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Abstract

We consider efficient agnostic learning of linear
combinations of basis functions when the sum of
absolute values of the weights of the linear combi-
nations is bounded. With the quadratic loss func-
tion, we show that the class of linear combinations
of a set of basis functions is efficiently agnostically
learnable if and only if the class of basis functions
is efficiently agnostically learnable. We also show
that the sample complexity for learning the linear
combinations grows polynomially if and only if a
combinatorial property of the class of basis func-
tions, called the fat-shattering function, grows at
most polynomially. We also relate the problem to
agnostic learning of {0, 1}-valued function classes
by showing that if a class of {O, 1}-valued func-
tions is efficiently agnostically learnable (using the
same function class) with the discrete loss function,
then the class of linear combinations of functions
from the class is efficiently agnostically learnable
with the quadratic loss function.

1 Introduction

In this paper, we study efficient (polynomial-time) learning of

linear combinations of basis functions in a robust extension of

the popular Probably Approximately Correct (PAC) learning

model in computational learning theory [4]. The learning

model we use, commonly called agnostic learning [9, 15,

18] is robust with respect to noise and mismatches between

the model and the phenomenon being modelled. The only

assumption made about the phenomenon is that it can be

represented by a joint probability distribution on X x Y

where X is the domain and Y is a bounded subset of R

This model more adequately captures many of the features

of practical learning problems where measurements are often

noisy and very little is known about the target functirm~
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Under these assumptions, we cannot expect our learning al-
gorithm to always produce a hypothesis with small error.
Instead, we demand that with high probability, the hypoth-
esis produced is close to optimal in the class of functions
we are using. The error of a hypothesis on an observation

is measured using a loss function and we demand that the
expected loss of the hypothesis is close to the smallest ex-
pected loss of functions in the class. The generality of the
agnostic learning model allows, as special cases, learning
real-valued functions, learning the conditional expectation
when the observations are noisy, learning the best approxi-
mation when the target function is not in the class and also
learning probabilistic concepts [14],

The function classes we study include some which are widely
used in practice. Linear combinations of basis functions can
be considered as a generalization of two layer neural net-
works. Instead of the usual sigmoidal hidden units, arbitrary
bounded function classes satisfying mild measurability con-
straints are allowed to be basis function classes. This includes
radial basis functions and polynomial basis functions (with
some restrictions on the inputs). We do not bound the num-
ber of basis functions in a linear combination but instead
insist that the sum of absolute values of the weights of the
linear combination be bounded. This work is an extension
of results in [17] where it was shown that the class of linear
combinations of linear threshold functions with bounded fan-
in is efficiently agnostically learnable. Related works include
that of Koiran [16] which considered learning two layer neu-
ral networks with piecewise linear activation functions (but
not in the agnostic model) and that of Maass [18] on agnos-
tic learning of fixed sized multilayer neural networks with
piecewise polynomial activation functions.

We say that a function class F c [–B, B]x is efficiently
agnostically learnable if there exists an hypothesis class H c

[-B, B]x, and a learning algorithm which produces an hy-
pothesis h from H such that with probability at least 1– d, the
expected loss of h is no more than e away from the expected
loss of the best function in F and the algorithm runs in time

polynomial in 1Ie, 1lb, B, T (a bound on the observation

range) and the appropriate complexity parameters. Com-

monly used complexity parameters include the dimension of

input space and the number of parameters parametrizing the

function class F. The hypothesis class H does not neces-

sarily have to be the same as the function class F. This
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allows agnostic learning of a function class using a larger
hypothesis class, a situation which has been shown to have
computational advantages in certain cases for learning in the
PAC framework.

In Section 3, we show that with the quadratic loss func-
tion, linear combinations of basis functions with bounded
sum of absolute values of weights are efficiently agnostically
learnable if and only if the basis function class is efficiently
agnostically learnable. This means that to show that the class
of linear combinations is efficiently agnostically learnable,
we need only to show that the basis function class is effi-
ciently agnostically learnable. Efficiently agnostically learn-
able classes of basis functions include function classes which
can be enumerated in time polynomial in the sample size and
complexity parameters, and fixed sized neural networks with
piecewise polynomial activation functions [18]. Similarly,
a (representation independent) hardness result for learning
the basis function class would imply a hardness result for
the class of linear combinations of functions from the basis
function class.

In Section 4, we use a combinatorial property of the basis
function class called the fat-shattering function [14, 2, 6] to
bound the covering number of the linear combinations, and
provide sample complexity bounds (which are better than
those obtained using the results in Section 3). Gurvits and
Koiran [8] have also provided sample complexity bounds for
the case when the basis functions are {O, 1}-valued functions
by bounding the fat-shattering function of the convex closure
of the basis function class. We also use lower bound results
from [6] to show that the class of linear combinations of basis
functions has sample complexity which grows polynomially
with 1/c and the complexity parameters if and only if the fat-
shattering function of the class of basis functions grows at
most polynomially with 1/e and the complexity parameters.

In Section 5, we give some examples of function classes
which are efficiently agnostically learnable. Section 6 shows
that if a class F of {O, 1}-valued basis functions can be
learned efficiently and agnostically with {O, 1}-valued tar-
gets, the discrete loss function and F as the hypothesis class,
then the class of linear combinations of the basis functions
can be efficiently agnostically learned with the quadratic loss
function. This relates efficient agnostic learning of linear
combinations of {O, 1}-valued basis functions to the work on
agnostic learning of {O, 1}-valued functions. Unfortunately,
most of the results on agnostic learning of {O, 1}-valued func-
tions are negative [15, 11]. In Section 7, we discuss the
hardness results as well some open problems.

2 Definitions and Learning Model

2.1 Agnostic Learning model

Our agnostic learning model is based on the agnostic learning
model described by Kearns, Schapire and Sellie [15]. Let X
be a set called the domain and the points in X be called
instances. Let Y be the observed range. We call the pair
(x, y) G X x Y an observation. The assumption class d

is a class of probability distributions on X x Y and is used

to represent the assumptions about the phenomenon that is
being learned. The results in this paper hold when A is the
class of all probability distributions on X x Y. The following
are special cases, for which our results automatically hold.

In regression, y ● Y represents a noisy measurement of some
real valued quantity, and the desired quantity to be learned is
the conditional expectation of y given x. In the case where
there is no noise, we have ji.mction learning where there is

a class F of functions mapping AT to Y and AD,f ~ A is
formed from a distribution D over X and a function ~ e
F. Observations drawn from AD) f have the form (z, f(z))
where x is drawn randomly according to D. In learning
probabilistic concepts [14], we have Y = {O, 1}. Again,

there is a class F of functions, mapping X to [0, 1] and
A~,~ G A is formed from a distribution D over X and a

function ~ E F. Observations drawn from A~,~ are of the
form (x, b), where z is drawn randomly according to D and
b = 1 with probability ~(x) and b = O with probability

1 – f(z).

Let Y’ be a bounded subset of R. The touchstone class ‘T

and the hypothesis class Z are two classes of functions from
X to Y’. The learning algorithm will attempt to model the

behaviour from A with functions from %. Since the be-
haviour from A cannot necessarily be well approximated by
functions from X, we require a method of judging whether
the hypothesis is acceptable. This is done by requiring that
learning algorithm produces a hypothesis h 6 % with per-

formance close to the “best” t 6 ‘T.The touchstone class

‘l_ is introduced for computational reasons. It is often the
case that although we are unable to find an efficient algo-
rithm for learning a touchstone class, we can find an efficient
algorithm for learning a larger hypothesis class which con-
tains the touchstone class. The resulting hypothesis from the
learning algorithm may not belong to the touchstone class
but its performance will at least be close to the performance
of the best function from the touchstone class.

For the “best” function t 6 T_,we use the function which min-
imizes the expected value of a loss function L : Y’ x Y ~

R+. Given a function h, the loss of h on (z, y) is Lh(x, y) =

L(h(x), y). The main loss function used in this paper is the
quadratic loss function Q (y’, y) = (y’ – y)z but the discrete

loss function 2(/, y) = O if g’ = y and Z(y’, y) = 1 if

y’ # y, is also used. Given observations drawn according

to A c A, the expected loss is E(Z,U) ~A [Lh (z, y)] which

we denote E[Lh] when A is clear from the context. For a
class T, we define opt (’T) = inf~=w E[Lk]. The quadratic
loss function is a natural choice to use for regression because
the function with the minimum quadratic loss is the condi-
tional expectation. For learning probabilistic concepts, the
quadratic loss has some desirable properties as shown in [14]
and [15].

The results in this paper hold in both the uniform cost and
logarithmic cost models of computation (see [l]). In the
uniform cost model, real numbers occupy one unit of space
and standard arithmetic operations (addition, multiplication
etc.) take one unit of time. In the logarithmic cost model, real
numbers are represented in finite precision and operations on
them are charged time proportional to the number of bits
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of precision. We assume that the observation range Y =
[–T, T] is known and the hypothesis and touchstone classes
have outputs in the range Y’ = [–l?, B]. Hence, the learning
problem can be indexed by B and T with T = (JBCR+ TB

and ‘H = lJB6~+ fi~. In the logarithmic cost model of

computation, we also index the problem by r and s where

A = u,e~ &=R ATT with the bit length of any observation
drawn from A E d,T bounded by a polynomial in r and 7 =

U,,~UB,R+TB~ where any f E 7Bs has a representation
whose blt length is bounded by a polynomial in s. The
domain X, distribution class A and function class ‘T are also
often indexed by some other natural complexity parameters
such as the dimension of the input space or the number of
parameters parametrizing the function class.

Definition 1 A class of functions T = U~ER+ 7B is effi-
ciently agnostically learnable (with respect to loss function

L) if there exists a jimction class X = lJ~cR+ ?lE, afunc-

tion m(e, d, T, B) bounded by afixedpolynomial in 1/e, 1/6,
B and T and an algorithm such that for any A E A, given

any O < 6 ~ 1, c > 0, T > 0 and B > 0, the algorithm

draws m(e, J, T, B) observations, halts in time bounded by

another fiedpolynomial in 1/e, 1/6, T and B and outputs a
hypothesis h E ~B such that with probability at least 1 – 6,
E[Lh] ~ opt(’T) + c. The hypothesis h must also be evalu-

able in time polynomial in 1/6, 1/6, T and B. If% = ‘T,

then we say ‘T is properly efficiently agnostically learnable.

In the logarithmic cost model, we let ‘T = u$c~ UBGR+ TB.,

A = UreNUT6Rdm> allow m todepend on e, & T, B, s
and r, and insist that the algorithm halt and the hypothesis

be evaluable in time polynomial in 1/e, 1/6, T, B, s and r.

For proper efficient learning, when the touchstone class is

7Bs, we only insist that the hypothesis be from Us, ~~ TB,’

with the number of bits allowed to grow polynomially with

1/6.

~the leamingproblem is indexed by other complexity param-

eters, we also insist that m, the running time of the algorithm

and the evaluation time of the hypothesis be polynomial in

those parameters.

For simplicity we work in the uniform cost model.

2.2 Basis Functions and Linear Combinations

Definition 2 A class of real-valued functions ~ is an admis-
sible class of basis functions z~ G is perrnissiblel and there

exists bg >0 such that Ig(x) \ s bg for all g E ~, x ~ X.

Definition 3 Let ~ bean admissible class of basis finctions.

Then for every K >0,

{
~g = LE=l 2=1k w,g,:gtG~,~~=1Iw, I < K}, is the

class of linear combinations offunctionsfrom G with the sum

of magnitudes of weights bounded by K.

lThis is a mild measurability condition satisfied by most function
classes used for learning. See Haussler [9] for details.

3 Equivalence in Efficient Learning

In this section we show that the class of bounded linear com-
binations of functions from an admissible class of basis func-
tions is efficiently agnostically learnable if and only if the
class of basis functions is efficiently agnostically learnable.
We use the agnostic learning algorithm of the basis function
class as a subroutine to learn the linear combinations of basis
functions with nothing assumed about the hypothesis class
except the bound on the range of its output. We will need an
approximation result from [17]. This result is an extension
of results by Jones [13] and Barron [5]. A related result is
also presented by Koiran [16].

Theorem 4 Let H be a Hilbert space with norm II . Il. Let

G be a subset of H with 11g II < b for each g E G. Let
co(G) be the convex hull of G. For any f ~ H, let df =
inf~, ~CO(@II g’ – f Il. Suppose that f. = O and iteratively,

f~ is chosen to satisjj II f~ – f [Izs lnf~ec 11a~.f~-l +

(1 – a~)g – .f 112+e~, where ak = 1 – l/k, c z b2, and

~k s ~. Then for any D E (O, 1), any Kp > & and any

Let H be the Hilbert space of measurable functions on X with
inner product (j, g) = & f(x)g(z)dP(z) where P is some

probability distribution on X. Let g be an admissible class of

basis functions and let ~~ be the class of linear combinations

of functions derived from g; that is JVg is the convex hull of
G = {wg: Iwl = K,g E ~}. For all g c G, II g 11< Kbg,

so Theorem 4 can be used to obtain an approximation to the

best function in ~~.

The above approximation result requires that the target be a
function in the same Hilbert space. In agnostic learning, the
target can be a random variable. However, with quadratic
loss, minimizing the loss with respect to the observations is
the same as minimizing the loss with respect to the condi-
tional expectation, which is a function in the Hilbert space
when the target is bounded.

Theorem 5 Let ~ bean admissible class of basis functions,

and let K >0. Then ~~ is efficiently agnostically learnable

with respect to the quadratic loss jimction fand only if Q is
efficiently agnostically learnable with respect to the quadratic

loss function.

Proof. The only if part is trivial because K and e can be

resealed such that (1 is a subset of N;.

The function class N: is the convex hull of G = {wg: Iwl =
K,g 6 ~} and for all g : G, II g 11< Kbg. Theorem 4
shows that to get within t of the best expected loss, a num-
ber of iterations equal to k = (cKB/c) 11~ will do. Set

c = 2K2b~ and e~ = K2b~/i2 for 1 < i s k. As-
sume that the agnostic algorithm for lear~ing g produces
an hypothesis from % c [–bc, bg]x. Let j be the tar-
get function (conditional expectation of target y given in-
put $). Minimizing the quadratic loss with respect to the
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joint distribution is equivalent to minimizing the quadratic

loss with respect to the conditional expectation. To satisfy

Theorem 4, at the ith iteration, we must find h, E W such
that JXXY(hZ(X)/Z -i- (1 – l/z)~,-l (z) – v)zdl’(z, Y) <

inf~@ ~XXy(g(Z)/i+(l – l/z).f–l(x) ‘!/)2@ (X, y) +~z,

where ~,– 1 is the linear combination which has been found
so far. Furthermore

/ XXY

,(wg(x)/2 + (1 - l/z)fz_ .1(Z) – y)2dP(x, Y)

))
2

–Y dP(x, y).

We now use the agnostic Iearning algorithm for g with re-

spect to the new target random variable which has magnitude

bounded by i(~bg + T) /17 (where T is an upper bound

on the magnitude of y). Set confidence to d/2k and accu-

racy to izci /2.K2. So with probability at least 1 – d/2k, the

hypothesis h, produced is such that

/
(Wht(Z)/2 + (1 - l/z)~t_,(z) - y) ’d~(z, y)

XXY

< (;)2[;2g~xy (g(z) +:((l-l,i)fi-1(~)

-)
2

y) dP(z, y) + 22c,/2K2 1
/

= k$ ~xy(wg(z/i + (1 - l/i) f,_,(z)

–y)2dP(~, y) + 6,/2.

This has to be done for both w = K and w = –K. So

at each iteration, we produce two hypotheses from which

we have to choose one. If we have no other way of choos-

ing between the two hypotheses, we have to do hypothesis

testing. Using Hoeffding’s inequality [10], a sample size of

8(K bg + T)4(ln 2 + in ~)/c~ is large enough so that the

empirical quadratic loss 1s no more than C2/4 from the ex-

pected quadratic loss for both functions with probability at

least 1 – 6/2k. If we choose the hypothesis which has the

smaller empirical loss, the expected loss will be no more that
cl/2 away from the expected loss of the better hypothesis
with probability 1 – J/2k.

At each iteration, given an efficient agnostic learning algo-

rithm for learning G, we produce an hypothesis which satis-

fies the requirements of Theorem 4 with probability at least

1 – d/k. Since the probability of failure at any of the k

iterations is no more than d, we have produced a learning

algorithm for N:. It is easy to check that if the algorithm
for learning ~ is polynomial in the relevant parameters, the

resulting algorithm for learning N~ will be polynomial in
the desired parameters, ❑

4 Sample Complexity and Proper Efficient
Agnostic Learning

We can obtain sample complexity bounds for learning prob-
lems if certain combinatorial properties of the class of ba-
sis functions such as the pseudo-dimension [9] or the fat-
shattering function [14, 6] are known. The pseudo-dimension

has been used to obtain sample complexity bounds for learn-

ing function classes (and in particular multilayer neural net-

works) by Haussler [9]. However, finiteness of the pseudo-

dimension is not a necessary condition for agnostic learning.
For example, the class of non-decreasing functions that map

from [0, 11 to [0, 1] can be shown to be learnable even though

it has infinite pseudo-dimension.

A ‘equence ‘f Y:ts ‘“ “ “ “
, Xd from X is ~-shattered by

F c [–B, 1?] If there exists r c [–B, l?]~ such that
for each b G {O, I}d, there is an f G F such that for
each i, f(x,) ~ r, + ~ if bi = 1 and ~(zi) ~ Ti – ~
if b, = O. For each ~, let fat~(-y) = max{d c N :
3X1,. . ., q, F y-shatters Z1, ..., x~} if such a maximum
exists and cm otherwise.

In this section, we give sample complexity bounds based
on the fat-shattering function of the class of basis functions

and show that A’: is agnostically learnable with polynomial
sample complexity (disregarding computational complexity)
if and only if the fat-shattering function of G grows polyno-
mially with 1/c and the complexity parameters, Using these
bounds, we show how an efficient algorithm for proper ag-
nostic learning of linear combinations of basis functions can
be constructed from a proper efficient agnostic algorithm for
learning the basis functions. The algorithm in this section
is significantly different from the algorithm of the previous
section in that the sample size is determined and drawn only
once instead of being drawn at each addition of a new basis
function to the linear combination. The sample complex-
ity obtained is approximately O (fatg (c) /eq ), ignoring,8 and
log factors. In comparison, if the method in Section 3 is
used for proper learning, we obtain a sample size bound of
O(fatg (6)/63 + 1/65), ignoring ~ and log factors.

In [6], it was shown that efficient agnostic learning of a func-
tion class with the absolute loss function is possible only if
the fat-shattering function of the function class grows at most
polynomially with 1/6 and the relevant complexity parame-
ters.

The following is essentially from [6] with minor modifica-
tions.

Theorem 6 Let F be a class of [0, 1] -valued functions de-

jined on X. Suppose O < y < 1, 0 < c ~ T/65,

O ~ J ~ 1/16 and d ~ N. If fat~(~) ~ d > 800, then

no algorithm can agnostically learn F with respect to the

quadratic loss finction to a:curacy 3e2 with probability 1 – J

using fewer than m > 4(Y3log: examples.

Note that a [–l?, B]-valued function class can be transformed
into a [0, I]-valued function class by adding B to the function

class then dividing by 21?. With e and 7 similarly transformed

into 2eB and 291B-, the lower bound holds for [–-B, B]-valued
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functions.

4.1 Bounding Covering Numbers

We now want to bound the sample complexity for learning

~~ in terms of the fat-shattering function for ~. Using

Theorem 4, we can bound the number of basis functions

needed in the linear combination. Hence, we only need to

be able to obtain upper bounds on the sample complexity of

linear combinations of a fixed but arbitrary number of basis

functions.

Fern c N, V,W c IW,letdll(v,w) = ~~~=1 Iv, –wil.

For a set S with a metric (or pseudo-metric) p, an e-cover is

a finite set U ~ S such that for all x E S, there is a y c U
with p(z, y) < e. The covering number IV(C, S, p) denotes

the size of the smallest ~-cover for S.

If Z is a set, h: Z + R and .z c Zm, let hlz c IRT denote

(h(z,),..., h(zm)). If H is a set of functions from Z to

Rj write lit. = {hlz: h 6 H}. Given a loss function L :

Y’ x Y + [O, C], define LH:= {Lh:h 6 H}. Define

&[L~] = : Z;l L~(~z). We write E[Lh] = E. [Lh]
when the meaning is clear from the context.

Theorem 7 (Haussler [9])

Suppose H is a class of functions mapping from X to Y’
and L is a loss function L: Y’ x Y -+ [0, C] such that LH
is permissible. Let P be any probability distribution on
Z= Xx Y. Form >landany O<e~ C,

Pm {z E Zm:3h E H, E[L,] - E[L.] > c}

< 4E(IV(C/16, LHIZ, dll)e–’2m/64c2,

where the expectation is over z drawn randomly from Z2m
according to P2m.

Let F be a class of functions from X to [0, C] and let

P be a probability distribution on X. Let d~,(~) be the

pseudo-metric on F defined by d~l(p) (j, g) = E(l$ – gl) =

.fx If(x) - 9(x) ldP(x) for all f, g c F.

We bound N(E, F, d~I(P) ) for all P in terms of the fat-

shattering function. This provides a bound on N(c, FIZ, dlI )
for any finite sequence of points x (via the isometry between

($’lr, aj ) and (F, dLI (Plc) ), where Plz is the empirical distri-

bution on x). We use a generalization of Sauer’s lemma by

Alon et al. [2] and techniques by Haussler [9].

Theorem 8 Let G = {wg: Iwl = K,g E ~}, let P be a

probability distribution on X and let ?& = {~~=1 aigi :

g, E G} where ai >0 are~edfor 1< i < k and ~~=1 ai =
1. Then,

N(c,’H~, d~i(~)) < 2~ exp
(

8kfatQ(c/(8Kbg))

in 2

(

~nz 2048 K4b~fatg (c/(8 KbG))

C4In 2 ))

The proof is omitted from this abstract,

To use Theorem 7, we need to bound the covering number of

the LH (here we use the quadratic loss function L = Q). To

do that we bound the covering number of the loss function

class QH in terms of the covering number of If using the

following lemma from [6].

Lemma 9 ([6]) Let F be a class of functions from X to
Y’ ~ [–B, B]. Let Y ~ [–2?,2!] and so Q(Y, Y’) ~ [0, C],
where C = (B+T)2. Letx c Xm and.z c (X xY)m. Then

( )~(~,Qq.,41) < ~ ~,F1.,dp where z G (X x Y)m

and x 6 Xm.

4.2 The Learning Algorithm

We now give a relationship between the learning problem and

an optimization problem on a training sample. The method

used is similar to that used in [17] and is based on the tech-

nique used by Haussler [9].

For S=((xl, yl),.. . , (xm, yin)) and a function class F, let

oTts(F) = inffe~ & ~~l(yi – f(x,))2.

Lemma 10 Let O < e, O <6< 1, let F and H be jimction

classes such that F C H and let the sample size m(c, 6)
be such that for any probability distribution P on X x Y’,

Pm {3f E F: E[L~] – E[Lf] ~ ~/4} < 13/2. Suppose

]opt(F) - opt(H) I S :/4 and we have a randomized algo-

rithm which produces f E F for sample S of size m drawn

according to P such that Pr ( E[Lf] – o~tS(F) z c/4) <

d/2 T~enpr(lEILf] -o@/H)l >,) s 6 w!zere a~~the

probabilities are taken over the random samples and the ran-
domization used by the algorithm.

Proof Sketch. With probability greater than 1 – 6/2,

we have simultaneously, fi[L~] – E[Lj] < c/4 and

o~ts (F) – opt(F) s 6/4. The desired result is obtained

using the triangle inequality. •l

We now show how an algorithm for properly agnostically

learning ~ can be used to obtain a randomized algorithm for

optimization using N; as required in Lemma 10.

Theorem 11 Let G be an admissible jimction class. Then
~$ improperly ejticiently agnostically learnable fu improp-
erly ejiciently agnostically learnable. Furthermore the sam-
ple complexity forproperly ej?ciently learning N: is at most

*(#(30+1n(c2~~b’d))2 +kln2+ln~)

where k = (8 KpK2b~)’/@/e’/@, C = (Kbg + T)2 and

d = fatg (e/( 1536@KbG)).

Proof. The aim of the proof is to set up the conditions

such that Lemma 10 holds and to show that this can be done
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efficiently. Let G = {wg: \WI = K, g E L7}. In The-

orem 4, note that for each k there is a fixed sequence of

weights (al, . . ..a~) withaz ~ Ofor eachi = 1,. ... kand

~~=1 a, = 1 such that an approximation rate of clYD/k~

is achieved. Let ?l~ = {~~=1 aigi : g~ 6 G}. The range

of 7i~ is Y’ ~ [–bQK, bg~]. Let the range of the obser-

vation be Y ~ [–T, T] and let Q (Y, Y’) ~ [0, C], where

w = bg~ + T. From a set S of m independently sam-

pled points in X x Y, form an empirical distribution D by

weighting each member of S in proportion to the number of

times the point appears in S.

Using Theorem 4 we can find the number k such that

lopt(JV) – opt(%~) I < 6/4. Using the empirical distri-

bution, D, for the same k there also exists an ! ~ ?t~

such that E[L ~] – o~t~ (JV) s 6/4. Since o~ts (H~ ) z

o~ts (N), we have E[Lj] – o~ts (?l~ ) s t/4. From

Theorem 4, to obtain an approximation to accuracy 6/4,

k = (4Kpc) l/6/clJ0 suffice.

Let c = 2K2b~. From Theorem 4, Theorem 8 and Lemma 9

with k = (8 KRK2b~) l/”/e’jo, for any finite sample size,

where d = fatg (e/( 1536wKb~)).

Thus using Theorem 7, for samples z drawn according to

distribution Pm,

Pm {z c Zm:3h E M,, E[Qh] - E[Qh] > c/4} <

“aexp(E(’o+ln(b))’)’’!’’m’’”’c”

Setting the right hand side to 6/2 to satisfy Lemma 10, we

obtain the sample complexity bound. Since g is properly

efficiently agnostically learnable, Theorem 6 implies that the

fat-shattering function of ~ is bounded by a polynomial in

1/e and the complexity parameters, so the sample size bound

for learning N~ is polynomial in 1/6, 1/d and the complexity

parameters.

Finally we need to show that a proper efficient agnostic learn-

ing algorithm for G can be used as an efficient randomized

algorithm for optimizing the error on the sample using ‘l-&.

The idea is to use the learning algorithm to sample and learn

from the empirical distribution so that at each stage i of the

iterative approximation, the error relative to the optimum is

less than c, (from Theorem 4) with probability greater than

1 – 6/2k. Unlike in the proof of Theorem 5, we can test

the hypotheses directly using the same sample. Knowing the

fat-shattering function of g enables us to bound the size of

the sample required to be sampled according to the empiri-

cal distribution. Note that since we are sampling from the

empirical distribution, no new observations need to be drawn

from the original distribution. Theorem 4 assures us that if

we are successful at each iteration, we will be within 6/4 of

the minimum error on the sample as required in Lemma 10.

❑

5 Efficiently Learnable Function Classes

In this section, we give some examples of efficiently agnos-

tically learnable function classes.

5.1 Efficiently Enumerable Function Classes

In [17], it was shown that a linear combination of linear

threshold units with abounded sum of magnitudes of weights

is efficiently agnostically learnable if the fan-ins of the lin-

ear threshold units are bounded. The complexity param-

eter in this case is the dimension of the input space and

the basis function class is the class of linear threshold units

with bounded fan-in. Similarly, in fixed dimension or with

bounded fan-in, a linear combination of axis parallel rectan-

gles with bounded sum of magnitudes of weights is efficiently

agnostically learnable. These results are generalized in the

following corollary which is particularly useful for {O, 1}-

valued basis function classes.

Corollary 12 Let G be an admissible basis function class.
Letz=(xl, z2, ..., Xm) be an arbitrary sequence ofpoints

from X. if Glt can be enumerated in time polynomial in

m and the complexity parameters, then N~- is properly eff-
iciently agnostically learnable.

Proof. Since the number of functions in ~lz is polynomial in

m and the complexity parameter, the fat-shattering function

must be bounded by a logarithmic function of the complexity

parameter. Since the functions can be efficiently enumerated,

choosing the function which minimizes the loss on a large

enough (but polynomial) sample size will result in an efficient

learning algorithm for ~. ❑

5.2 Neural Networks with Piecewise Polynomial
Activation Functions

Let z G IRn where n is fixed. Let ~ = {z 6 4(w . z – 0)}

where the magnitudes of the threshold 8 and each component

of the weight vector w are less than W, @(v) = O for v <0,

@(v) =vfor O<u Sland#(v) =lforv>l. Itisnot

possible to enumerate GIZ because the number of possible

outputs is not finite. However, as shown by Koiran [16], it

is possible to enumerate all possible combinations of inputs

with the linear pieces of the activation function. With a proper

parametrization, the optimization problem can be solved by

solving a family of quadratic programming problems. Hence,

in fixed dimension, a linear combination of functions from

~ with bounded sum of magnitudes of weights is properly

efficiently agnostically learnable.

Maass [18] has shown that a fixed architecture neural net-

work with an arbitrary number of hidden layers and piece-

wise polynomial activation functions is efficiently agnosti-

cally learnable (with respect to the absolute loss function

A(y, /) = Iy – y’ \ but the result also holds for the quadratic

loss function). Hence, the class of linear combinations of

such networks with bounded sum of magnitudes of weights

is also efficiently agnostically learnable, Note that Maass

used a larger hypothesis class to learn this class. Hence the

function class has not been shown to be properly efficiently

agnostically learnable.
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6 Relationship with Agnostic PAC learning

Let ~ be a class of {O, 1}-valued functions. Let the target

function be chosen from the class of all {O, 1}-valued func-

tions on X. Following Kearns, Schapire and Sellie [15], we

call proper efficient agnostic learning with discrete loss un-

der these assumptions agnostic PAC learning, In this section,

we show that if ~ is agnostically PAC learnable, then ~~ is

properly efficiently agnostically learnable.

As shown by Jones [13], the iterative approximation result

holds even if the inner product of the basis function with fk –
f (where ~ is the target function and ~~ is the current network)

is minimized instead of the empirical quadratic error. This

is also true for the proof given by Koiran [16]. We use

this property and transform the problem of minimizing the

inner product on a finite set of examples into the problem of

agnostic PAC learning.

The following theorem follows from the proof of Theorem 1

given in [16] with minor changes.

Theorem 13 Let G be a subset of a Hilbert space H with

II g II< b for each g E G. Let co(G) be the convex hull of
G. For any f E H, let df = in f#eCO(G) II g’ – .f Il. Let

fO= O, c > 2b + df and iteratively fork ? 1, suppose f~
is chosen to be fk = (1 – l/k)j~–l + g’/k – f, where g’ is
chosen to satisfy (f~_I – f, g’) < infgeG(t&l – ~, 9) + c~

c2–(2b+df)2. Then II f — f~ 112 ‘&f < ~ + ;.
and Ek < .ZIV

Theorem 14 Let ~ be a class of admissible {O, 1}-valued

basis functions. Then @ is properly efficiently agnostically
learnable with the quadratic loss ~ ~ is agnostically PAC
learnable.

Proof Sketch. Again we will set up conditions necessary

for Lemma 10. Since the target range is bounded we can

easily find a bound for df. Using Theorem 13, pick the

number of basis functions k in the linear combinations to

obtain approximation e/4. Let G = {tog: @l = K, 9 E G}.

In Theorem 13, note that for each k there is a fixed sequence

of weights (al, . . . . ak) Withat ~Ofor eachi= 1,. ... k

and ~~=, ai = 1 such that the desired approximation rate

is achieved. Let ?& = {~~=1 a~g~ : gi 6 G}. Then using

the fat-shattering function bound, pick a sample large enough

to get the accuracy and confidence required in Lemma 10.

If ~ is agnostically PAC learnable, then the fat-shattering

function (which is the same as the VC-dimension for {O, l}-

valued functions) is polynomial in the complexity parameters

[7]. Theorem 13 shows that approximating to accuracy ei at

each iteration with respect to the empirical distribution will

provide a hypothesis with the desired error.

For each iteration i, 1 < i .< k, we first find a func-

tion g C ~ which nearly mmlmizes (&..l – ~, wg) =

# ~fll(-f~-l (G) – .f(~,))g(~,) for w = K where f is
the conditional expectation on the sample under the empiri-

cal distribution. It is possible to show that this is equivalent to

agnostic PAC learning of the function h where h(zi ) = O if

~~-l(~t)-.f(~i) > Oandh(zi) =f;_i{j)=~~)–?(z,) <0

under the distribution P(zZ) = 1 , ‘) [ where s =

X~I l.f~-I(4 – .f(zi) 1.Next a simil~ procedure is CM-
ried out for w = –K. The two functions produced are then

compared and the better one chosen. •l

7 Discussion and Open Problems

An interesting open problem is to find the limits of the

complexity of basis functions which allow efficient agnos-

tic learning. For agnostic PAC learning of basis functions,

available results include hardness of learning monomials and

halfspaces under the assumption RP # NP [15, 11], This

implies that for networks of functions from these classes, it

is unlikely that an efficient algorithm can be obtained from

the approach given in Sections 4 and 6. However to rule out

efficient learning with other methods or hypothesis classes re-

quires representation independent hardness results. In [15],

it was shown that if the class of monomials is efficiently ag-

nostically learnable (with any hypothesis class) with respect

to the discrete loss function, then the class of polynomial-

size DNF is efficiently learnable in the PAC learning model.

Whether polynomial-size DNF can be learned efficiently has

been an open problem in computational learning theory since

it was first posed by Valiant [20] in 1984 (the majority view

is that polynomial-sized DNF is not likely to be efficiently

learnable [12]). Using techniques similar to that in [15], it is

possible to show that if a class of {O, 1}-valued basis func-

tions include monomials, then an efficient agnostic learning

algorithm for the class using the quadratic loss function can

be used to efficiently find a randomized hypothesis for poly-

nomial sized DNF, (We say a hypothesis h is randomized if

there exists a probabilistic polynomial time algorithm that,

given h and an instance v, computes h’s prediction on v).

If we assume that it is hard to find a learning algorithm for

DNF, then agnostically learning such basis function classes

as well as the network of the basis functions is hard.

Theorem 15 Let g be a permissible class of {O, 1}-valued
functions on W such that the class ofmonomials is a subset of

GI{O,I}. andletp(n) be anypolynomialin n. UG is eBciently
agnostically learnable with respect to the quadratic lossfunc-
tion, then there exists an eficient algorithm (which produces
randomized hypotheses) for learning p(n) -term DNI?

Proof Sketch. We will show that there exists a weak learning

algorithm (which produces randomized hypotheses) forp(n)-

term DNF. The result then follows from Schapire’s boosting

technique [19] for converting a weak learning algorithm into

a strong one.

For any target p(n) -term DNF, there exists a monomial that

never makes an error on a negative example and gets at least

1/p(n) of the positive examples right (because the p(n) terms

cover all the positive examples). Let w ~ ~ be equiv-

alent to this monomial when restricted to {O, 1}n. Then

w’ = ~ (w + 1) E Af~ will have quadratic error 1/4 on the
negative examples. On the positive examples the quadratic

error of w’ will be zero when the monomial w gives the correct

classification and 1/4 when it gives the wrong classification.

The algorithm for producing the randomized hypothesis goes

as follows. Get a sufficiently large sample. (Use for ex-
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ample the Chernoff bounds [3] to get a sufficient sample

size). If significantly more than half of the examples are

labelled as positive, use the all one monomial for classi-

fication. If significantly more than half the examples are

Iabelled as negative, use the all zero monomial for classi-

fication. Otherwise, the probabilities of negative and pos-

itive examples are approximately equal. We then use the

agnostic learning algorithm to learn the function using ~~

with quadratic loss. From Section 3, Nlg is efficiently ag-

nostically learnable if G is efficiently agnostically learnable.

Suppose that the probability of a positive example is be-

tween 1/4 and 3/4. The above argument shows that there

exists a function in N1~ with expected quadratic error less

our targe~ DNF and assume that the hypothesis h is no more

that 1/ (32p(n)) away from the optimum. Then from [15]

Theorem 6, we have Pr[~(z) # $~(z)] < E[Qh] + 1/4 <
1/2 – l/(32p(n)), where $h(z) is a boolean random vari-

able that is 1 with probability h(x) and zero with probability

1 – h(z). Hence the algorithm is a weak learning algo-

rithm (which produces randomized hypotheses) for learning

p(n) -term DNF. ❑

It would also be interesting to find function classes which

are not properly efficiently agnostically learnable but are ef-

ficiently agnostically learnable with other hypothesis classes.

We are unaware of any such example for agnostic learning,

although in PAC learning, some function classes are learnable

with larger hypothesis classes but not with the target function

classes (e.g. k-term DNF is not properly PAC learnable but

is learnable when k-CNF is used as the hypothesis class; see

[7]).
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