end at j, namely set k ~ j,

2 Vaexu(

(a)

(b)

(c)

Ifmj(~) = Oandmj(o) > O,letkbesuchthatj’ ~ k:

set J ~ k:

If my(a) > 0 and mj,(a) > 0, let k and k’ be the

indices of the states such that j ~ k, j’ ~ k’:

Recursively fold k, k’: call Fold(k, k’,G);

mj(u) := mj,(a) +rnj(a);

3. G:=G– {j’}.

Subroutine AddSlack(G, G’, D)

1.

2.

3

4

Initialize: G’ := G;

Merge all nodes in G’ which have no outgoing edges, into Uf

(which is defined to belong to level D);

For d = 1, . . . . D – 1 do Merge all nodes J in level d for

which ml < nu) into small(d);

Ford := O,. . . . D – 1and foreveryj in level d do

(a) Va E Z: If mj ( a) = O then add an edge labeled a from
J to small(d) ;

(b) If mj (( ) = Othen add an edge labeled u from J to Vf

(set j J- of),

Subroutine GraphToPFA(G, D)

1. Let G be the underlying graph of l;:

2. Let ~0 be the state corresponding to W, and let ~f be the srate

corresponding to u f;

3. For every state J in fi and for every u c xU{<}:

\
$(11~) := (7~~r)(~~/ml)(l – (IXI + 1)-M,,,,) + ?,,,,77 .

where v is the node corresponding to ~ in G.

5 Analysis of the Learning Algorithm

In this section we state our main theorem regarding the
correctness and efficiency of the learning algorithm Learn-
Acyclic-PFA, described in Section 4, and give a skeleton
of its proof. The full proofs of the main theorem and the
technical lemmas appear in [15].

Theorem 4 For every given distinguishability parameterO <

p s 1,forever-y p-distinguishable target acyclic PFA M, and

for every given security parameter O <6 ~ 1, and approx-

imation parameter E > 0, Algorithm Learn -Acyclic-P FA

outputs a hypothesis PFA, M. such that with probability at

least 1 – 6, % is an c-good hypothesis with respect to M.

The running time of the algorithm is polynomial in ~, ~og ~,

j, n, D, and IzI.

We would like to note that for a given approximation param-
eter c, we may slightly weaken the requirement that M be
p~distinguishable. It suffices that we require that every pair
of states yl and qz in .V1 such that both PJr (q] ) and PJ[ ( q2)
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are greater than some ~’ (which is a function of ~, p and n),

q] and q2 be p-distinguishable. For sake of simplicity, we
give our analysis under the slightly stronger assumption.

Without loss of generality. (based on Lemma 2) we may
assume that M is a leveled acyclic PFA with at most n state
in each of its D levels. We add the following notations.

●

●

●

For a state q ~ Qd,

– W(q) denotes the set of all strings in Zd which

reach q; PJ~(q) ‘~f ~,$EW(q) PM(s).

mq denotes the number of strings in the sample

(including repetitions) which pass through q, and
for a strings, my(s) denotes the number of strings
in the sample which pass through q and continue
with s. More formally, rnq(s) = I{t: f c S. f =

t1st2, where ~(qo,t~) = q}~,~[til.

For a state ~ E ~~, w’(~) m~, rn~(s), and Pfl(rj) are
defined similarly. For a node v in a graph G%constructed
by the learning algorithm, IV( V) is defined analogously.
(,Note that mu and mu(s) were already defined in Sec-
tion 4).

For a state q c Qd and a node rJ in G’,, we say that t)
corresponds to q, if W(’fJ) .~ W(q).

In order to prove Theorem 4, we first need to define the notion
of a good sample with respect to a given target (leveled) PFA.
We prove that with high probability a sample generated by
the target PFA is good. We then show that if a sample is
good then our algorithm constructs a hypothesis PFA which
has the properties stated in the theorem.

5.1 A Good Sample

In order to define when a sample is good in the sense that it
has the statistical properties required by our algorithm. we
introduce a class of PFAs .L4, which is defined below. The
reason for introducing this class is roughly the following.
The heart of our algorithm is in the folding operation, and the
similarity test that precedes it. We want to show that, on one
hand, we do not fold pairs of nodes which correspond to two
different states, and on the other hand, we fold most pairs
of nodes that do correspond to the same state. By “most”
we essentially mean that in our final hypothesis, the weight
of the small states (which correspond to the unfolded nodes
whose counts are small) is in fact small.

Whenever we perform the similarity test between two nodes
u and v, we compare the statistical properties of the cor-
responding mtdtisets of strings S~,~(u) and Sg,~ (v), which
“originate” from the two nodes, respectively. Thus, we would
like to ensure that if both sets are of substantial size, then each
will be in some sense typical to the state it was generated from
(assuming there exists one such single state for each node).
Name] y, we ask that the relative weight of any prefix of a
string in each of the sets will not deviate much from the
probability it was generated starting from the corresponding
state.

For a given level d, let G,. be the first graph in which we start



folding nodes in level d. Consider some specific state q in
level d of the target automaton. Let S( q) ~ S be the subset
of sample strings which pass through q. Let VI, ., ., VKbe the
nodes in G which correspond to q, in the sense that each string

in ,~(q ) passes through one of the v, ‘s. Hence. these nodes

induce a partition of S(q) into the sets S(VJ ). . . . . S(v~ i. It is

clear that if S( q ) is large enough, then, since the strings were
generated independently, we can apply Chernoff bounds to
get that with high probability S(q) is typical to q. But we
want to know that each of the S( u, )’s is typical to q. It
is clearly not true that every partition of S(q) preserves the
statistical properties of g. However, the graphs constructed
by the algorithm do not induce arbitrary partitions, and we
are able to characterize the possible partitions in terms of the
automata in JU. This characterization also helps us bound
the weight of the small states in our hypothesis.

Given a target PFA A1 let JfA be the set of PFAs {M’ =

(Q’ q~, {Yj), xi T’. -)’, <)} which satisfy the following con-
ditions: “

1.

2.

3.

4.

5.

For each state q in h!’ there exist several copies of q in
M’, each uniquely labeled. q~ is the only COPY of qo, and
we allow there to be a set of final states {q\}, all copies

of q~. If q’ is a copy of q then for every a e xU{(},

(a) ~’(q’,a) = y(q, a);

(b) if ~(q,a) = t, then r’(q’, a) = t’. where t’ is a
copy oft.

Note that the above restrictions on -y’ and ~’ ensure that

.11’ ~ Lf,i. e.,V<s ● Z< , ~~f’(s) = PM(s).

A copy of a state q may be either major or minor. A
major copy is either dominanf or 770n-dor7zi71ant.Minor
copies are always non-dominant.

For each state q, and for every symbol a and state? such
that T( r, u ) = q, there exists a unique major copy of y
labeled by (q, r, a ). There are no other major copies of
q. Each minor copy of q is labeled by (q, r’, a ). where
r’ is a non-dominant (either major or minor) copy of T
(and as before r(r, o-) = y). A state may have no minor
copies. and its major copies may be all dominant or all
non-dominant.

For each dominant major copy q’ of q and for every
r c z(J{<}, if z-(q, a) = t, then ~’(q’, u) = (t. q, ~).

Thus. for each symbol U, all a transitions from the
dominant major copies of q are to the same major copy
oft. The starting state q~ is always dominant.

For each non-dominant (either major or minor) copy
q’ of q, and for every symbol a, if ~(q, a) = t then
r’(qr, u) = (t,q’, u), where, as defined in item (2)
above, (t,q’, o) is a minor copy of t. Thus. each non-
dominant major copy of q is the root of a IXI -ary tree. and
all it’s descendants are (non-dominant) minor copies.

An illustrative example of the types of copies of states is
depicted in Figure 2.

By the definition above, each PFA in M is fully characterized
by the choices of the sets of dominant copies among the major
copies of each state. Since the number of major copies of
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a state q is exactly equal to the number of transitions going

into q in M, and is thus bounded by n IZI, there are at most

2“IZI such possible choices for every state. There are at most
n states in each level, and hence the size of M is bounded

by ((21xln)’)D = 21zln2D. As we show in Lemma 8, if the
sample is good, then there exists a correspondence between
some PFA in M and the graphs our algorithm constructs. We
use this correspondence to prove Theorem 4.

Definition 5 A sample S of size m is (c,,. e, )-good wrth

respect to M if ,for evety Al’ E M and for every state

q’ E Q’:

I. If Phi’ (q’) z 26., then mqt > mo, where

IXITZ2D2 + 2111n(8(lZl+ 1)) + ln~
1110=

e:

2. If mq ~ mo, then for evety string s,

lmq,,/mg/ – p~’(<s)l S c] ;

Lemma 6 With probability at least 1 – h. a sample of size

is (Co. ( 1)-good with respect to M.

5.2 Technical Lemmas

The proof of Theorem 4 is based on the following lemma
in which we show that for every state q in M there exists a

“representative” state ~ in i~, which has significant weight.
and forwhich~(~, ) w ~(q, ).

Lemma 7 If the sample is (c., c I )-good for

c1 < min(p/4, c2/8(1~1 + 1)) ,

then for E3 ~ l/(2 D), and for E2 > 2n1X1co/c3, we have the

following. For every level d and for eve? state q E Q~, if

PM(q) > tz then there exists a state $ C Qd such that:

1. PJf (w(q) nvv({)) 2 (1 – dc3)PJf(q)!

2. forevety symbol a, ~(q, u)/~(~, a) ~ 1 + c/2.

The proof of Lemma 7 can be derived based on the following
lemma in which we show a relationship between the graphs
constructed by the algorithm and a PFA in M.

Lemma 8 If the sample is (CO, e I )-good, for e1 < p/4, then

there existsa PFA M’ c M, M’ = (Q’, q~, {qj}, ~ T’, Y’, <),

for which the following holds. Let GZ~ denote the$rst graph

in which we consider folding nodes in level d. Then, for ev-

ery level d, there exists a One-to-one mapping ~d from the

nodes in the d ‘th level of G~~, into Q:, such thatjor every v

in the d ‘th level of G,., W’(v) = LT:(cD~(v)). Furthermore,

q{ c A{’ is a dominant major copy iff mq, > ‘me.
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Figure 2: Left: Part of the original automaton, M, that corresponds to the copies on the right part of the figure. Right: The
different types of copies of M’s states: copies of a state are of two types major and minor. A subset of the major copies of
every state is chosen to be dominant (dark-gray nodes). The major copies of a state in the next level are the next states of the
dominant states in the current level.

6 Applications

A slightly modified version of our learning algorithm was
applied and tested on various problems such as: stochastic
modeling of cursive handwriting [18], locating noun phrases
in natural English text, and building multiple-pronunciation
models for spoken words from their phonetic transcription,
This modified version of the algorithm allows folding states
from different levels, thus the resulting hypothesis is more
compact. We also chose to fold nodes with small counts into
the graph itself (instead of adding the extra nodes, smull( d)).
Here we give a brief overview of the usage of acyclic PFAs
and their learning scheme for the following applications: (a)
A part of a complete cursive handwriting recognition system

(b) Pronunciation models for spoken words.

6.1 Stochastic Models for Cursive Scripts

In [17], the second and the third authors proposed a dynamic
encoding scheme for cursive handwriting based on an oscil-
latory model of handwriting. The process described in [ 17]
performs inverse mapping from continuous pen trajectories
to strings over a discrete set of symbols which efficiently en-
code cursive handwriting. These symbols are named motor

control commands, Using a forward model the motor control
commands can be transformed back into pen trajectories and

the handwriting can be reconstructed (without the “noise”
that was eliminated by the inverse mapping). Each possi-
ble control command is composed of a cartesian product of
the form ,%’ x Y where .Y, Y E {0, 1,2, 3,4, 5}, hence the
alphabet consists of 36 different symbols. These symbols
represents quantized horizontal and vertical amplitude mod-
ulation and their phase-lags. The symbol O x O represents
zero modulation and it is used to denote ‘pen-ups’ and end
of writing activity. This symbol serves as the final symbol

(<) for building the APFAs for cursive letters as described
subsequently.

Different Roman letters map to different sequences over these
symbols. Moreover, since there are different writing styles
and due to the existence of noise in the human motor sys-
tem, the same cursive letter can be written in many different
ways. This results in different symbol sequences that repre-
sent the same letter, The first step in our cursive handwriting
recognition system that is based on the above encoding is to
construct stochastic models which approximate the distribu-

tions of sequences for each cursive letter. Given hundreds of
examples of segmented cursive letters we applied the mod-
ified version of our algorithm to train 26 APFAs, one for
each lower-case cursive English letter. In order to verify that
the resulting APFAs have indeed learned the distributions of
the strings that represent the cursive letters, we performed a
simple sanity check. Random walks on each of the 26 AP-
FAs were used to synthesize motor control commands. The
forward dynamic model was then used to translate these syn-
thetic strings into pen trajectories. This process, known as
analysis-by-synthesis, is widely used for testing the quality
of speech models. A typical result of such random walks
on the corresponding APFAs is given in Figure 3. All the
synthesized letters are clearly intelligible. The distortions
are partly due to the compact representation of the dynamic
model and not a failure of the learning algorithm.

Figure 3: Synthetic cursive letters, created by random walks
on the 26 APFAs.

Given the above set of APFAs, we can perform tasks such as
segmentation of cursive words and recognition of unlabeled
words. An example of the result of such a segmentation is
depicted in Figure 4, where the cursive word impossible,
reconstructed from the motor control commands, is shown
with its most like] y segmentation. Note that the segmenta-
tion is temporal and hence letters are sometimes cut in the
‘middle’ though the segmentation is correct. Recognition
of completely unlabeled data is more involved, but can be
performed efficiently using a higher level language model
(see [14] for an example of such a model), A complete de-
scription of the cursive handwriting recognition system is
given in [1 8].

The above segmentation procedure can be incorporated into
an online learning setting as follows. We start with an initial
stage where a relatively reliable set of APFAs for the cursive
letters is constructed from segmented data. We then continue
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Figure 4: Temporal segmentation of the word imposs ible.

Tie segmentation is ~erformed by evaluating the probabili-
ties of the APFAs which correspond to the letter constituents
of the word.

with an online setting in which we employ the probabili-
ties assigned by the automata to segment new unsegmented
words, and’ feed’ thesegmented subsequences back as inputs
to the corresponding APFAs.

6.2 Pronunciation Models for Spoken Words

In natural speech, a word might be pronounced differently by
different speakers. For example, the phoneme t in o f ten is
often omitted, the phoneme d in the word muddy might be
flapped, etc. One possible approach to model such pronunci-
ation variations is to construct stochastic models that capture
the distributions of the possible pronunciations for words in
a given database. The models should reflect not only the
alternative pronunciations but also the apriori probability of
a given phonetic transcription of the word, This probability
depends on the distribution of the different speakers that ut-
tered the words in the training set. Such models can be used
as a component in a speech recognition system. The same
problem was studied in [19]. Here, we briefly discuss how
our algorithm for learning APFAs can be used to efficiently
build probabilistic pronunciation models for words.

We used the TIMIT (Texas Instruments-MIT) database. This
database contains the acoustic waveforms of continuous speech
with phone labels from an alphabet of 62 phones, that consti-
tute a temporally aligned phonetic transcription to the uttered
words. For the purpose of building pronunciation models,
the acoustic data was ignored and we partitioned the pho-
netic labels according to the words that appeared in the data.
We then built an APFA for each word in the data set. Exam-
ples of the resulting APFAs for the words have, had and
often are shown in Figure 5. The symbol labeling each
edge is one of the possible 62 phones or the final symbol,
<, represented in the figure by the string End. The number
on each edge is the count associated with the edge, i e., the
number of times the edge was traversed in the training data.
The figure shows that the resulting models indeed captu]-e the
different pronunciation styles. For instance, all the possible
pronunciations of the word often contain the phone f and
there are paths that share the optional t (the phones t c 1
t) and paths that omit it. Similar phenomena are captured
by the models for the words have and had (the optional

semivowels hh and hv and the different pronunciations for

c1 in had and forv in have).

In order to quantitatively check the performance of the mod-

els, we filtered and partitioned the data in the same way as
in [19]. That is, words occurring between 20 and 100 times
in the data set were used for evaluation. Of these. 7590 of
the occurrences of each word were used as training data for
the learning algorithm and the remaining 259Z0were used for
evaluation. The models were evaluated by calculating the
log probability (likelihood) of the proper model on the pho-
netic transcription of each word in the test set. The results
are summarized in Table 1. The ~erformance of the resulting
APFAs is surprisingly good, compared to the performance o?
the Hidden Markov Model reported in [19]. To be cautious,
we note that it is not certain whether the better performance

(in the sense that the likelihood of the APFAs on the test data
is higher) indeed indicates better performance in terms of
reco~nition error rate. Yet, the much smaller time needed for
the learning suggests that our algorithm might be the method
of choice for this problem when large amounts of training
data are presented.

Model APFA I HMM [19]

Lo~-Likelihood I -2142.8 -2343.0

w
Table 1: The performance of APFAs compared to Hidden
Markov Models (HMM) as reported in [19] by Stolcke and
Omohundro. Log-Likelihood is the logarithm of the proba-
bility induced by the two classes of models on the test data,
Perplexity is the average number of phones that can follow
in any given context within a word.

7 An Online Version of the Algorithm

In this section we describe an online version of our learning
algorithm. We start by defining our notion of otdme learning

in the context of learning distributions on strings.

7.1 An Online Learning Model

In the online setting, the algorithm is presented with an in-
finite sequence of trials. At each time step, t,the algorithm
receives a trial string st = S] st _ ][ generated by the
target machine, M, and it should output the probability as-
signed by its current hypothesis, Ht, to st. The algorithm
then transforms Hj into Ht + 1. The hypothesis at each trial
need not be a PFA, but may be any data structure which
can be used in order to define a probability distribution on
strings. In the transformation from Ht into Ht+ 1, the algo-
rithm uses only Ht itself, and the new string St. Let the error

of the algorithm on St, denoted by errt (St), be defined as
log(P~f(st)/Pt( st]). We shall be interested in the average

cutnulative error,

We allow the algorithm to err an unrecoverable error at some
stage t,with total probability that is bounded by A. We ask
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thatthereexistfuncticms fi(t, p,n, D, lZl), andc(t, fl. n. D, IXI),
such that the following hold. b(t, ~, n. D, 1X1) is of the

form /31(p. n, D, lXl)2t-u’, where cl is a polynomial in p,
n, D, and 1X1, and O < al < 1, and c(t) is of the form

13q(fl, n, D, lzl)t–u2, where 6Z is a polynomial in ,u, n, D,
and 121,and O < cw < 1. Since we are mainly interested in
the dcpcndcncc of the functions on L, let them be denoted for
short by ti(t), and e(t). For every trial t,if the algorithm has
not erred an unrecoverable error prior to that trial, then with
probability at least 1 – fi(t ), the average cumulative error is
small, namely Errt s t(t). Furthermore, we require that
the size of the hypothesis Ht be a sublinear function oft,
This last requirement implies that an algorithm which simply
remembers all trial strings, and each time constructs a new
PFA “from scratch” is not considered an online algorithm.

7.2 An Online Learning Algorithm

We now describe how to modify the batch algorithm Learn-
Acyclic-PFA, presented in Section 4, to become an online
algorithm. The pseudo-code for the algorithm is presented
at the end of the section. At each time t,our hypothesis is a
graph G(t), which has the same form as the graphs used by
the batch algorithm. G( 1), the initial hypothesis, consists of a
single root node VOwhere for every a E Z U{<}. ret,,(a) = O
(and hence, by definition, ma,, = O). Given a new trial string
.st, the algorithm checks if there exists a path corresponding
to S*, in G(t). If there are missing nodes and edges on the
path, then they are added. The counts corresponding to the
new edges and nodes are all set to O. The algorithm then
outputs the probability that a PFA defined based on G(t)
would have assigned to st. More precisely, let St = .S1 S(,

from the

and let U. . V! be the nodes on the path corresponding to .<Z.
Then the algorithm outputs the following product:

where ym~n,(t ) is a decreasing function oft.

The algorithm adds st to G(t), and increases by one the
counts associated with the edges on the path corresponding
to St in the updated G(t). If for some node v on the path,
m,, > mo, then we execute stage (2) in the batch algorithm,

start;ng from Go = G(t), and letting d(O) be the depth of v,
and D be the depth of G(t). We let G(t + 1) be the final
graph constructed by stage (2) of the batch algorithm.

In the algorithm described above, as in the batch algorithm,
a decision to fold two nodes in a graph G(t), which do
not correspond to the same state in M, is an unrecoverable

error. Since the algorithm does not backtrack and “unfold”
nodes, the algorithm has no way of recovering from such
a decision, and the probability assigned to strings passing
through the folded nodes. may be erroneous from that point
on. Similarly to the analysis in the batch algorithm, it can be
shown that for an appropriate choice of mo, the probability
that we perform such a merge at any time in the algorithm, is
bounded by A. If we never perform such merges, we expect
that as t increases, we both encounter nodes that correspond
to states with decreasing weights. and our predictions become
“more reliable” in the sense that m,, (a)/m,, gets closer to its
expectation (and the probability of a large error decreases j.
A more detailed analysis can give precise bounds on b(t ) and
t(t).
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What about the size of our hypotheses? Let a node v be called
reliable if mu ~ 771.. Using the same argument needed for
showing that with probability at least 1 – A we never merge
nodes that correspond to different states, we get that with
the same probability we merge every pair of reliable nodes
which correspond to the same state. Thus, the number of
reliable nodes is never larger than D n, From every reliable
node there are edges going to at most IZI unreliable nodes.
Each unreliable node is a root of a tree in which there are
at most D 7J2rj additional unreliable nodes. We thus get a
bound on the number of nodes in G(t) which is independent

of ~, Since for every z and o in G(t), m,,(a) < t. the counts

on the edges contribute a factor of log t to the total size the
hypothesis.

Mgorithm Online-Learn-Acyclic-PFA ~
1. Initialize: t = 1. G( 1) N a graph with a single node uo,

VcrEZu{<}, m”,)(a)= 0;
2 Repeat

(a) Receive the new string st;

(b) If there does not exist a path in G(t) corresponding to
s’, then add missing edges and nodes to G(t). and set

their comespondmg counts to 1.

(c) Let w.. ut be the nodes on the path corresponding to

St in G(t);

(d) Output: Pt (St) =

t 1 ~~::’+’) (l–(lzl+ l)7n,tn(i))+ Tm1%n(i))tfIt:(, (

(e) Add 1 to the count of each edge on the path correspond-
ing to .St in G(t):

(O If for some node v, on the path m,,, = mu) then do

i. ? .= O. G(} = G(t), d(0) = depth ofv,. D = depth

of G(f);

il Execute step (2) in Learn-Acyclic-PFA:

iii, G(t+l)=G,, t.=t+l.
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