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Abstract

The problem how to use experts whose competence is
unknown has been studied in several recent papers. It
has been assumed that after we have made a prediction
we learn the actual value of the predicted event.

In some situations, however, we do not learn the actual

outcomes. This is the case, for example, in diagnos-

ing a disease, in some kinds of competitions, in making

political decisions and so on.

In the present paper we consider a model in which we

never get to know actual outcomes. The predicted events

are binary. Each expert independently on other experts

estimates each outcome correctly with some probabil-

ity depending on expert. His/her estimates of different

events are pairwise independent, too.

The performance of a strategy of using expert advice is

measured as the probability of correct estimate on the

worst-case outcome sequence. Our main result is the

polynomial time strategy such that for any group having

at least 3 experts the difference between its performance

and the performance of the strategy being optimal for

this expert group is 0 (~=), where n stands for

the number of outcomes.

1 Introduction

The problem how to use expert advice has been studied

in several papers (see, for example [1, 3]). The common
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feature of studied settings of this problem is that in

predicting current event we have access to the actual

values of previous events.

In some situations, however, we do not know the actual

values of previous events while estimating current event.

Consider, for example, the following scenario. A sociolo-

gist performs a sociological research. He/she asks about

100 randomly chosen members of a political party try-

ing to learn the party’s opinion on about 100 questions.

Each of the chosen members receives a questionnaire,

fills it and returns to the sociologist. Each of them can

be considered as an expert in the questions mentioned

in the questionnaire, The sociologist have to process the

filled questionnaires in order to learn the party’s opin-

ion on those questions. The idea to estimate each item

as the majority of chosen members is not the best one.

Indeed, it may happen that some of the asked members

are much more competent than others. In this case it

would better to estimate as the majority of most com-

petent members. However, we do not know a priori the

experts which are the most competent ones.

In the present paper we consider the problem of using
experts under the assumption that we do not get to
know the actual outcomes. This assumption forces to
impose some restrictions on experts because otherwise
good strategies do not exist as we cannot distinguish
between good and bad experts.

A natural requirement on experts is as follows: for any

expert there exists a real number p > 1/2 such that on

any sequence of events the performance (the frequency

of correct estimates) of that expert is at least p. A more

natural (and more restrictive) requirement is as follows:

for any expert there is subinterval of interval (1/2; 1)

which contains his/her performance on any outcome se-

quence.

However, we admit for the sake of simplicity another

restriction on experts, which is close to the second of

the above restrictions but uses randomness. We assume
that each expert is assigned a real (unknown) value

in the segment (1/2; I] called his/her competence. Ev-

ery expert gives the correct value of each outcome with

probability being equal to his/her competence. Every

expert acts independently on other experts and his/her
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estimates of different outcomes are pairwise indepen-

dent, too. Given the estimates of all the experts of out-

comes number 1, 2, . . . . n we have to estimate the last

(nth outcome).’ In this form, the problem was setup

by Andrey Muchnik (personal conversation).

How to measure the performance of a strategy? Of

course, the performance of a strategy may depend on

the actual outcome sequence. For example, the strat-

egy “return always 1“ is good if all actual outcomes are
equal to 1 and is bad if all actual outcomes are equal

to O. Likewise, the performance of a strategy may de-

pend on experts. For example, the strategy “estimate

as the first expert” is good if the first expert has high

competence and is bad if the first expert has low com-

petence. We measure the performance of a strategy on

an outcome sequence with respect to an expert group as

the probability of the correct estimate.

The goal is to find a strategy whose performance is high

on any outcome sequence with respect to any expert

group. Thus we admit here the analysis in the worst

case: we make no assumptions about actual outcome

sequence.2

It is easy to see that no strategy can have high worst-

case performance with respect to an expert group in

which all experts have competence close to 1/2. There-

fore it is natural to compare the worst-case performance

of a strategy (with respect to an expert group) with the

worst-case performance of the strategy which is opti-

mal with respect to this particular group. The strategy

EG being optimal with respect to given group G is the

well known maximum likelihood estimator. To estimate

an outcome, ~G takes estimates el, ez, . . . . em of all the

experts of that outcome and returns that w E {O, 1} for

which the probability of event ‘for all i < m the ith ex-

pert in G gives estimate e, provided the actual outcome

is v‘ is greater. In fact, the performance of the maximal

likelihood estimator does not depend on the outcome

sequence.

So we will compare the performance of a strategy with

respect to an expert group G with the performance of

~G. our main result is the polynomial time strategy S

whose worst-case performance is asymptotically equal

(when the length of outcome sequence goes to infinity)

to the performance of EG for any group G having at

least 3 ezperts (Theorem 1). In fact, the performance

of S does not depend on the outcome sequence. More

precisely, Theorem 1 states that the difference between

the performance of S and the performance of fiG is

O (<=) with respect to any group G having at

least 3 experts. Thus for large n the expected frequency

of correct estimates of S is approximately equal to the

performance of fiG.

So, for example, if there are three experts of compe-

lTo estimate other outcomes

strategy.

2But one exception: in Section
measure on outcome sequences.

we may apply the same

4 we consider the uniform

tence pl z p2 ~ p3 > 1/2 then the strategy will cor-

rectly predict nth outcome with probability at least

~(Pl,Pz,Ps) – o(~-), where

@(pi, p2, p3)

= plp2p3 +plp2(l – p3) +PI(l – p2)p3

+ min{p~(l – pz)(l –p3), (1– PI)P2~3}.

It is easy to see that ifpl(l –p2)(l –p3) ~ (1 –p1)p2p3

then @(pi, P2, P3) = P1. Otherwise @(pi, P2, P3) is equal

to the performance of the strategy “estimate as the ma-

jority of experts”.

The considered framework is close to the framework

studied in the paper [4], where it is shown that clas-

sifications based on m conditional independent Boolean

features can efficiently be learned by examples.

In Section 4 we consider an alternate way to define per-

formance of strategies. We consider there the uniform

probability distribution over outcome sequences and the

uniform probability distribution over competence of ex-

perts (that is, over (1/2; l]m). The performance of a

strategy is defined as the expected probability of correct

estimate on a random outcome sequence with respect to

a random expert group. For this way of measuring per-

formance there exists an optimal strategy which can be

run in polynomial time if the number of experts or the

number of outcomes is fixed.

In Section 5 we investigate some properties of the per-

formance of maximum likelihood estimator, that perfor-

mance reflecting the power of expert systems. In par-

ticular, for any expert group we find how much should

be the competence of an expert in order that his/her

including in that group increases its power.

Notation We denote 1 – x by Z.

2 The Maximum Likelihood Estimator

In this section we assume that there are m experts hav-

ing competence respectively pl, PZ, . . . . pm > 1/2, which

are known. So to estimate the current outcome we do

not need estimates of previous outcomes. Therefore, in

this section, a strategy is a function from {O, 1 }m into

{O, 1}. To distinguish between strategies in the sense of

the next section, which are functions from {O; I}mn into

{O, 1}, we will call functions from {O, 1}~ into {O, 1}

e.stimatom.

In the sequel we denote by p the sequence pl, pz, . . . . pm.

Let @~, 19~, . . . . O;, v = O, 1, be mutually independent

random values such that p {d; = v} = pi. The ran-

dom value O; is the estimate of expert i of the unknown

outcome provided the actual outcome is v.

Definition 1 The performance Q (p, E) of an estimator

E with respect to the group of experts having compe-

tence p is the the minimal of two numbers

PIE(O; ,O; ,.. ., 0$)= O], PIE(O~, Oj, . . ..~)~) = 1].
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Let us define now the maximum likelihood estimator ~: Theorem 1 There exists a strategy S computable in

{

O ifp[O~= e~, . . ..@& =em] polynomial ttme (in m, n) such that

>p[O]=el, . . ..d~= em].

li(el, ez, . . ..em –)– 1 ifp[~~=e~,...,d~=em]
Q(P, &71) 2 Q(P!~p) – O(v’m)

<P IO~=el, . . .. 0~= em]. for any m ~ .3 and any p (the constant hidden in 0(~’)
el otherwise depends on m and on p).

Of course the maximum likelihood estimator depends
on the sequence p = pl, . . . .pm. When this sequence is Before to prove the theorem let us remind the Chernoff

not clear from the context we will write tip instead of bound, which will be used in the proof.

15. Theorem 2 (Chernoff bound [2]) Let fl, . . . . & be a’n-

The next lemma, which is proven in Appendix, is well dependent random values in the set {O, 1} such that p[& =

known; it states the optimality of the estimator ~.
1]= p for all i. Then for any y 6 [O;p(l – p)],

Lemma 1 Q(P, &p) 2 Q(P, -E) for all E and all p.

[ 1p~&-P >7 52e-272nn,
2=1

Example 1 Let us be given a group of three experts

with competence pl z pz ~ p~ > 1/2. Then ~(000) = Proof of Theorem 1. The m, n-strategy Smn is com-

J!5(ool) = J!7(olo) = o, i(lll) = E(llo) = E(lol) = 1, puted in two stages.

O, if pIpz~3 > p@2p3,
~(oll) = { 1, e]5e,

First stage: given estimates of all the experts of out-
comes number 1,2, . . . . n -1 compute the approximate
competence @l, . . . . j~ of experts.

and fi(100) = w.
Second stage: given p = ~1, . . ., Pm and the estimates

So the optimal estimator estimates as the first expert of the last outcome apply the maximum likelihood esti-
if p1~2ji3 ~ ~1p2p3 and estimates as the majority of mater substituting @l, . . . . pm for unknown P1, . . . . pm.

experts otherwise. Its performance is equal to pl in the
first case and to plp2p3 + ~lp2p3 + pl~2p3 + plp2~3 in Let us turn to the first stage.

the second case, First stage. Consider first the case m = 3. Let rl, rz, rs
be defined by equalities PI = 1/2+ ?’1, P2 = 1/2+ r2,

3 Asymptotically Optimal Strategy p3 = l/2+rs. Then rl, ra, rs are greater than 0. Let s12
stand for the probability that the estimates of the first

In this section we assume that there are m ~ 3 experts and the second experts (of the same outcome) coincide.

having competence respectively pl, p2, . . . . pm > 1/2, It is easy to see that S12 = 1/2 + 2r1r2. The crucial

which are unknown. Those experts estimate n binary point is that this probability does not depend on the

outcomes vl, v’, . . . . Vn, which are unknown, too. Given actual outcome. In the same way define s13 and s’a.

all those estimates we have to estimate the last (nth) Note that given 512, S13 and S23 we can find rl, r2 and

outcome. So a m, n-strategy is a function from the set P3 by using the simple formulae:

({O, l}n)n into {O, 1}. The family of m, n-strategies is
denoted by Smn. A strategy is a family S = {Smn I

r,. ~W, r,. ~W,

m, n = 1, 2, . . .} of functions such that Smn is a m, n-
strategy for any m, n. ‘3= ~

The estimate of expert i of jth outcome is a random This observation leads to the following algorithm for
value depending on the actual outcome Vj. This esti-
mate is equal to Vj with probability pi. The estimates

computing approximations pl, $2, p3 of competence of
experts. Let en, e’1, e31, ela, e“, em, . . .. el~, ea~,

of different experts are mutually independent and the
estimates of the same expert of different outcomes are

e3n be the estimates given by experts. Find first the
value 312 i+ I{j < n[eli = ezi}]/(n — 1). Find 313

mutually independent, too. and ;23 defined in the same way. If some of the num-

Let us define the performance Q (p, S) of a m, n-strategy hers 2312 – 1, 2~M – 1,2.$23 – 1 is not positive let @l =

S wzth respect to experts with competence p = pl ,pz, . . .. j2 = ~3 = 1. Otherwise substitute in the three above

pm. Let f:’ stand for the estimate of expert i of the jth formulae ~1’, ;13, ;23 respectively for S1z, s13, s23 and

outcome provided its actual value is v, Then denote the resulting values by fil, F2, F3. Find rational

Q(P, S)
approximations ?1, Fz, ?3 respectively to F1, iz, F3 with
precision say l/n. Let ii =1/2+ il, jz=l/2+t5 and

— min P[flfi;(;; ~~“c%”” %5X ~~G%n) = Vnl
U1,... >U7I

@3 = l/2+f3.

The case m = 3 is done. In the case m >3 we find pl,
It is easy to see that Q(p, S) ~ Q(p, fip) for any m, n- PZ, . . .. & as follows: P1, jz, ~z are computed as earlier
strategy S and for any p. and to find pi for i > 3 we consider the group consisting
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of the first, the second and the ith expert and do the
same thing. The first stage is completed.

On the second stage we return the value

fip(el~, ez~, . . ..e~~). where fi=ji, jz, j~. ,j~.

The strategy S~n is defined. Let us prove that for any

It is easy to see that, for the constructed strategy, the
probability of correct estimate does not depend on the

outcome sequence. So we will estimate this probability
assuming that all outcomes are equal to 1.

Let us fix arbitrarypl, pz, . . . . pm > 1/2. Denote min{pl–
l/2, p2 – 1/2, . . . .pm – 1/2} b E. Then we have Sjk ?

1/2 + ZE2 for all ~ < k < m.

Let y = ~-. Let us estimate the probability of
event 1~j~ — Sjk / < -y using Chernoff bound. The condi-

tions of Theorem 2 are fulfilled for large enough n unless
Sjk = 1. In the case sjk = 1 that probability is equal to

1. By Chernoff inequality any of the events

I$k - Sjkl s 7 (1)

~er_Jln; k < m holds with probability at least 1 –
= 1 – 2n-2.

Therefore we have

Let us note that for any fixed estimator E the events

E(t]~,...%~) = 1 andy~<k<m 1$~-sj~l <~are
independent. The inequalities (1) imply that the esti-

mator fip is close to estimator Ep. The value Q (p, BP)

is contin~ous when p varies. Therefore,

is close to Q (p, Ep). The exact bound follows from the
next two lemmas.

Lemma 2 If n is large enough and (1) is true for all

j<k~mthen @i-pi l<s-5y+ l/n foranyj <m.

Proof. Let n be so large that y < 1.5e2 and let (1) be
true for all ~ < k < m. Let us prove that lfiI – PI I <

E-57 + l/n. we have 2~12 – 1> El, z.k – I > E2 and
2~z3 – 1 ~ E2. Therefore

d(2SIZ – 1)(2S,3 – 1) _

i

(2s,, - 1)(23,3 -1)——
4(2SZS – 1) 4(2S23 – 1)

—— o(2s,2 - l)(2s13 - 1)(2s23 -1)

Lemma 3 Let %1, . . .. b’~ be independent random val-

ues such that p[~; = 1] = pi. Then p[~p(d~, . . .,8A) =

1] = Q(P, J$p) and if lpi –pi/ s d for all i s m then

I Q(P, fip) – Q(P, ~P)l < m2mJ.

This lemma will be proven in the Appendix.

Letting in the above lemma d = y/E5 + l/n we get

Q(P> %m) = P[f%((tltil . . .&An) = vn]

Z Q(P, ‘p) – m2~(7/~5 + l/n) – 2mn–2

= Q(P>fip) - 0({=) D

Remark 1. As we can see from the proof, the gap
between the performance of the strategy’s estimator and
that of the ML estimator is exponential in the number
of experts. So the fact that it is polynomial time in
the number of experts is not so useful, since number of
outcomes needs to be exponentially large in the number
of experts for a given desired relative performance.

4 The Optimal Strategy for an

Alternate Way to Define

Performance of Strategies

In this section we will measure the performance of strate-
gies as follows: for a m, n-strategy S let

Q(s)

= ]{1/2n ~ P[s(f~jt$.)=vn] }dpldp*
WI,.,ull

where the integral is taken over (1/2, l]m.

A m, n-strategy S is called optimal if @(S) z ~(S’) for
all m, n-strategies S’. A strategy S = {Smn I m, n =
0, 1,2, .} i. called optimal if S~n i. optimal for all

m,n.

Theorem 3 There zs an optimal strategy computable m
polynomial time if n is jixed or m M jixed.

Prooj Let ~mn = max~~~mn ~(S). By definition we
have

Omn

= max /x
2-n

P [S(cy;, . . .
SE’S*. ,<:n) = WJ dp, dp~.

v
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Obviously,

P[s(&y; ,.. .,#&) = %]

= ~ PIS(eII,..., e~m)=vn A

ell,...,,-,.

Vi < mb’j 2 n t:’ = eij].

Therefore,

e,j])dpl . . . dpm. This expression can be rewritten as

~~1 (~ ~~=1 p[~~~ = eij]dpi). The value

{
if Vj = eij,

P[#” = %j]= ~_ pi otherwise

is a linear polynomial in pi with coefficients not exceed-

ing 1 in absolute value. By multiplying P [c~’~ = .i.j] for

j=l,2, ..., n we find in time not depending on m the
coefficients of the polynomial gi (Pi) = ~~=1 P [&’/ =

.ij] . Those coefficients do not exceed 2“ in absolute
value. Then we find ~ gi (pi ) dpi and multiply the result-
ing values for i= 1,2, . . ..m.

Assume now that m is fixed. Again it suffices to prove
that given e and (.11, . . . . emn ) we can compute in poly-

. .
) In this case we rewritenomlal time F’(e, en, . . .,e~n .

F’(e, en, . . ..emn) as

I’(e, en, . ..mn)n)
Given e c {O, 1} denote by F’(e, .11, . . .,e~~) the value

~,-”~

= /’(2-. = )p[yijf~~ = eij] dpl . . dp~~,
P[e = v~ AVij C;’ = .ij]dpl “ ~dp~. (2) V:unze

Then = 1(2-” ~ ~~P[&~’ =.ij])dpldprn
V vn=e j i

Omn = m..x ~ ~(s(.llj . ..mn))ellj)emn)n)

en,..., emn Let us note that

Therefore the strategy that given a tuple (el 1, . . . . e~~)
returns O if

F(O, .11,..., emn) > l?(l, en,..., e~n)

and 1 otherwise is optimal, Note that this is again the
x fip[~~j = e.j]}.

maximum hkehhood estimator. Indeed, F(e,.11, ., e~~ )
;=1

is equal to the probability that the last outcome in a
random outcome sequence v is equal to e and random

Therefore,

experts give estimates .11, . . ., emn on V. ll(e, en, . . ..emn)

Let us prove that this strategy is polynomial time if
either m or n is fixed. = ~2-”fi~(fiP[&~j = ei~]+fip[~~, = ei~l)

./
Assume first that n is fixed. It suffices to Drove that

jcl ‘ ‘icl i=l

given e and (en, . . . , e~.) we can compute ‘in polyno-
mial time F(e, .11, . . .,emn). We have

F(e, en,. . .,.mn)

= /(2-.=
)

p[e = vm A ‘dijff’ = .ij] dpl “ ~ ~ dpm

v

As the number of v’s is 2“- 1 (hence does not depend on
m), it suffices to compute given v the value ~(~ij P[~$~ =

The expressions jj (P1, PZ, . . . ,P~) = n~l P[(~j = %]+

I’121 p[~~j = ‘i~l ‘or j = 12 “ ~n – 1 and ‘he ‘expre-
ssion fn(pl, pz, . ... p~ ) = I_Kl P[f~., = .;n] are multi-
lineal polynomials (i.e., of degree 1 in every variable) in

Pi> ... pm and have at most 2m integer coefficients not
exceedingZm+l in absolute value. In time depending

only on m we can find the coefficients of any of those
polynomials. Therefore, in time linear in n we can find
the coefficients of all those polynomials.

Now we have to multiply those n multilineal polynomi-
als. Note that we cannot do that directly because direct
multiplying of n polynomials having 2m terms yields
(2m)m terms. To avoid this difficulty let us note that
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the resulting polynomial ~ = fl f2 . . jn has degree n in
every variable and therefore has (n + I)m coefficients.
Therefore we can compute the coefficients of polynomi-
als ~lfz, ~1.fzf3, . . ., .fl f2 fn in succession. On every
step we multiply two polynomials of degree at most n.
This multiplying requires only (n + l)2m arithmetical
operations.

Then we can find the integral of that polynomial by
integrating separately all its terms. ❑

5 Comparing different expert groups

The value t3(pl, pz, . . ..p~) # Q(P1, Pz, . . .. I%. E) re-
flects the competence of the expert group and will be
called the competence of the group PI, P2, ., pm.

Theorem 4 The funchon O(P1, PZ, . . . .pm) zs mono-

tone, i.e., pl > pj, . ..)pm > p~ +- @(pi,...,pm) 2
e(pj, . ..)p~).

We will prove this theorem later.

The next theorem answers the following question: sup-
pose we want to increase the competence of an expert
group by including a new expert. How high should be
his/her competence?

Let Z(lI denote 1 – z and z(o) denote z. Let O(Y, Z) =
- and

t= rn~_l ?J(P!’)P$2) “ “P$$7),P!’’)P!2) “P::;’)).
el,

Theorem 5 @(pi, ... p~-l, p~) > @(Pi, ., Pm–1) for

anypm >t anct@(pl }.. ., Pl, P~P~ )=@(Pl)..., P?71)l)

for any 1/2 <pm < t.

For example, assume that p, =pfor i = 1,2, .,m–l.
Then it is easy to see that t= 1/2 if m – 1 is even and
t = p otherwise. Thus if m – 1 is even including of any
expert will improve the expert group and if m – 1 is odd
only including of experts with competence higher than
p can improve the group.

Proof of Theorem 4 and Theorem 5. To prove the former
theorem it suffices to prove that the function

~(Pl, P2, . . ..Pm ) is monotone in pm.

It is easy to see that

@(pi,...,pm)

—— 0.5 ~ max{p~’) . . p~m),p~z’) . ~.ptm)}

cl, .. ,en

= 0.5 ~ (max{p~’) p$!~’)pm,

cl,. .,en—l

Pp )
“ ‘“P::;’)(1 –Pm)}

(e, )
+ max{pl p$~~’)(l ‘pm),~~’) “p~~~’)prn })

For any positive a, /3 the function fap (x) = max{az, ,B(l–
z)} + max{a(l – z), ~o} is equal to max{a, ,6} for all
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1/2 s x s - and is equal to (a+,B)x for any x z

*. Thus, this function is monotone on the seg-

ment [1/2; I]. Therefore, the function @(pi, P2, ., pm )

is monotone in the variable pm as a sum of functions of
the type fao (z).

Moreover, the above equations show that

f3(Pl, P2, . . .. Pm)

— 0.5 ~ max{pj”) . . .p$I’~’), p\F1) . . p~~~’)}

el, ,e-—l

= O(pl, . . ..n1)l)

for any pm s t where

t= rn~_l @( P! ’)P!’) “ “ “P$Z-l))P!’l) “ “P::;’)). ❑
el,

6 Conclusion

We left open the following important question: how

tight is the bound 0(~=) in Theorem 1? That
is, how fast can tend to zero the value Q(p, S~~) –

Q(P) fiP) when n goes to infinity, where S be an arbi-
trary strategy (not necessary polynomial time).

Another question is: what is the performance of the

following strategy ~: given estimates el 1, . . . . e~~ find
those real number pl, p2, . . . . pm E [1/2; 1] and binary
values VI, V2, , , ,, Vn for which the probability of event
“the experts with competence pl, p2, . . . . pm give esti-
mates ell, . . . . e~n provided the actual outcome sequence

isvl, v,, . ..)vn “ is maximal. It is easy to see that this
is again the maximal likelihood estimator. We do not

know if the strategy ~ is asymptotically optimal neither
we know if it is polynomial time.

The third question is: what happens in the case when
estimates of experts of the same outcome are correlated.
What are reasonable assumptions about such correla-
tion?
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Appendix. The proof of Lemmas 1
and 3

Let us prove Lemma 1. Recall that Lemma 1 states

that Q (P, Ep) > Q (p, E) for all estimators E and all
P=(Pl, P2, . . .. Pm).

It is easy to see that

Ep(El,..., %)= Ep(el, e~), e~).

This implies that

Q(P> ‘p)

= p[fip(o; ,. ... o&)=o] =P[&(e; ,..., o:) =1]

= (1/2) ~ p[~~p(e’’””’’e~) = el, . . . .

el,...,e~

~~p(e’” “em) = em]

Indeed, let o denote addition modulo 2. Then

P[Ep(@, . . ..@.)=o]

—
E

#,@o) ,p@J’@o)—

el,...,efi(el,l,. .,. n)=o

—
z

#w3)— . .P(gmaw

el, ,.m J9(el,.. ,em)=l

—

x

~f,w) , . ,p:m@l)—

e~,. ,em:fi(el,,,., em)=l

= P[fip(o; ,.. .,o~)=l]

The inequalities (4) imply that

Q(P, EP)

(3)

(4)

= (1/2) ~ $’ofip(e’’”””’’m)) ~ .P:moap(e’” ‘em))

el,...,e~

Let E be an estimator. Then

Q(P, E)

~ I/2(P[E(O~,..., Og) =0] +PIE(di,..., fl~)= l])

,em))

S (1/2) ~ p~l@fi(el,...,em))
, . .p~m@E(el, ,em))

cl,. . ,Cnl

= Q(P, ~p)

(the last equality is true by (3)). ❑

Let us proof Lemma 3. Recall that Lemma 3 states that

PIEP(O1 ,. ,.,o~) = 1] = Q(p, ~p) and that

I Q(P, fip) - Q(P, ‘iP)l < m2m~.

The former property of the maximum likelihood estima-

tor follows from equalities (4) if we substitute there ~p

for E.

Let the conditions of the second property are fulfilled.
Then as in the proof of Lemma 1 we can prove that

So it suffices to prove that for any el, . . . . em,

(e,ofip(el))em)) . . .p~~n~fip(el,e~))
P1

(e,~tip(e,,.. ,e-)) (em@fip(el,...,e*))
– P1 ““”Pm

< 2mf5.

Let us fix arbitrary el, . . . . em. If

~p(el, cc., -e~)=Ep(el, . . ..e~)

we have nothing to do. Otherwise without loss of gen-
erality assume that

Zp(el,. ... em)=l, &p(e~,..., em)=O.

This means that

pf,@o) ...p~m~”)>p~elol)...p~mol)

and

~@o) -(e~@O) < ~\’l@l) . . .~$n~l),
““’Pm –

It is easy to see that

,&l@~) .~gmcw) _ ~plo”) .pk&~)l < m,~.

for any v G {O, 1}. Therefore

Ip\e’oo).,.p$~~”)-p~e’o’)...p~m@l)l< zm~. ❑
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