
Learning With Unreliable Boundary Queries

Avrim Blum* Prasad Chalasani

School of Computer Science Los Alamos National Lab.
Carnegie Mellon University Los Alamos, NM 87544

Pittsburgh, PA 15213 chal @lanLgov

avrim @theory.cs.cmu .echt

Abstract

We introduce a new model for learning with mem-
bership queries in which queries near the bound-
ary of a target concept may receive incorrect or
“don’t care” responses. In partial compensation,
we assume the distribution of examples has zero
probability mass on the boundary region. The mo-
tivation behind this model is that the reason for the
incorrect (or “don’t care”) response is that these
examples are extremely rare in practice. Thus, it
does not matter how the learner classifies them.

We present several positive results in this new
model. We show how to learn the intersection of
two halfspaces when membership queries near the
boundary may be answered incorrectly. Our algo-
rithm is an extension of an algorithm of Baum [6, 5]
which learns intersections of two homogeneous
halfspaces in the PAC-with-membership-queries
model. We also describe algorithms for learning
several subclasses of monotone DNF formulas.

1 Introduction

In most of the theoretical work in concept learning it is as-
sumed that there is a well-defined boundary separating posi-
tive from negative examples. In practice, though, classifica-
tion is often unclear. For example, consider a membership
query algorithm for learning to recognize the number 3 from
pixel images. A typical strategy would involve taking a 3 and
a non-3 (maybe a picture of a 2) and asking for classifications

“Supported in pam by NSF National Young Investigator grant
CCR-9357793 and a Sloan Foundation Research Fellowship.

t Supported in part by NSF Grant CCR-9 110108 and NSF Na-
tional Young Investigator grant CCR-9357707 with matching funds
provided by Xerox Corporation.

t Supported by NSF Grant CCR-93-1 0888.

Permission to make digitol/hard copies of all or pmt of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and its dote appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish,to post on servers or to
redistribute to lists, requires specific permission and/or fee.
COLT”95 Santa Cruz, CA USA@ 1995 ACM 0-89723-5/95/0007. .$3.50

98

Sally A. Goldmant Donna K. Slonim$
Dept. of Computer Science MIT Lab. for CS

Washington University 545 Technology Square
St. Louis, MO 63130 Cambridge, MA 02139

sg@cs.wustl.edu slonim@theory.lcs.mit. edu

of examples halfway between them until two nearby exam-
ples with different classification are found. A problem with
this type of approachl, as noticed by Lang and Baum [16] is
that questions of this sort that are near the concept boundary
may result in unreliable answers. Merging an image of a 2
and a 3 tends to produce something that (A) looks a bit like
both and (B) we don’t really care about anyway, since we
don’t expect to see one in practice.

More generally, one unrealistic aspect of the PAC-with-
membership-query model is that it relies much more heavily
on its assumptions than the passive PAC model. Consider,
for instance, the above situation of learning images of 3’s in
which the learner is using some simple hypothesis class (say
a simple neural network). For a passive algorithm, one would
want the data seen to be consistent with some hypothesis in
the class (or nearly so). For a membership query algorithm,
however, one needs the stronger condition that the target con-
cept can actually be represented in such a simple form. The
difference is that typical images of 3’s maybe distinct enough
from images of other characters that many simple consistent
hypotheses exist. However, if one were to probe the exact
boundary of the “3” concept, one would likely find it has a
complicated structure that even depends on which “expert”
you ask.

In this paper we propose and study a model for learning
with membership queries that addresses the above issues.
The basic idea of our model is that queries near the bound-
ary of a target class may receive either incorrect or “don’t
care” responses, But, in partial compensation, we assume
the distribution of examples has zero probability mass on the
boundary region. (The motivation is that the oracle gives
incorrect or “don’t care” answers because these examples do
not actually appear in the world and thus it does not matter
how the learner classifies them.) We do not require the oracle
to answer incorrectly or “don’t care” in the boundary region,
since that would just make the learning problem that of learn-
ing a different (perhaps ternary) target concept in the standard
model; for instance, one could then simply perform binary
search between the boundary and non-boundary examples,
defeating the purpose of the model. One way of viewing our
model (actually our model is a bit more general) is that the
true target concept is in fact some horribly complicated func-

1Particularly when a human “expert” serves as the membership
query oracle.

tion, but differs from a simple function only in a boundary
region that has zero probability measure.

The contributions of this work are: (1) the introduction of the
model of learning with unreliable boundary queries, (2) an ef-

ficient algorithm that PAC-leams the intersection of two half-
spaces with membership queries when the boundary queries
are noisy, and (3) efficient algorithms to exactly learn (with
membership queries) several subclasses of monotone DNF
formulas when there are one-sided false positive errors in the
boundmy queries for a small boundary size.

2 Definitions

We assume the reader is familiru with Valiant’s probably
approximately correct (PAC) learning model [22] and An-
gluin’s model of learning with membership and equivalence
queries [2]. We use PAC-memb to refer to the variation of
the PAC model in which the learner can make membership
queries. Likewise we say that a concept class is exactly
learnable if it is learnable with membership and equivalence
queries.

Given a concept f over an instance space that has a distance
metric, we say that the distance to the boundary of an example
t is the distance to the nearest example y such that ~(x) #

f(y). For continuous input spaces we use the infimum over
distances to y’s such that $($) # ~(y). In the boolean
domain we use the Hamming distance as our metric. Thus an
example is at distance 2 from the boundary if it is possible to
flip two bit positions and change its classification. We define
the boz.mda~ region of radius r to be the set of examples
whose distance to the boundary is at most r. We define the
negative boundary region of radius r to be the set of all
examples x in the boundary region such that ~(x) = O.

We now define the unreliable boundary query (UBQ) model.
This model is the same as the standard PAC-memb model
except for the following difference: there is a value r (the
boundary radius) such that (A) any query to an example
in a boundary region of radius r may receive an incorrect
response, and (B) the example distribution D has zero prob-
ability measure in that boundary region. In the incomplete
boundary query (IBQ) model, the learner never receives an
incorrect response to a query, but in the boundary region
might receive the answer “don’t care”. We also consider
a one-sided false-positive-only UBQ model in which the
learner may receive false positive answers to any queries in
the negative boundary region, and the distribution D is only
required to have zero probability on the negative boundary
region. Finally, we extend these definitions to the exact learn-
ing model by requiring that counterexamples to equivalence
queries not be chosen from the boundary region.

3 Related Work

There has been much theoretical work on PAC or mistake-
bound learning in cases where the training examples maybe
mislabeled [2, 15, 20, 13] and additional work in models
which allow attribute noise [19, 10, 17]. The p-concepts

model of Kearns and Schapire [14] falls somewhat into this
category and is related to our work since their model allows
a “graded” boundwy between the positive and negative por-
tions of the instance space.

There have also been a number of results on learning with
randomly generated noisy responses to membership queries.
Sakakibara[18] considered the case where each membership
query is incorrectly answered with a fixed probability, so that
one could increase reliability by asking the same member-
ship query a sufficient number of times and taking a majority
vote. A more realistic model is that ofpersistent membership
query noise in which repeated queries to the same example
receive the same answer as in the first call. Goldman, Kearns
and Schapire [11] gave a positive result for learning certain
classes of read-once formulas under this noise model. Their
work uses membership queries to simulate a particular distri-
bution. Frazier and Pitt [9] showed that CLASSIC sentences
are learnable in this noise model, using the fact that many dis-
tinct membership queries can be fomulated that redundantly
give the same information.

Angluin and Slonim [4] introduced a model of incomplete
membership queries, in which a membership query on a given
instance may persistently generate a “don’t know” response.
The “don’t know” instances are chosen uniformly at random
from the entire domain and may account for up to a constant
fraction of the instances. Additional positive results in this
model were obtained by Goldman and Mathias [12]. This
model allows for a lame number of “don’t know” instances.
but positive results in ~his model are typically highly depen~
dent on the precisely uniform nature of the noise.

Sloan and Turan [21] introduced the limited membership
guery model. In this model, an adversary may arbitrarily se-
lect some number /of examples on which it refuses to answer
membership queries (or answers “don’t know”), but the num-
ber of queries the learner asks maybe polynomial in L Sloan
and Turan presented algorithms in this-model for learning the
class of monotone k-term DNF formulas with membership
queries alone and the class of monotone DNF formulas with
membership and equivalence queries, Angluin and Kril@ [3]
introduced a similar model of malicious membership quen”es
in which the adversary may respond with incorrect answers
instead of “don’t know”. Their paper proved that the class
of monotone DNF formulas is learnable in this model. An-
gluin [1] has shown that read-once DNF formulas are also
learnable with malicious membership queries.

The main difference in motivation between our model and
those above is that instead of supposing that there is a clear
boundary between the positive and negative examples but
with some noise included, we are attempting to model the
very different situation in which the classification of exam-
ples in the boundary region is just not well defined (for ex-
ample, a “2” merged with a “3”). Our model is more dif-
ficult than those above in that the membership query errors
or omissions are chosen by an adversary (unlike [4]) and
algorithms must run in time that is polynomial in the usual
parameters regardless of the number of queries that might re-
ceive incorrect answers (unlike [21, 3]). For example, in the
case of a 1-term monotone DNF formula with the boundary

99

radius r = 1, there may be exponentially many (in n) in-
stances in the boundary region. (Example: let X4X7X9 be the
target term. Then all positive instances, and all negative in-
stances with exactly one of {X4, X7, 29} turned off, are in the
boundary region of radius 1.) On the other hand, to partially
compensate for this difficulty, we restrict membership query
errors or omissions to the boundary region and we require
that counterexamples to equivalence queries be chosen from
outside the boundary region.

In other related work, Frazier, Goldman, Mishra and Pitt [8]
introduced a learning model in which there is incomplete
information about the target function due to an ill-defined
boundary. While the omissions in their model may be ad-
versarially placed, all examples labeled with “T’ (indicating
unknown classification) must be consistent with knowledge
about the concept class. In other words, the classification
of any instance labeled with “?’ should not be possible
to determine from knowledge of the concept class and the
positive and negative instances. They require the learner to
construct a ternary function with values {O, 1,?} that, with
high probability, correctly classifies most randomly drawn
instances, One of the key differences between their model
and ours is that they allow time polynomial in the complexity
of that ternary function: thus if the “?” region has a compli-
cated shape, then their learner is allowed a correspondingly
longer time. Once again, a goal of our work is to produce
algorithms whose running time is polynomial in the usual
parameters regadess of the number of queries that might
receive incorrect answers. In the model of Frazier, et al.
the time complexity depends heavily on the placement of the
“?” examples. In their paper they give positive results for
the classes of monotone DNF formulas and d-dimensional
boxes. Negatively, they show that learning the conjunctions
of Horn clauses in their model is as hard as learning DNF.
They also give a general technique for converting a standard
PAC (or PAC-memb) algorithm for any concept class closed
under union and intersection to an algorithm that learns in
their model.

4 Learning an Intersection of l%vo Halfspaces

We now describe one of our main positive results: an algo-
rithm for learning an intersection of two halfspaces in the
UBQ model, for any boundary radius r (see Figure 1). Our
algorithm is an extension of an algorithm of Baum [6, 5] for
learning the simpler class of intersections of two homogen-
eous halfspaces in the standard PAC-with-queries mode12.

The idea of Baum’s algorithm is to reduce the problem of
learning an intersection of two homogeneous halfspaces to
the problem of learning an XOR of halfspaces, for which a
PAC algorithm exists [7]. (That algorithm produces a hy-
pothesis that is the threshold of a degree-2 polynomial.) The
idea of the reduction is to notice that negative examples in
the quadrant opposite from the positive quadrant—the trou-
blesome examples keeping the data set from being consistent
with an XOR of halfspaces—are exactly those examples 2

2A halfspace is homogeneous if its bounding hyperplane Passes

through the origin.

such that –~ is positive. His algorithm is as follows:

Draw a sufficient] y large set S of examples.3 Mark
all of the negative examples 2 E S which have the
property that a membership query to –? returns
“positive”. Then find a linear function P such that
P(2) <0 for all the marked (negative) examples
and P(2) > 0 for all the positives. Finally, run
the XOR-of-halfspaces learning algorithm of [7] to
find a hypothesis H’ that correctly classifies {; E
S : P(Z) ~ O}. The final hypothesis is:

“If P(Z) < 0 then predict negative, else predict
H’(@).”

Baum’s algorithm seems appropriate for our model because it
does not explicitly try to query examples near the boundary.
In fact, it is “almost true” that if a negative example has
distance at least r from the boundary, then the example –5
has distance at least r from the boundary as well. This
fails only on the negative examples in the “A-shaped” region
shown in Figure 1.

Our algorithm for learning an intersection of (not necessarily
homogeneous) halfspaces in the UBQ model is a small ex-
tension of Baum’s algorithm, though the analysis requires a
bit more care. In our algorithm, instead of reflecting through
the origin, we reflect through a positive example. We use
a potential function to prove that some “good” positive ex-
ample for reflection must exist. (The algorithm tries all of
them.) Specifically, our algorithm is the following:

Draw a sufficiently large set S of examples,

For each positive example ;P., E S do the fol-
lowing. For each negative example i?..g E S,
query the example 2ZP0, – ~n,~, and if the re-
sponse to that query is “positive”, then mark & ~g.
Now, attempt to find a linear function P such that
P(Z) <0 for all the marked (negative) examples
and P(Z) z Ofor all the positives. If no such func-
tion exists, then repeat this step using a different

positive example FPOSE S (we prove below that
this step must succeed for some positive example

Zpos).
Finally (assume we have found a legal linear func-

tion P), let S’ be the set of ; E S such that
P(Z) >0, and use the XOR-of-halfspaces learn-
ing algorithm to find a hypothesis H’ that correctly
classifies the examples in S~. The final hypothesis
is:

“If P(;) < 0 then predict negative, else predict
H’(Z).”

Theorem 1 For any radius r of the boundary region, our
algorithm succeeds in the UBQ model.

Before giving a proof of correctness, we point out the sim-
plifying observation that our algorithm is invariant under
translation. If we add some vector Z to each Z c S, this

‘The VC-dimension of the hypothesis class is O(n2) so a corre-

sponding number of examples are needed.

100

Figure 1: An intersection of 2 halfspaces. Boundary region is shaded. Notice that its apex is curved, which complicates the
proof somewhat.

region that MIGHT flip to positive

I\: ‘/

All negative examples that flip to positives lie above this hyperplane.

Figure2: Forclarity, ZPO. istheonly positive example shown. Allmarked negative examp~es liewithin theconvex hull of
thedark-shaded region. Lemma 2states that theintersection ofthisregion with thenon-boundmy negative region islinemly
separable from thepositive region. Thehyperplane pictured isthelinear equality .P($) = 2from that lemma.

101

results inadding fltoeach point of the form 2~POS—~~~gas
well. Inparticuku-, this means that if we can prove that our
algorithm succeeds when the hyperplanes are homogeneous,
then this implies that our algorithm also succeeds in the gen-
eral (non-homogeneous) case. Therefore, we will assume
in our proof for simplicity that the hyperplanes are, in fact,
homogeneous.

We now fix some notation. Let r be the radius of the boundary
region (which, notice, is not used by the algorithm). The
target concept is defined by two unit vectors @land 17z,and the
positive region POS = {3: ~1 . Z ~ O and ~2 . F > O}. We
define the “opposite quadrant” to be {2 : ~1 . E <0 and ~2 .
Z < O}. We say a point (or example) is “non-boundary” if it
is not within the boundary region.

The negative non-boundary region NEGnb is the set of neg-
ative points not in the boundary region. I.e.,

NEG.b =

{i:(g71. Z< 0or~2Z< O)andd(F,POS)> r}.

Notice that if either ~1 . ii < –r or 172. Z < -r then J is
in N.EG.b, though these are not necesswy conditions (see
Figure 1). In fact, let us define

NEGta, ={ Z: C1. i’<-ror@z. i?< -r},

so iVEG~aT ~ NEGnb. To get necessary conditions for
lying in the region NEG~b, notice that if

–r~@l. i?< Oandt7EN13G.b

then it must be the case that (2 + r~l). z7z<0 (otherwise the
point ~= F+ r~l would be in the positive region). Similarly,
if

–r~$2. ~< Oand; ENEGnb

then (Z+ r~2) . ~1 <0. Thus,

NEGnb G NEGJm. U

{Z:(~l.2<0 and#z2<-r~~. @z)or

(~2-Z<Oand~l ;<-r~l jz)} (1)

We begin by showing that the negative examples in the op-
posite quadrant do in fact get marked by our algorithm.

Lemma 2 For any non-boundary positive example gPo. and

any negative e,wzmple t?n~~ in the opposite quadrant, the

point 22P*, – i?ne~ is a non-boundary positive example.

Proofi Since ;fi.g lies in the opposite quadrant, we have’

F1 “ (Z:p.s – ~neg) ~ @l “ zz~., > r

and
@Z. (22,., - Fne,) ~ ~Z .25,08> r.

•1

what remains to be shown is that there exists a positive
example 2P0. such that the set of negative examples marked
when using ZPO, for reflection is linearly seParable from

the positives. In particular, we show the positive example
Z c S that minimizes (zZ ~Z’+ r)(flz . E + r) will succeed.
Letting FPO, be that example and a 1 = ~1 . ;PO, and a2 =
ZZ. FPo., we show that a legal separator is the linear equation
=+->2.

102

Lemma 3 Let ZPO, be the example i? E S minimizfig @ .
2+ r)(~2 . 2+ r) and let al = ~1 . ;PO$ andaz = P2 . XPOS.

Then the linear function

P(i) =
y7’1-Z+r +F2.F+T

al+r az+r

is at least 2for each positive emmple 5 and at most 2for each
negative example 5 marked when using 5PO~for reelection.

Proof: First we consider the positive examples. Let ;’
be some positive example in S. Define a and /3 so that
(~’ @l+ r)= @(al + r) and (E’ ~2 +r) = /3(ar +r). By
definition of ZPo~ we have a,B > 1, and by definition of the
positive region we know both a and ,B are at least O. These
inequalities imply that a +/3 >2, which implies P(i?) ~ 2.

Now consider the negative examples. The set of examples
~ with the property that 2ZPO$ – Z might be classified as
positive by a membership query is pictured in Figure 2. This
set is contained within the set

MAYFLIP ={2:$1. Z~2a1+randg72 .7~2a2+ r}.

We now consider the possible cases for marked negative
examples Z c S from Equation (1) (cases 1 and 2 below
handle the possibility that i E NEGjar).

Case 1. Suppose76 MAYFLIP n {Z : ~1 . ~ < –r}, Then

P(2)< o+ &&2,

Case 2. Suppose; c MAYFLIP n {2 : ~2 . S < –r}. Then

P(2) <W+ O=2.

Case 3. Suppose Z E {2 : ji’l .2<0 and $2

Then P(Z) < * + “(-~~~~+1] <1-

at most 2 since az > r.

Case 4. Suppose i? E {2: @l. 2<0 and $1
Same reasoning as Case 3.

Proof of Theorem 1: Follows from Lemmas 2 and 3. ❑

5 Learning Subclasses of Monotone DNF
Formulas

In this section we describe algorithms to learn two subclasses
of monotone DNF formulas in the UBQ model with one-
sided false-positive error, for small values of the boundary
radius r. (Learnability in the one-sided UB Q model implies
learnability in the lBQ model by simply treating each “don’t
care” response as positive.)

Specifically, we give an algorithm to learn the class of “read-
once monotone DNF formulas in which each term has size at
least 4“ in the UBQ model with boundary radius r = 1. While
this is clearly a highly-restrictive class, it is as hard to learn
as general DNF formulas in the passive PAC model. Thus it
does demonstrate that unreliable queries provide some power
over the passive model in a boolean setting. We also give
an algorithm to properly learn a subclass of constant-term
DNF formulas for r any constant. While the class of k-term

DNF formulas is learnable in the passive model, membership
queries are required for proper learnability.

Letyl, ,.., Y. denote the n boolean variables, and x =
(x,,..., zn) denote an example. As is commonly done, we
view the sample space, {O, 1}n, as a lattice with top element
{1}” and bottom element {O}n. The elements are partially
ordered by ~, where v ~ w if and only if each bit in v is less
than or equal to the corresponding bit in w. The descendants
(respectively, ancestors) of a vector v are all vectors w in the
sample space such that w < v (respectively, w ~ v). For a
monotone term, by moving down in the lattice (i.e. changing
a 1 to O), the term can only be “turned off”. Thus every
monotone term can be uniquely represented by the minimum
vector in the ordering < for which it is true.

Let A(i, v) be the set of examples obtained by flipping exactly
i zeros to ones in vector v. The parents of v are the elements
of A(1, v), and the grandparents of v are the elements of
A(2, v). Likewise, D(i, v) are the set of examples obtained
by flipping exactly i ones to zeros in v, and for a set V
of examples we let II(i, V) = U.c VD(i, v), We define the
children of v as all elements in D(1, v), and the siblings of v
are all elements in D(l, A(l, v)).

We often think of examples as terms and vice-versa, asso-
ciating with a monotone term the minimal positive example
that satisfies it. For example v let term(v) denote the most
specific monotone term that v satisfies. Thus, we say an ex-
ample is a sibling of a term, meaning that it is a sibling of that
term’s associated example. Given an example z we define
vars(x) to be the set of variables set to 1 by z. We also treat
a term tasthe set of variables it contains.

We now describe the high-level algorithm that is used to
obtain both of our results. Following our definitions in Sec-
tion 2, we say an example x is in the boundary region of term
t if t(z) = O, but there exists an d > x such that t(d) = 1
and dist(z, x’) < r. Our hypothesis h contains candidates for
terms of the target function ~, and possibly some additional
terms used to ensure that provided counterexamples are not
in the boundary region of any known terms. We begin with
h = $, and perform a loop in which we make an equivalence
query with our current hypothesis, and then perform a collec-
tion of membership queries to update our hypothesis in light
of the counterexample received, until a successful equiva-
lence query is made. We maintain the invariant that after i
positive counterexamples have been received, ht contains i

distinct terms tl,,,., tiof the target concept (and possibly
other terms that may or may not be in the target concept).
We define the set of bounda~ emmples B = {v [v is in the
positive or boundary region of some term in h rl j}.

We now describe how a counterexample x is processed so that
we can maintain this invariant. When it receives a negative
counterexample, our algorithm simply removes from h all
terms that classify x as positive. Clearly no term from ~ (or
even terms in the boundwy of ~) will be removed. If z is
a positive counterexample we first run the procedure Exit-
Boundaiy(x), which returns an example v @ B such that
MQ(v) is positive (which could be a false positive).

We then run the following process to “reduce” v so it is

“near” a new target term. To ensure that we do not rediscover
a known term, the procedure Move-Further must return an
example that is not in B. Below is our procedure, which is
guaranteed to add a new term from ~ to h~.

1,

2.

3.

Let v be the example returned from Exit-Boundary.
(So v is positive or in the boundary region of a new term
off .)

Now, so long as v has some child to which a membership
query reports “positive”, replace v by that child and
repeat. (Note that since v @B and the target formula is
monotone, it follows that no child of v could be in B.)

We now call a procedure Move-Further(v) for which. .
one of the two cases will occur.

Case 1: Move-Further(v) returns an example v’ @’B
such that v’ has strictly fewer ones than v and
MQ(v’) is positive, In this case we return to step 2
using v’ as the current example.

Case 2: Move-Further(v) reports failure. Here we are
guaranteed that v is “near” a new term ti+lof ~.
Formally, we have that

lvars(v) – t~+ll < lt~+~ – vars(v)l <r.

That is, thenumberof irrelevant variables in vars(v)
is at most the number of relevant variables from
ti+lmissing from vars(v), which in turn is at most
r. In this case we call the procedure Generate-
Candidates(v) that returns a polynomial-sized set
T of terms with the guarantee that ti+l E T. We
then add all terms in T to h.

At this point our algorithm is ready to make its next equiva-
lence query.

Lemma 4 Given that Exit-Boundary, Move-Further, and
Generate-Candidates satisfy the stated conditions and run
in polynomial timeforsubclass Cof monotone DNFformulas,
the above procedure learns C in the false-positive-only UBQ
model (or the IBQ model} in polynomial time.

Proof Sketch: If there are no counterexamples to h, we
are done. The number of positive counterexamples received

is at most the number of terms in the target DNF. Once
Exit-Boundary is completed all examples that the “reduce”
process recurses on have the property that they are posi-
tive examples (possibly false positive) not in the positive or
boundary region of any term of h (1 ~. Thus from the cor-
rectness of Move-Further and Generate-Candidates, we
are guaranteed that a new term is added to h after at most
n calls to Move-Further, Furthermore, each negative coun-
terexample removes at least one “extra” term placed in h by
Generate-Candidates and we are guaranteed that there are
at most a polynomial number of such terms. Thus, there are
only a polynomial number of negative counterexamples, so
our algorithm runs in polynomial time as long as all of the
provided procedures do. •1

103

5.1 Learning A Subclass of Read-Once Monotone DNF
Formulas

We now describe how to complete the generic procedure
above to obtain an algorithm that learns the class C of “read-
once monotone DNF formulas in which each term has size at
least 4“ in the UBQ model where r = 1.

We begin by describing a utility routine, Study-Example,
used in the algorithm. This routine takes an example returned
by Move-Further (which is guaranteed to be “near to” some
term of the target) and produces a more usefu~ approximation

to that term. The desired behavior of the routine Study-
Example is specified in Property 1.

Property 1 Let f be a function in C, and let v be an ex-
ample such that there exists a term tit I off such that v is
either equal to, a sibling of or a child-of t,+ 1. Then Study-
Example produces an approximation ti+l of ti+] along with
one of these two guarantees:

(1) t;+l is equal to t,+l oraparent oft;+l (so it is a superset
oft, +l), or

(2) i?i+l is equal to t,+l or a child of ti+l (so it is a subset
Oft;+ I).

The Study-Example routine asks a membership query on
all siblings of v. Let P be the set of siblings for which
the membership oracle replied “yes.” Then Study-Example
outputs based on the following cases:

1.

2.

If P = @,let fi+l = term(v) and report “subset”.

Otherwise. let u be the term containing exactly the vari-
ables in UPepvars(p).

(a)

(b)

(c)

If Iul = Iterrn(v)l + 1, let ~,+1 = u and report

“superset”.

Otherwise (Iul > Itemn(v)l + 1), if some variable
y, c wars(v) is “responsible for” at least two of

the variables in u – vars(v) in the sense that two
variables in u — vars(v) are set to 1 in examples
setting yi to O, then let fj+ I = u – {Vi} and report
“subset”. (If there are several such variables y~,
just pick one.)

Else let fit I = u and report “superset”. (Note: we
separate this case from case (a) just for convenience
in the proof.)

Lemma 5 The routine Study-Example as described above
correctly satisjies Property 1;

Proofi Note that no siblings of v are in the boundary region
of any of the other terms in the target function. That is
because a sibling of v may have at most two variables set to
1 that are not in ti+~,and every other term must have at Ieast
four variables not in t~+I (since they all have size at least 4
and the target function is read-once). Thus, we may analyze
the routine as if ti+1were the only term in the target function.

We can see that Study-Example behaves correctly in case
(1) by noting that if v is positive but none of v’s siblings are

positive (or false positive), then term(v) is either ti+l or a
child of ti+l. The correctness of case (2a) is similarly easy
to see because if v is a child of tit1 then u equals ti+land
otherwise u is a parent of t$+l.Notice that if v is a child of
ti+ 1 then either case (1) or (2a) occurs.

The reasoning for case (2b) is as follows. If v = t then it is
clear. On the other hand, if v is a sibling of tt+l, then the
only variable y, in v that can possibly be “responsible for”
more than one other variable in u – vars(v) is the variable
not in term t~+I. h fact, if we are not in cases (1) or (2aj
and v is a sibling of ti+l,then case (2b) must occur because
yi will be responsible for the variable in t,+l missing from v
(several variables may be responsible for this one) as well as
any other variables added to u. Thus, case (2c) holds because
it can only be reached if v = t. ❑

We now prove our main result of this subsection.

Theorem 6 The class of read-once monotone DNF formu-
las where each term in the target formula has at least four
variables is exactly learnable in the false-positive-only UBQ
model (or the IBQ model] for boundary radius r = 1 using
polynomial queries and time.

Proofi From Lemmas 4 and 5 we know that our algo-
rithm maintains the invariant that after i positive counterex-
amples have been received, h contains at least i distinct
terms of the target function f and a collection of approxi-
mations ;l, ;2, ~i each corresponding to different terms
ti,t2,...,tioff, and labeled as “subset” or “superset” ap-
propriately.

We also maintain the invariant that all children of terms in h (1
f are in h. This invariant is initially enforced by Generate-
Candidates whenever a new term is ~laced in h. Finally,
once a term of f or any of its children’are placed in h, th~y
cannot be removed by any negative counterexample (since a
child of a term in f is in the boundary region of f). Thus
any positive counterexample received is not in 1?. So Exit-
Boundary(z) simply returns z.

We now describe the procedure Move-Further(v). Note that
the input v has the property that it is not in B and MQ(v)=l.

1.

2.

3.

For each ;j (for j = 1,2, i) labeled as “subset”, set

every variable in vars(fj) to O in v. (This new example
is still in the positive or boundary region of a new term
since f is read-once. And since f is monotone this
example is not in B.) We fix these variables at O for the
remainder of this procedure.

Let V be the set of variables set to O by u and not fixed
to O in Step 1. For each variable gl c V, consider the
example v’ obtained from v by flipping to Oall variables
in the terms & that contain yl, and then flipping yt to
1. Let P be the set of all such examples for which a
membership query reports “positive”.

(a)

(b)

If there is an example in P that has fewer 1‘s than
v, then return this example.

If not, then query all children and grandchildren of
examples in P and if one of them has fewer 1‘s

104

than v and is reported as positive, then return this
example.

(c) Otherwise report failure,

Move-Further maintains the invariant that v @ B and v is in
the positive or boundary region of a new term of f. We have
already argued that this holds after Step 1. Thus, at this point,
there exists some term ti+1c f,distinct from t1,....t,,such
that v sets to O at most one variable in ti+l. The reason is
simply that since w @B, it immediately follows that v is not
in the boundary of any of the terms tl, t~.

We now argue that each example in P has at most one variable
in common with term tj for 1 ~ ~ < i. If V’ E P was

obtained by flipping to 1 some variable appearing in, say, term

tj (~ < i) then either (A) fj is a “subset” of tjand therefore
this is the only variable that vars(v’) has in common with tj

(since all others in tj have been fixed to O) or else (B) i$j is a

“superset” of {j in which case this variable is also in fj and

so to obtain v’ we flipped all the rest of the variables in ~J to
O. Thus no example in P is in B.

So if an example is returned in step [3a) or (3b) then it has the
desired property. We now argue that if step (3c) reports failure

then w satisfies Ivars(v) – t~+l I < [ti+l – vars(v)l s 1.
We have already argued that v is the the positive or boundary
region of a new target term, t;+ 1, and thus at most one relevant
variable from ti+ 1 is missing from vars(v). Furthermore,
if vars(v) contains exactly the variables in ti+ 1 then all
irrelevant variables would be removed by the standard reduce
procedure. If vars(v) is missing one relevant variable, yt
from ti+lthen when ye is added in step (2), the membership
query would be positive and thus this example is added to V.
Now if there were two or more variables in vars(v) that were
not in t,+1 then the example in which two of those variables
were set to O would be returned in either step (3a) or (3 b).
Thus if we reach step (3c) the required property must hold.

The procedure Generate-Candidates(v) first calls Study-
Example(v). Let tbe the term returned. If Study-Example
reports “subset” then place t and its children into T. Other-
wise, if Study-Example reports “superset” then place t and
its parents into T. From Lemma 5 it follows that ti+lc T.
Finally return T U D(1, T). ❑

5.2 Learning (r+ 1)-Separable k-Term Monotone
DNF Formulas

We now show that a subclass of monotone k-term DNF for-
mulas are properly learnable in the false-positive-only UBQ
model for any constant boundary radius. We say that two
terms tiand tj are l-separable if there are 1 variables in tj
that are not in ti,and there are ~ variables in t,that are not
in tj. ,4 monotone DNFformula f is !-separable if all pairs
(ti, tj)of terms of ~ are l-separable.

Theorem 7 The class of (r + 1)-separable k-term monotone
DNF formulas is exactly learnable in the false-positive-only
UBQ model (or the IBQ model) using polynomial queries and
time (for r and k constant). Furthermore, all equivalence
queries made by our algorithm are (r+ 1)-separable k-term

105

monotone DNFformulas.

Proof: We first prove this result under the assumption that
Generate-Candidate not only finds a set of candidates that
contains some new term of the target formula, but has the
power to “guess” which one is right. Thus h will always
contain a subset of the terms of the target. Then we argue
that our algorithm can be modified to remove this assumption.

Exit-Boundary(v) performs a membership query on exam-
ples not in B obtained by setting up to (k – 1)?’ variables
in vars(v) to O. It returns the first such example for which
the membership oracle replies “yes.” We now prove that
Exit-Boundary is correct.

Lemma 8 The procedure Exit-Boundary successfully re-
turns an eazzmple v @ B for which MQ(v) = 1.

Proofi We must show that given a positive counterexample
to hypothesis h, Exit-Boundary(v) returns an example v that
is not in B and for which MQ(v) = 1.

Since v was a positive counterexample, it must be in the
non-boundary positive region of some term tn e~ in f – h.

Suppose it is also in the boundary region of some terms in h.
Consider one such term tkfiown.Since f is (r + 1)-separable,
if we set to O the variables in vars(v) E t~nOWn —tnewthen
v wdl no longer be m the boundary of tknowm.However, we
still know that all variables in tneW are in vars(v) since we
do not change any variables in tn,w. (In fact, if all r + 1
variables in tknown— tneware 1 in v, then it suffices to pick
any r of them to set to O, since we know that v is already in
the boundary region of tknown.)We can repeat this for the
at most (k – 1) other terms in h. Thus after setting at most
r(k – 1) variables in var(v) to Owe obtain an example that is
not in B and is in the truly positive region of t~~~. Since this
is one of the examples queried by Exit-Boundary we know
that at least one membership query will respond “yes”. Of
course, it could be that another membership query responds
“yes”. However, in this case we are still guaranteed that the
example v returned is not in B (since we do not query those
in B), and MQ(v) is positive. •1

The procedure Move-Further works as follows. For each z
such that r + 1 < i s rk, itperforms a membership query on
examples v’ in D(i, A(r, v)) and returns v’ if MQ(v’) = 1.
If no such examples are found after all values of i have been
tried, then it returns “failure.”

We now argue that when Move-Further(u) reports failure
the following two properties hold:

1.

2.

Example v sets to O at most r variables from term t~+I
of the target formula (i.e. Itt+l – vars(v)] < r).

The number of variables not in t;~lthat are one in v is-,-
at most the number of variables in t~+l that are zero in
v (i.e. Ivars(v) – t;+l I ~ lt~+l – vars(v)l).

Since v ? B and MQ(v) = 1 it must be in the positive
or boundary region of some new term from f. Since the
adversary can reply “positive” only on an example that sets
to O at most r variables from a term in f, the first property
follows. We now prove that the second property holds. Let

t ~+1be any term of ~ for which v has 1 ~ r variables set to O.
Suppose that the second property fails. Thus there are at least
4+1 variables not in t,+l that are one in v, Since the target is
(r+ I)-separable we know that ti+l is not in B. Since tt+l
has at most r variables set to O in v, at least one example in
A(r, v) has all variables in t~+ j set to 1, When adding these
r 1‘s, we have at worst just set to 1 r variables in each of

the known terms. Thus there exist at most rk variables that
when set to O takes us to an example not in B. Since we try
all i such that r + 1 ~ i ~ kr, we know that we query some
point in the positive region of t~+ 1 that is not in B (since we
must query ti+ 1 or one of its ancestors). But this contradicts
the fact that v was returned. Thus the second property holds.
Also note that only a polynomial number of examples were
queried (since r and k are constant). Thus this procedure
runs in polynomial time.

Generate-Candidates(v) lets T = U$=OD(i, A(r, v)) and
non-deterministically guesses which one is in ~. It follows
from the correctness of Generate-Candidates that ti+l is
placed in T,

To remove the need to non-deterministically select the right
term from T we just try all guesses halting when failure is
detected because a negative counterexample is received or
a (k + 1)st positive counterexample is received. Since r
and k are constant, only a polynomial number of runs occur
and thus the overall queries and time complexity are still
polynomial. ❑

The proof of Theorem 7 can be extended to obtain the fol-
lowing result.

Corollary 9 The class of 2-ternt monotone DNF formulas
is exactly learnable by the class of 2-term monotone DNF
formulas in polynomial time in the false-positive-only UBQ
model (or the IBQ model) with a boundary region of radius
r (jior constant r).

Proof Sketch: Letf = t]+ t2. If tland tz are (r + l)-
separable then the result immediately follows. Thus, without
loss of generality, assume that t2has all variables from t 1
except at most r of them, as well as any number of additional
variables. If tl is placed in h first then no counterexample is
created by t2since it is entirely contained within the boundary
region oft 1.If t2 is placed in h first, then we receive a posi-
tive counterexample fort 1 (unless it is contained within t2’s
boundary in which case we are done). This counterexample
is processed to add t1to h. •1

6 Concluding Remarks

We have introduced two related models of learning with noise
near the boundary of the target concept, and we have pre-
sented positive results in these models in both continuous
and discrete domains. However, there is much more work to
be done. The algorithms described here learn fairly simple
concept classes. We do not yet know how to extend these
results to learn general monotone DNF formulas or the inter-
section of more than two halfspaces. One eventual goal might
be a general result describing ways to transform classes of

PAC-memb or exact-learning algorithms to work in the IBQ
or UBQ model.

Acknowledgements

The third author thanks Lenny Pitt for valuable discussions

on this material.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

D. Angluin. Exact learning of p-DNF formulas
with malicious membership queries. Technical Report
YALEU/DCS/TR- 1020, Yale University Department of
Computer Science, March 1994.

D. Angluin. Queries and concept learning. Machine
Learning, 2(4):3 19-342, April 1988.

D. Angluin and M. Kril@. Learning with malicious
membership queries and exceptions. In Proc. 7th Annu.
ACM Workshop on Comput. Learning Theory, pages
57–66. ACM Press, New York, NY, 1994.

D. Angluin and D. K. Slonim. Randomly fallible teach-
ers: Learning monotone DNF with an incomplete mem-
bership oracle. Machine Learning, 14(1):7–26, January
1994. A preliminary version of this paper appeared in
COLT ’91.

E. Baum. Neural net algorithms that learn in polynomial
time from examples and queries. IEEE Transactions on
Neural Networks, 2:5-19, 1991.

E. B. Baum. Polynomial time algorithms for learning
neural nets. In Proc. 3rd Annu. Workshop on Com-
put. Learning Theory, pages 258–272, San Mateo, CA,
1990. Morgan Kaufmann,

A. Blum and R. L. Rivest. Training a 3-node neural net
is NP-Complete. In Advances in Neural Information
Processing Systems 1, pages 494-501. Morgan Kauf-
mann, 1989.

M. Frazier, S. Goldman, N. Mishra, and L. Pitt. Learn-
ing from a consistently ignorant teacher. In Proc. 7th
Annu. ACM Workshop on Comput. Learning Theory,
pages 328–339. ACM Press, New York, NY, 1994. To
appear, J. of Comput. Syst. Sci.

M. Frazier and L. Pitt. CLASSIC learning. In Proc. 7th
Annu. ACM Workshop on Comput. Learning Theoiy,
pages 23–34, ACM Press, New York, NY, 1994.

S. Goldman and R, Sloan, Can PAC learning algorithms
tolerate random noise? Technical Report WUCS-92-
25, Washington University Department of Computer
Science, July 1992. To appear, Algorithmic.

S. A. Goldman, M. J. Kearns, and R. E. Schapire. Exact
identification of circuits using fixed points of amplifi-
cation functions. SIAM J. Comput., 22(4):705–726,
August 1993.

S. A. Goldman and H. D. Mathias. Learning k-term
DNF formulas with an incomplete membership oracle.
In Proc. 5th Annu. Workshop on Comput. Learning The-
ory, pages 77–84. ACM Press, New York, NY, 1992.

106

[13] M. Kearns and M. Li. Learning in the presence of

malicious errors. SIAM J. Canput., 22:807–837, 1993.

[14] M. J. Kearns and R. E. Schapire. Efficient distribution-
free learning of probabilistic concepts. In Proc. of the
31st Symposium on the Foundations of Comp. Sci.,
pages 382–39 1. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[15] Philip D. Laird. Learning from Good and Bad Data.
Kluwer international series in engineering and com-
puter science. Kluwer Academic Publishers, Boston,
1988.

[16] K.J. Lang and E.B. Baum. Query learning can work
poorly when a human oracle is used. In Proceedings
of International Joint Conference on Neural Networks,
IEEE, 1992.

[17] N, Littlestone. Redundant noisy attributes, attribute er-
rors, and linear threshold learning using Winnow. In
Proc. 4th Annu. Workshop on Comput. Learning The-
ory, pages 147–156, San Mateo, CA, 1991. Morgan
Kaufmann.

[18] Y. Sakakibara. On learning from queries and coun-
terexamples in the presence of noise. lnforrn. Proc.
Lett., 37(5):279-284, March 1991.

[19] G. Shackelford and D. Volper. Learning k-DNF with
noise in the attributes. In Proc. Ist Annu. Workshop on
Comput. Learning Theory, pages 97-103, San Mateo,
CA, 1988. Morgan Kaufmann.

[20] R. Sloan. Types of noise in data for concept learning. In
Proc, 1st Annu, Workshop on Comput. Learning Theory,
pages 91-96, San Mateo, CA, 1988. Morgan Kaufmann.

[21] R. H. Sloan and G. Tur&n. Learning with queries but
incomplete information. In Proc. 7th Annu. ACM Work-
shop on Comput, Learning Theory, pages 237–245.
ACM Press, New York, NY, 1994.

[22] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27(11):1134-1142, November 1984.

107

