
Workload Analysis of a Large-Scale Key-Value Store

Berk Atikoglu
Stanford, Facebook

atikoglu@stanford.edu

Yuehai Xu
Wayne State, Facebook
yhxu@wayne.edu

Eitan Frachtenberg∗

Facebook
etc@fb.com

Song Jiang
Wayne State

sjiang@wayne.edu

Mike Paleczny
Facebook

mpal@fb.com

ABSTRACT
Key-value stores are a vital component in many scale-out
enterprises, including social networks, online retail, and risk
analysis. Accordingly, they are receiving increased atten-
tion from the research community in an effort to improve
their performance, scalability, reliability, cost, and power
consumption. To be effective, such efforts require a detailed
understanding of realistic key-value workloads. And yet lit-
tle is known about these workloads outside of the companies
that operate them. This paper aims to address this gap.

To this end, we have collected detailed traces from Face-
book’s Memcached deployment, arguably the world’s largest.
The traces capture over 284 billion requests from five differ-
ent Memcached use cases over several days. We analyze the
workloads from multiple angles, including: request compo-
sition, size, and rate; cache efficacy; temporal patterns; and
application use cases. We also propose a simple model of the
most representative trace to enable the generation of more
realistic synthetic workloads by the community.

Our analysis details many characteristics of the caching
workload. It also reveals a number of surprises: a GET/SET
ratio of 30:1 that is higher than assumed in the literature;
some applications of Memcached behave more like persistent
storage than a cache; strong locality metrics, such as keys
accessed many millions of times a day, do not always suf-
fice for a high hit rate; and there is still room for efficiency
and hit rate improvements in Memcached’s implementation.
Toward the last point, we make several suggestions that ad-
dress the exposed deficiencies.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Databases; D.4.8
[Performance]: Modeling and Prediction; D.4.2 [Storage
Management]: Distributed Memories

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06 ...$10.00.

Keywords
Workload Analysis, Workload modeling, Key-Value Store

1. INTRODUCTION
Key-value (KV) stores play an important role in many

large websites. Examples include: Dynamo at Amazon [15];
Redis at GitHub, Digg, and Blizzard Interactive [27]; Mem-
cached at Facebook, Zynga and Twitter [18, 26]; and Volde-
mort at Linkedin [1]. All these systems store ordered (key, value)
pairs and are, in essence, a distributed hash table.

A common use case for these systems is as a layer in the
data-retrieval hierarchy: a cache for expensive-to-obtain val-
ues, indexed by unique keys. These values can represent
any data that is cheaper or faster to cache than re-obtain,
such as commonly accessed results of database queries or
the results of complex computations that require temporary
storage and distribution.

Because of their key role in large website performance, KV
stores are carefully tuned for low response times and high
hit rates. But like all caching heuristics, a KV-store’s per-
formance is highly dependent on its workload. It is there-
fore imperative to understand the workload’s characteris-
tics. Additionally, analyzing and understanding large-scale
cache workloads can also: provide insights into topics such
as the role and effectiveness of memory-based caching in dis-
tributed website infrastructure; expose the underlying pat-
terns of user behavior; and provide difficult-to-obtain data
and statistical distributions for future studies.

In this paper, we analyze five workloads from Facebook’s
Memcached deployment. Aside from the sheer scale of the
site and data (over 284 billion requests over a period of 58
sample days), this case study also introduces to the commu-
nity several different usage scenarios for KV stores. This
variability serves to explore the relationship between the
cache and various data domains: where overall site patterns
are adequately handled by a generalized caching infrastruc-
ture, and where specialization would help. In addition, this
paper offers the following key contributions and findings:

1. A workload decomposition of the traces that shows
how different applications of Memcached can have ex-
treme variations in terms of read/write mix, request
sizes and rates, and usage patterns (Sec. 3).

2. An analysis of the caching characteristics of the traces
and the factors that determine hit rates. We found
that different Memcached pools can vary significantly
in their locality metrics, but surprisingly, the best pre-
dictor of hit rates is actually the pool’s size (Sec. 6).

3. An examination of various performance metrics over
time, showing diurnal and weekly patterns (Sec. 3.3,
4.2.2, 6).

4. An analytical model that can be used to generate more
realistic synthetic workloads. We found that the salient
size characteristics follow power-law distributions, sim-
ilar to other storage and Web-serving systems (Sec. 5).

5. An exposition of a Memcached deployment that can
shed light on real-world, large-scale production usage
of KV-stores (Sec. 2.2, 8).

The rest of this paper is organized as follows. We begin by
describing the architecture of Memcached, its deployment
at Facebook, and how we analyzed its workload. Sec. 3
presents the observed experimental properties of the trace
data (from the request point of view), while Sec. 4 describes
the observed cache metrics (from the server point of view).
Sec. 5 presents a simple analytical model of the most rep-
resentative workload. The next section brings the data to-
gether in a discussion of our results, followed by a section
surveying previous efforts on analyzing cache behavior and
workload analysis.

2. MEMCACHED DESCRIPTION

2.1 Architecture
Memcached1 is a simple, open-source software package

that exposes data in RAM to clients over the network. As
data size grows in the application, more RAM can be added
to a server, or more servers can be added to the network.
Additional servers generally only communicate with clients.
Clients use consistent hashing [9] to select a unique server
per key, requiring only the knowledge of the total number of
servers and their IP addresses. This technique presents the
entire aggregate data in the servers as a unified distributed
hash table, keeps servers completely independent, and facil-
itates scaling as data size grows.

Memcached’s interface provides the basic primitives that
hash tables provide—insertion, deletion, and retrieval—as
well as more complex operations built atop them.

Data are stored as individual items, each including a key, a
value, and metadata. Item size can vary from a few bytes to
over 100KB, heavily skewed toward smaller items (Sec. 3).
Consequently, a näıve memory allocation scheme could re-
sult in significant memory fragmentation. To address this is-
sue, Memcached adopts a slab allocation technique, in which
memory is divided into slabs of different sizes. The slabs in
a class store items whose sizes are within the slab’s specific
range. A newly inserted item obtains its memory space by
first searching the slab class corresponding to its size. If
this search fails, a new slab of the class is allocated from
the heap. Symmetrically, when an item is deleted from the
cache, its space is returned to the appropriate slab, rather
than the heap. Memory is allocated to slab classes based
on the initial workload and its item sizes, until the heap
is exhausted. Consequently, if the workload characteristics
change significantly after this initial phase, we may find that
the slab allocation is inappropriate for the workload, result-
ing in memory underutilization.

1http://memcached.org/

Table 1: Memcached pools sampled (in one cluster).
These pools do not match their UNIX namesakes,
but are used for illustrative purposes here instead
of their internal names.

Pool Size Description

USR few user-account status information
APP dozens object metadata of one application
ETC hundreds nonspecific, general-purpose
VAR dozens server-side browser information
SYS few system data on service location

A new item arriving after the heap is exhausted requires
the eviction of an older item in the appropriate slab. Mem-
cached uses the Least-Recently-Used (LRU) algorithm to
select the items for eviction. To this end, each slab class
has an LRU queue maintaining access history on its items.
Although LRU decrees that any accessed item be moved to
the top of the queue, this version of Memcached coalesces
repeated accesses of the same item within a short period
(one minute by default) and only moves this item to the top
the first time, to reduce overhead.

2.2 Deployment
Facebook relies on Memcached for fast access to frequently-

accessed values. Web servers typically try to read persistent
values from Memcached before trying the slower backend
databases. In many cases, the caches are demand-filled,
meaning that generally, data is added to the cache after
a client has requested it and failed.

Modifications to persistent data in the database often
propagate as deletions (invalidations) to the Memcached
tier. Some cached data, however, is transient and not backed
by persistent storage, requiring no invalidations.

Physically, Facebook deploys front-end servers in multiple
datacenters, each containing one or more clusters of varying
sizes. Front-end clusters consist of both Web servers, run-
ning primarily HipHop [31], and caching servers, running
primarily Memcached. These servers are further subdivided
based on the concept of pools. A pool is a partition of the
entire key space, defined by a prefix of the key, and typi-
cally represents a separate application or data domain. The
main reason for separate domains (as opposed to one all-
encompassing cache) is to ensure adequate quality of service
for each domain. For example, one application with high
turnover rate could evict keys of another application that
shares the same server, even if the latter has high temporal
locality but lower access rates. Another reason to separate
domains is to facilitate application-specific capacity plan-
ning and performance analysis.

In this paper, we describe traces from five separate pools—
one trace from each pool (traces from separate machines
in the same pool exhibit similar characteristics). These
pools represent a varied spectrum of application domains
and cache usage characteristics (Table 1). One pool in par-
ticular, ETC, represents general cache usage of multiple ap-
plications, and is also the largest of the pools; the data col-
lected from this trace may be the most applicable to general-
purpose KV-stores.

The focus of this paper is on workload characteristics,
patterns, and relationships to social networking, so the exact
details of server count and components have little relevance

http://memcached.org/

here. It is important to note, however, that all Memcached
instances in this study ran on identical hardware.

2.3 Tracing Methodology
Our analysis called for complete traces of traffic passing

through Memcached servers for at least a week. This task
is particularly challenging because it requires nonintrusive
instrumentation of high-traffic volume production servers.
Standard packet sniffers such as tcpdump2 have too much
overhead to run under heavy load. We therefore imple-
mented an efficient packet sniffer called mcap. Implemented
as a Linux kernel module, mcap has several advantages over
standard packet sniffers: it accesses packet data in kernel
space directly and avoids additional memory copying; it in-
troduces only 3% performance overhead (as opposed to tcp-
dump’s 30%); and unlike standard sniffers, it handles out-
of-order packets correctly by capturing incoming traffic af-
ter all TCP processing is done. Consequently, mcap has a
complete view of what the Memcached server sees, which
eliminates the need for further processing of out-of-order
packets. On the other hand, its packet parsing is optimized
for Memcached packets, and would require adaptations for
other applications.

The captured traces vary in size from 3TB to 7TB each.
This data is too large to store locally on disk, adding another
challenge: how to offload this much data (at an average rate
of more than 80, 000 samples per second) without interfering
with production traffic. We addressed this challenge by com-
bining local disk buffering and dynamic offload throttling to
take advantage of low-activity periods in the servers.

Finally, another challenge is this: how to effectively pro-
cess these large data sets? We used Apache HIVE3 to ana-
lyze Memcached traces. HIVE is part of the Hadoop frame-
work that translates SQL-like queries into MapReduce jobs.
We also used the Memcached “stats” command, as well as
Facebook’s production logs, to verify that the statistics we
computed, such as hit rates, are consistent with the aggre-
gated operational metrics collected by these tools.

3. WORKLOAD CHARACTERISTICS
This section describes the observed properties of each trace

in terms of the requests that comprise it, their sizes, and
their frequencies.

3.1 Request Composition
We begin by looking at the basic data that comprises the

workload: the total number of requests in each server, bro-
ken down by request types (Fig. 1). Several observations
delineate the different usage of each pool:

USR handles significantly more GET requests than any of
the other pools. GET operations comprise over 99.8%
of this pool’s workload. One reason for this is that the
pool is sized large enough to maximize hit rates, so
refreshing values is rarely necessary. These values are
also updated at a slower rate than some of the other
pools. The overall effect is that USR is used more like
RAM-based persistent storage than a cache.

APP has high GET rates too—owing to the popularity of
this application—but also a large number of DELETE

2http://www.tcpdump.org/
3http://hive.apache.org/

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

USR APP ETC VAR SYS

R
e

q
u

e
s
ts

 (
m

ill
io

n
s
)

Pool

DELETE
UPDATE

GET

Figure 1: Distribution of request types per pool,
over exactly 7 days. UPDATE commands aggregate
all non-DELETE writing operations, such as SET,
REPLACE, etc.

operations. DELETE operations occur when a cached
database entry is modified (but not required to be
set again in the cache). SET operations occur when
the Web servers add a value to the cache. The rela-
tively high number of DELETE operations show that
this pool represents database-backed values that are
affected by frequent user modifications.

ETC has similar characteristics to APP, but with an even
higher rate of DELETE requests (of which some may
not be currently cached). ETC is the largest and least
specific of the pools, so its workloads might be the most
representative to emulate. Because it is such a large
and heterogenous workload, we pay special attention
to this workload throughout the paper.

VAR is the only pool sampled that is write-dominated. It
stores short-term values such as browser-window size
for opportunistic latency reduction. As such, these
values are not backed by a database (hence, no invali-
dating DELETEs are required). But they change fre-
quently, accounting for the high number of UPDATEs.

SYS is used to locate servers and services, not user data. As
such, the number of requests scales with the number
of servers, not the number of user requests, which is
much larger. This explains why the total number of
SYS requests is much smaller than the other pools’.

It is interesting to note that the ratio of GETs to UPDATEs
in ETC (approximately 30 : 1) is significantly higher than
most synthetic workloads typically assume (Sec. 7). For
demand-filled caches like USR, where each miss is followed
by an UPDATE, the ratios of GET to UPDATE operations
mentioned above are related to hit rate in general and the
sizing of the cache to the data in particular. So in theory,
one could justify any synthetic GET to UPDATE mix by
controlling the cache size. But in practice, not all caches or
keys are demand-filled, and these caches are already sized to
fit a real-world workload in a way that successfully trades
off hit rates to cost.

http://www.tcpdump.org/
http://hive.apache.org/

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Key size (bytes)

Key size CDF by appearance

USR
APP
ETC
VAR
SYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

Value size (bytes)

Value Size CDF by appearance

USR
APP
ETC
VAR
SYS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

Value size (bytes)

Value size CDF by total weight

USR
APP
ETC
VAR
SYS

Figure 2: Key and value size distributions for all traces. The leftmost CDF shows the sizes of keys, up to
Memcached’s limit of 250B (not shown). The center plot similarly shows how value sizes distribute. The
rightmost CDF aggregates value sizes by the total amount of data they use in the cache, so for example,
values under 320B or so in SYS use virtually no space in the cache; 320B values weigh around 8% of the data,
and values close to 500B take up nearly 80% of the entire cache’s allocation for values.

3.2 Request Sizes
Next, we look at the sizes of keys and values in each pool

(Fig. 2), based on SET requests. All distributions show
strong modalities. For example, over 90% of APP’s keys are
31 bytes long, and values sizes around 270B show up in more
than 30% of SET requests. USR is the most extreme: it only
has two key size values (16B and 21B) and virtually just
one value size (2B). Even in ETC, the most heterogeneous
of the pools, requests with 2-, 3-, or 11-byte values add up
to 40% of the total requests. On the other hand, it also has
a few very large values (around 1MB) that skew the weight
distribution (rightmost plot in Fig. 2), leaving less caching
space for smaller values.

Small values dominate all workloads, not just in count,
but especially in overall weight. Except for ETC, 90% of
all cache space is allocated to values of less than 500B. The
implications for caching and system optimizations are sig-
nificant. For example, network overhead in the processing
of multiple small packets can be substantial, which explains
why Facebook coalesces as many requests as possible in as
few packets as possible [9]. Another example is memory
fragmentation. The strong modality of each workload im-
plies that different Memcached pools can optimize memory
allocation by modifying the slab size constants to fit each
distribution. In practice, this is an unmanageable and un-
scalable solution, so instead Memcached uses many (44) slab
classes with exponentially growing sizes, in the hope of re-
ducing allocation waste, especially for small sizes.

3.3 Temporal Patterns
To understand how production Memcached load varies

over time, we look at each trace’s transient request rate over
its entire collection period (Fig. 3). All traces clearly show
the expected diurnal pattern, but with different values and
amplitudes. If we increase our zoom factor further (as in the
last plot), we notice that traffic in ETC bottoms out around
08:00 and has two peaks around 17:00 and 03:00. Not sur-
prisingly, the hours immediately preceding 08:00 UTC (mid-
night in Pacific Time) represent night time in the Western
Hemisphere.

The first peak, on the other hand, occurs as North Amer-
ica starts its day, while it is evening in Europe, and continues
until the later peak time for North America. Although dif-
ferent traces (and sometimes even different days in the same

trace) differ in which of the two peaks is higher, the entire
period between them, representing the Western Hemisphere
day, sees the highest traffic volume. In terms of weekly pat-
terns, we observe a small traffic drop on most Fridays and
Saturdays, with traffic picking up again on Sundays and
Mondays.

The diurnal cycle represents load variation on the order of
2×. We also observe the presence of traffic spikes. Typically,
these can represent a swift surge in user interest on one topic,
such as occur with major news or media events. Less fre-
quently, these spikes stem from programmatic or operational
causes. Either way, the implication for Memcached devel-
opment and deployment is that one must budget individual
node capacity to allow for these spikes, which can easily dou-
ble or even triple the normal peak request rate. Although
such budgeting underutilizes resources during normal traf-
fic, it is nevertheless imperative; otherwise, the many Web
servers that would take to this sudden traffic and fail to get
a prompt response from Memcached, would all query the
same database nodes. This scenario could be debilitating,
so it must remain hypothetical.

4. CACHE BEHAVIOR
The main metric used in evaluating cache efficacy is hit

rate: the percentage of GET requests that return a value.
The overall hit rate of each server, as derived from the traces
and verified with Memcached’s own statistics, are shown in
Table 2. This section takes a deeper look at the factors
that influence these hit rates and how they relate to cache
locality, user behavior, temporal patterns, and Memcached’s
design.

Table 2: Mean cache hit rate over entire trace.
Pool APP VAR SYS USR ETC

Hit rate 92.9% 93.7% 98.7% 98.2% 81.4%

4.1 Hit Rates over Time
When looking at how hit rates vary over time (Fig. 4),

almost all traces show diurnal variance, within a small band
of a few percentage points. USR’s plot is curious: it appears
to be monotonically increasing (with diurnal undulation).
This behavior stems from the usage model for USR. Recall

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

S
a
t
0
0
:0

0
S

a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0
T

h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0
0
:0

0
S

a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0

R
e
q
u
e
s
ts

/s
e
c

APP

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

W
e
d
 0

0
:0

0

W
e
d
 0

8
:0

0

W
e
d
 1

6
:0

0

T
h
u
 0

0
:0

0

T
h
u
 0

8
:0

0

T
h
u
 1

6
:0

0

F
ri
 0

0
:0

0

F
ri
 0

8
:0

0

F
ri
 1

6
:0

0

S
a
t
0
0
:0

0

S
a
t
0
8
:0

0

S
a
t
1
6
:0

0

S
u
n
 0

0
:0

0

S
u
n
 0

8
:0

0

S
u
n
 1

6
:0

0

M
o
n
 0

0
:0

0

M
o
n
 0

8
:0

0

M
o
n
 1

6
:0

0

T
u
e
 0

0
:0

0

T
u
e
 0

8
:0

0

T
u
e
 1

6
:0

0

W
e
d
 0

0
:0

0

W
e
d
 0

8
:0

0

W
e
d
 1

6
:0

0

T
h
u
 0

0
:0

0

R
e
q
u
e
s
ts

/s
e
c

VAR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

S
a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0
T

h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0
0
:0

0
S

a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0
T

h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0
0
:0

0

R
e
q
u
e
s
ts

/s
e
c

SYS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

T
h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0
0
:0

0
S

a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0
T

h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0
0
:0

0
S

a
t
0
8
:0

0
S

a
t
1
6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0

R
e
q
u
e
s
ts

/s
e
c

USR

 30000

 40000

 50000

 60000

 70000

 80000

 90000

S
a
t
0

8
:0

0
S

a
t
1

6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0
T

h
u
 0

0
:0

0
T

h
u
 0

8
:0

0
T

h
u
 1

6
:0

0
F

ri
 0

0
:0

0
F

ri
 0

8
:0

0
F

ri
 1

6
:0

0
S

a
t
0

0
:0

0
S

a
t
0

8
:0

0
S

a
t
1

6
:0

0
S

u
n
 0

0
:0

0
S

u
n
 0

8
:0

0
S

u
n
 1

6
:0

0
M

o
n
 0

0
:0

0
M

o
n
 0

8
:0

0
M

o
n
 1

6
:0

0
T

u
e
 0

0
:0

0
T

u
e
 0

8
:0

0
T

u
e
 1

6
:0

0
W

e
d
 0

0
:0

0
W

e
d
 0

8
:0

0
W

e
d
 1

6
:0

0

R
e
q
u
e
s
ts

/s
e
c

ETC

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

0
0
:0

0

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

1
0
:0

0

1
1
:0

0

1
2
:0

0

1
3
:0

0

1
4
:0

0

1
5
:0

0

1
6
:0

0

1
7
:0

0

1
8
:0

0

1
9
:0

0

2
0
:0

0

2
1
:0

0

2
2
:0

0

2
3
:0

0

0
0
:0

0

R
e
q
u
e

s
ts

/s
e

c

ETC 24 hours

Figure 3: Request rates at different dates and times of day, Coordinated Universal Time (UTC). Each data
point counts the total number of requests in the preceding second. Except for USR and VAR, different traces
were collected in different times. The last plot zooms in on a 24-hour period from the ETC trace for greater
detail.

 97

 98

 99

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

USR

 92

 93

 94

 95

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

APP

 75

 80

 85

 90

 95

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

ETC

 92

 93

 94

 95

 96

W
e

d

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

VAR

 95

 96

 97

 98

 99

 100

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

F
ri

S
a

t

S
u

n

M
o

n

T
u

e

W
e

d

T
h

u

F
ri

S
a

t

SYS

Figure 4: GET hit rates over time for all pools (days start at midnight UTC).

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
ti
o
 f
ro

m
 t
o

ta
l
re

q
u

e
s
ts

Cumulative ratio of keys from total

Key appearance CDF

USR
APP
ETC
VAR
SYS

Figure 5: CDFs of key appearances, depicting how
many keys account for how many requests, in rela-
tive terms. Keys are ranked from least popular to
most popular.

from Sec. 2.2 that USR is sized large enough to minimize
the number of misses—in other words, to contain almost
all possible keys. When a USR Memcached server starts,
it contains no data and misses on all requests. But over
time, as clients add values to it while the pressure to evict is
nonexistent, hit rates climb upwards. Thus, USR’s transient
hit rate is correlated not only with time of day, but primarily
with the server’s uptime, reaching 99.8% after several weeks.

Like USR, SYS has a relatively bounded data domain, so
it can easily be sized to keep hit rates high and stable. But
unlike the other four workloads, SYS does not react directly
to user load, so its performance is less cyclical and regular.

4.2 Locality Metrics
This section looks at three ways to measure locality in

GET requests: (1) how often and how much some keys re-
peat in requests; (2) the amount of unique keys and how
it varies over time; and (3) reuse period, as a measure of
temporal locality.

These metrics, unlike hit rates, are an inherent property of
the request stream of each pool; changing the server’s hard-
ware or server count will not affect them. Consequently, this
data could provide insights toward the workload, in isolation
of implementation choices.

4.2.1 Repeating Keys
We start by looking at the distribution of key repeats

(Fig. 5). All workloads exhibit the expected long-tail distri-
butions, with a small percentage of keys appearing in most

of the requests, and most keys repeating only a handful of
times. So, for example, 50% of ETC’s keys occur in only
1% of all requests, meaning they do not repeat many times,
while a few popular keys repeat in millions of requests per
day. This high concentration of repeating keys provides the
justification for caching them in the first place.

All curves are remarkably similar, except for SYS’s, which
has two distinct sections. The first, up to about 65% of
the keys, represents keys that are repeated infrequently—
conceivably those that are retrieved when one or more clients
start up and fill their local cache. The second part, repre-
senting the last 25% of keys and more than 90% of the re-
quests, may account for the normal SYS scenario, when a
value is added or updated in the cache and all the clients
retrieve it.

4.2.2 Locality over Time
It is also interesting to examine how key uniqueness varies

over time by counting how many keys do not repeat in close
time proximity (Fig. 6). To interpret this data, note that a
lower percentage indicates that fewer keys are unique, and
therefore suggests a higher hit rate. Indeed, note that the
diurnal dips correspond to increases in hit rates in Fig. 4.

An immediately apparent property is that in any given
pool, this percentage remains relatively constant over time—
especially with hour-long bins, with only small diurnal vari-
ations and few spikes. Data for 5-minute bins are natu-
rally noisier, but even here most samples remain confined
to a narrow range. This suggests that different pools have
not only different traffic patterns, but also different caching
properties that can benefit from different tuning, justifying
the choice to segregate workloads to pools.

Each pool exhibits its characteristic locality band and av-
erage. SYS’s low average rate of 3.3% unique keys per hour,
for example, suggests that different clients request roughly
the same service information. In contrast, USR’s much
higher average rate of 34.6% unique keys per hour, suggests
that the per-user data it represents spans a much more dis-
parate range . Generally, we would assume that lower bands
translate to higher overall hit rates, all other things being
equal. This turns out not to be the case. In fact, the Pear-
son correlation coefficient between average unique key ratios
with 60-minute bins (taken from Fig. 6) and the average hit
rates (Table 2) is negative as expected, but small: −0.097.
Indeed not all other things are equal, as discussed in Sec. 4.1.

Comparing 5-minute bins to hour-long bins reveals that
unique keys in the former appear in significantly higher con-
centrations than in the latter. This implies a rapid rate of
decay in interest in most keys. But does this rate continue to
drop very fast over a longer time window? The next section
sets out to answer this question.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

U
n
iq

u
e
 k

e
y
s
 (

%
)

Time (days)

Percentage of unique keys out of total in 5-minute bins

APP=43.0%ETC=44.5%

VAR=33.4%

USR=74.7%

SYS=18.4%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

U
n
iq

u
e
 k

e
y
s
 (

%
)

Time (days)

Percentage of unique keys out of total in 60-minute bins

APP=22.4%ETC=20.7%
VAR=15.3%

USR=34.6%

SYS=3.3%

Figure 6: Ratio of unique keys over time. Each data point on the top (bottom) plot shows how many unique
keys were requested in the preceding 5 (60) minutes, as percentage of all keys. The label for each pool, at
the top right corner of the data, also includes the average ratio throughout the entire pool’s trace.

4.2.3 Temporal Locality: Reuse Period
Temporal locality refers to how often a key is re-accessed.

One metric to quantify temporal locality of any given key is
the reuse period—the time between consecutive accesses to
the key. Fig. 7 counts all key accesses in the five traces, and
bins them according to the time duration from the previous
key’s access. Unique keys (those that do not repeat at all
within the trace period) are excluded from this count.

The answer to the question from the previous section is
therefore positive: count of accesses in each reuse period
continues to decay quickly after the first hour. For the ETC
trace, for example, 88.5% of the keys are reused within an
hour, but only 4% more within two, and within six hours,
96.4% of all nonunique keys have already repeated. It con-
tinues to decay at a slower rate. This access behavior sug-
gests a pattern for Facebook’s users as well, with some users
visiting the site more frequently than others and reusing
the keys associated with their accounts. Another interest-
ing sub-pattern occurs every day. Note the periodic peaks
on even 24 hours in four of the five traces, especially in
the VAR pool that is associated with browser usage. These
peaks suggest that a noteworthy number of users log in to
the site at approximately the same time of day each time.
Once more, these increased-locality indications also corre-
spond to increased hit rates in Fig. 4.

As in the previous section, the SYS pool stands out. It
does not show the same 24-hour periodicity, because its keys

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

 0

 2
4

 4
8

 7
2

 9
6

 1
2
0

 1
4
4

 1
6
8

 1
9
2

 2
1
6

 2
4
0

 2
6
4

 2
8
8

 3
1
2

K
e
y
s
 r

e
q
u
e
s
te

d

Time (hours)

USR
APP
ETC
VAR
SYS

1e+05
1e+06
1e+07
1e+08
1e+09
1e+10
1e+11

 1 2 3 4 5 6

Figure 7: Reuse period histogram per pool. Each
hour-long bin n counts keys that were first requested
n hours after their latest appearance. The inset
zooms in on the five hours after the first.

relate to servers and services, not users. It also decays pre-
cipitously compared to the others. As in Sec. 4.2.1, we find
that since its data are cached locally by clients, it is likely
that most of SYS’s GET requests represent data that are
newly available, updated or expired from the client cache;
these are then requested by many clients concurrently. This
would explain why 99.9% of GET requests are repeated
within an hour of the first key access. Later, such keys
would be cached locally and accessed rarely, perhaps when
a newly added client needs to fill its own cache.

Nevertheless, there is still value in reuse period to predict
hit rates. Since all pools have sufficient memory for over an
hour of fresh data, the percentage of keys reused within an
hour correlates positively with the overall hit rates in Ta-
ble 2 (with a Pearson coefficient of 0.17). The correlation
is stronger—with a coefficient of 0.44—if we omit USR and
SYS, which have atypical cache behavior (minimum evic-
tions in the former and local caching in the latter).

4.3 Case Study: ETC Hit Rates
We turn our attention to ETC’s hit/miss rates, because

frequent misses can noticeably hurt user experience. At this
point, one might expect ETC’s hit rate to exceed the 96%
6-hour key-reuse rate, since it is provisioned with more than
enough RAM to store the fresh data of the preceding 6 hours.
Unfortunately, this is not the case, and the observed hit rate
is significantly lower at 81%. To understand why, we an-
alyzed all the misses in the last 24 hours of the trace (Ta-
ble. 3). The largest number of misses in ETC comes from
keys that are accessed for the first time (at least in a 10-day
period). This is the long tail of the locality metrics we an-
alyzed before. Sec. 4.2.1 showed that ≈ 50% of ETC’s keys
are accessed in only 1% of requests, and therefore benefit
little or not at all from a demand-filled cache. The many
deletions in the cache also hinder the cache’s efficacy. ETC
is a very diverse pool with many applications, some with
limited reusability. But the other half of the keys that show
up in 99% of the requests are so popular (some repeating
millions of times) that Memcached can satisfy over 4 in 5
requests to the ETC pool.

Table 3: Miss categories in last 24 hours of the
ETC trace. Compulsory misses count GETs with
no matching SET in the preceding 10 days (mean-
ing, for all practical purposes, new keys to the
cache). Invalidation misses count GETs preceded
by a matching DELETE request. Eviction misses
count all other missing GETs.

Miss category Compulsory Invalidation Eviction
Ratio of misses 70% 8% 22%

5. STATISTICAL MODELING
This section describes the salient workload characteristics

of the ETC trace using simple distribution models. The
ETC trace was selected because it is both the most repre-
sentative of large-scale, general-purpose KV stores, and the
easiest to model, since it is not distorted by the idiosyncratic
aberrations of application-specific pools. We also think that
its mixed workload is easier to generalize to other general-
purpose caches with a heterogeneous mix of requests and
sizes. The more Facebook-specific workloads, such as USR

or SYS, may be interesting as edge cases, but probably not
so much as models for synthetic workloads.

The functional models presented here prioritize parsimo-
nious characterization over fidelity. As such, they obviously
do not capture all the nuances of the trace, such as its bursty
nature or the inclusion of one-off events. But barring access
to the actual trace, they can serve the community as a bet-
ter basis for synthetic workload generation than assumptions
based on guesswork or small-scale logs.

Methodology
We modeled independently the three main performance prop-
erties that would enable simple emulation of this trace: key
sizes, value sizes, and inter-arrival rates. The rate and ratio
between GET/SET/DELETE requests can be derived from
Sec. 3.1. For cache analysis, additional properties can be
gleaned from Sec. 4.

To justify the assumption that the three properties are
independent, we picked a sample of 1, 000, 000 consecutive
requests and measured the Pearson coefficient between each
pair of variables. The pairwise correlations, as shown in
Table 4, are indeed very low.

Table 4: Pearson correlation coefficient between
each two pair of modeled variables.

Variable pair Correlation

Inter-arrival gap ↔ Key size −0.0111
Inter-arrival gap ↔ Value size 0.0065

Key size ↔ Value size −0.0286

We created functional models by fitting various distribu-
tions (such as Weibull, Gamma, Extreme Value, Normal,
etc.) to each data set and choosing the distribution that
minimizes the Kolmogorov-Smirnov distance. All our data
resemble power-law distributions, and fit the selected mod-
els quite well, with the exception of a handful of points (see
Fig. 8). To deal with these outliers and improve the fit, we
removed these points as necessary and modeled the remain-
ing samples. The few removed points are tabulated sepa-
rately as a histogram, so a more accurate synthetic workload
of the entire trace should combine the functional model with
the short list of value-frequency outliers.

Key-Size Distribution
We found the model that best fits key sizes in bytes (with a
Kolmogorov-Smirnov distance of 10.5) to be Generalized Ex-
treme Value distribution with parameters µ = 30.7984, σ =
8.20449, k = 0.078688. We have verified that these param-
eters remain fairly constant, regardless of time of day.

Value-Size Distribution
We found the model that best fits value sizes in bytes (with
a Kolmogorov-Smirnov distance of 10.5), starting from 15
bytes, to be Generalized Pareto with parameters θ = 0, σ =
214.476, k = 0.348238 (this distribution is also independent
of the time of day). The first 15 values of length and prob-
abilities can be modeled separately as a discrete probability
distribution whose values are given in Table 5.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 0 50 100 150 200 250

P
ro

b
a

b
ili

ty

Key size (bytes)

ETC Key Size PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
e

rc
e

n
ti
le

Key size (bytes)

ETC Key Size CDF

Sample
Model

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 50 100 150 200 250

R
e

s
id

u
a

l
e

rr
o

r

Value size (bytes)

ETC Key Size Residuals

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

P
ro

b
a

b
ili

ty

Value size (bytes)

ETC Value Size PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

P
e

rc
e

n
ti
le

Value size (bytes)

ETC Value Size CDF

Sample
Model

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000 10000 100000 1e+06

R
e

s
id

u
a

l
e

rr
o

r

Value size (bytes)

ETC Value Size Residuals

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

P
ro

b
a

b
ili

ty

Inter-arrival gap (us)

ETC Request Inter-arrival Gap PDF

Sample
Model

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

P
e

rc
e

n
ti
le

Inter-arrival gap (us)

ETC Request Inter-arrival Gap CDF

Sample
Model

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000 10000 100000 1e+06
R

e
s
id

u
a

l
e

rr
o

r

Request inter-arrival gap (us)

ETC Request Inter-arrival Gap Residuals

Figure 8: PDF (left), CDF (middle), and CDF residuals (right) plots for the distribution of ETC’s key size
(top), value size (center). and inter-arrival gap (bottom). Note that some axes are logarithmic, and that
PDF plots limit the X-axis to area of interest for greater detail.

Table 5: Probability distribution for first few value
lengths, in bytes.

Value size Probability

0 0.00536
1 0.00047
2 0.17820
3 0.09239
4 0.00018
5 0.02740
6 0.00065
7 0.00606
8 0.00023
9 0.00837
10 0.00837
11 0.08989
12 0.00092
13 0.00326
14 0.01980

Inter-arrival Rate Distribution
We found the model that best describes the time gap in
microseconds between consecutive received requests (with
a Kolmogorov-Smirnov distance of 2.0) to be Generalized
Pareto with parameters θ = 0, σ = 16.0292, k = 0.154971,
starting from the second value.

One excluded point from this model is the first value, rep-
resenting a gap of 0µsec (in other words, multiple requests
at the same microsecond time slot), with a probability of
0.1159. This is likely an artifact of our measurement gran-
ularity and aggregation by the network stack, and not of
concurrent requests, since they are all serialized by the sin-
gle networking interface.

In addition, the model is most accurate up to about a
gap of 1000µsec. But the total number of sampled points
not covered by this model (i.e., those requests that arrive
more than 1msec after the previous request) represents less
than 0.002% of the total samples and their residual error is
negligible.

Unlike the previous two distributions, inter-arrival rate—
the reciprocal function of offered load—is highly dependent
on time of day, as evident in Fig. 3. For those wishing to cap-
ture this diurnal variation, this complete-trace model may
be too coarse. To refine this distribution, we divided the

Table 6: Hourly distributions for inter-arrival gap.
The columns represent (in order): start time of each
hourly bin (in UTC), the two Generalized Pareto pa-
rameters (with θ = 0), the fraction of samples under
1µs gap , and the Kolmogorov-Smirnov distance of
the fit.

Time σ k < 1µs KS

0:00 16.2868 0.155280 0.1158 2.18
1:00 15.8937 0.141368 0.1170 2.14
2:00 15.6345 0.137579 0.1174 2.09
3:00 15.7003 0.142382 0.1174 2.16
4:00 16.3231 0.160706 0.1176 2.32
5:00 17.5157 0.181278 0.1162 2.52
6:00 18.6748 0.196885 0.1146 2.64
7:00 19.5114 0.202396 0.1144 2.64
8:00 20.2050 0.201637 0.1123 2.58
9:00 20.2915 0.193764 0.1116 2.46
10:00 19.5577 0.178386 0.1122 2.35
11:00 18.2294 0.161636 0.1130 2.17
12:00 17.1879 0.140461 0.1138 2.00
13:00 16.2159 0.119242 0.1146 1.88
14:00 15.6716 0.104535 0.1152 1.76
15:00 15.2904 0.094286 0.1144 1.72
16:00 15.2033 0.096963 0.1136 1.72
17:00 14.9533 0.098510 0.1140 1.74
18:00 15.1381 0.096155 0.1128 1.67
19:00 15.3210 0.094156 0.1129 1.65
20:00 15.3848 0.100365 0.1128 1.68
21:00 15.7502 0.111921 0.1127 1.80
22:00 16.0205 0.131946 0.1129 1.96
23:00 16.3238 0.147258 0.1148 2.14

raw data into 24 hourly bins and modeled each separately.
Fortunately, they all fit a Generalized Pareto distribution
with θ = 0 rather well. The remaining two parameters are
distributed over time in Table. 6.

6. DISCUSSION
One pertinent question is, what are the factors that affect

and predict hit rates? Since all hosts have the same amount
of RAM, we should be able to easily explain the relative dif-
ferences between different traces using the data we gathered
so far on locality. But as Sec. 4 discusses, hit rates do not
actually correlate very well with most locality metrics, but
rather, correlates inversely with the size of the pool (com-
pare Tables 1 and2). Does correlation imply causation in
this case?

Probably not. A more likely explanation invokes a third,
related parameter: the size of the application domain. Both
in USR’s and SYS’s cases, these sizes are more or less capped,
and the bound is small enough that a limited number of
servers can cover virtually the entire domain, so locality no
longer plays a factor. On the other extreme, ETC has a vary-
ing and growing number of applications using it, some with
unbounded data. If any single application grows enough
in importance to require a certain quality of service, and
has the size limitations to enable this quality, given enough
servers, then it is separated out of ETC to its own pool. So
the applications that end up using ETC are precisely those
that cannot or need not benefit from hit-rate guarantees.

Nevertheless, improving hit rates is important for these
applications, or we would not need a cache in the first place.
One way to improve ETC’s hit rates, at least in theory, is to
increase the total amount of RAM (or servers) in the pool so
that we can keep a longer history. But in practice, beyond
a couple of days’ worth of history, the number of keys that
would benefit from the longer memory is vanishingly small,
as Fig. 7 shows. And of course, adding hardware adds cost.

A more fruitful direction may be to focus on the cache
replacement policy. Several past studies demonstrated re-
placement policies with reduced eviction misses, compared
to LRU, such as LIRS [19]. Table 3 puts an upper limit
on the number of eviction misses that can be eliminated,
at around 22%, meaning that eviction policy changes could
improve hit rates by another 0.22 × (1 − 0.814) = 4.1%.
This may sound modest, but it represents over 120 million
GET requests per day per server, with noticeable impact
on service latency. Moreover, the current cache replace-
ment scheme and its implementation are suboptimal when it
comes to multithreaded performance [9], with its global lock
protecting both hash table and slab LRUs. We therefore
perceive great potential in alternative replacement policies,
not only for better hit rates but also for better performance.

Another interesting question is whether we should opti-
mize Memcached for hit rates or byte hit rates. To answer
it, we estimated the penalty of each miss in the ETC work-
load, by measuring the duration between the missing GET
and the subsequent SET that reinstates the value (presum-
ably, the duration represents the time cost to recalculate the
value, and is already highly optimized, emphasizing the im-
portance of improved hit rates). We found that it is roughly
proportional to the value size, so whether we fill the cache
with few large items or many small items of the same aggre-
gate size should not affect recalculation time much. On the
other hand, frequent misses do noticeably increase the load
on the back-end servers and hurt the user experience, which
explains why this cache does not prioritize byte hit rate.
Memcached optimizes for small values, because they are by
far the most common values. It may even be worthwhile
to investigate not caching large objects at all, to increase
overall hit rates.

7. RELATED WORK
To the best of our knowledge, this is the first detailed de-

scription of a large-scale KV-store workload. Nevertheless,
there are a number of related studies on other caching sys-
tems that can shed light on the relevance of this work and
its methodology.

The design and implementation of any storage or caching
system must be optimized for its workload to be effective.
Accordingly, there is a large body of work on the collection,
analysis, and characterization of the workloads on storage
systems, including enterprise computing environments [2,
20, 21] and high-performance computing environments [11,
22, 30]. The observations can be of great importance to
system design, engineering, and tuning. For example, in a
study on file system workloads for large-scale scientific com-
puting applications, Wang et. al. collected and analyzed file
accesses on an 800-node cluster running the Lustre file sys-
tem at Lawrence Livermore National Laboratory [30]. One
of their findings is that in some workloads, small requests
account for more than 90% of all requests, but almost all
data are accessed by large requests. In a study on file sys-

tem workloads across different environments, Roselli et. al.
found that even small caches can produce a high hit rate, but
larger caches would have diminishing returns [28], similar to
our conclusions on the ETC workload (Sec. 4.3).

In the work describing Facebook’s photo storage system [8],
the authors presented statistics of I/O requests for the pho-
tos, which exhibit clear diurnal patterns, consistent with our
observations in this paper (Sec. 3.3).

Web caches are widely deployed as a caching infrastruc-
ture for speeding up Internet access. Their workloads have
been collected and analyzed in Web servers [6, 25], proxies [5,
10, 16], and clients [7, 12]. In a study of requests received
by Web servers, Arlitt and Williamson found that 80% of
requested documents are smaller than ≈ 10KB. However,
requests to these documents generate only 26% of data bytes
retrieved from the server [6]. This finding is consistent with
the distribution we describe in Sec. 3.2

In an analysis of traces of client-side requests, Cunha et.
al. show that many characteristics of Web use can be mod-
eled using power-law distributions, including the distribu-
tion of document sizes, the popularity of documents, the
distribution of user requests for documents, and the number
of references to documents as a power law of their overall
popularity rank (Zipf’s law) [12]. Our modeling work on
the ETC trace (Sec. 5) also shows power-law distributions
in most request properties.

In light of the increasing popularity and deployment of
KV-stores, several schemes were proposed to improve their
performance, energy efficiency, and cost effectiveness [4, 9,
15, 26, 29]. Absent well-publicized workload traces, in par-
ticular large-scale production traces, many works used hy-
pothetical or synthetic workloads [29]. For example, to eval-
uate SILT, a KV-store design that constructs a three-level
store hierarchy for storage on flash memory with a memory
based index, the authors assumed a workload of 10% PUT
and 90% GET requests using 20B keys and 100B values,
as well as a workload of 50% PUT and 50% GET requests
for 64B KV pairs [23]. Andersen et. al. used queries of
constant size (256B keys and 1KB values) in the evalu-
ation of FAWN, a KV-store designed for nodes consisting
of low-power embedded CPUs and small amounts of flash
storage [4]. In the evaluation of CLAM, a KV-store design
that places both hash table and data items on flash, the
authors used synthetic workloads that generate keys from
a random distribution and a number of artificial workload
mixes [3]. There are also some studies that used real work-
loads in KV-store evaluations. In two works on flash-based
KV store-design, Debnath et. al. adopted workloads from
online multi-player gaming and a storage de-duplication tool
from Microsoft [13, 14]. Amazon’s production workload was
used to evaluate its Dynamo KV store, Dynamo [15]. How-
ever, these papers did not specifically disclose the workload
characteristics.

Finally, there are multiple studies offering analytical mod-
els of observed, large-scale workloads. Of those, a good sur-
vey of the methods is presented in Lublin’s and Feitelson’s
analysis of supercomputer workloads [17, 24].

8. CONCLUSION AND FUTURE WORK
This paper presented a dizzying number of views into a

very large data set. Together, these views tell a coherent
story of five different Memcached workloads at Facebook.
We have ETC, the largest and most heterogeneous of the

five. It has many keys that are requested millions of times
a day, and yet its average hit rate is only 81.4% because
half of its keys are accessed infrequently, and because a few
large values take up a disproportionate amount of the stor-
age. We have APP, which represents a single application
and consequently has more uniform objects: 90% of them
have roughly the same size. It also mirrors the interest of
Facebook’s users in specific popular objects, as evidenced
in load spikes that are accompanied by improved locality
metrics. We have VAR, a transient store for non-persistent
performance data. It has three times as many writes as
reads and 70% of its keys occur only once. But its 94%
hit rate provides noticeable improvements to the user ex-
perience. We have USR, which is more like a RAM-based
store for immutable two-byte values than a cache. It may
not be the best fit for Memcached, but its overall data size
is small enough that even a few Memcached servers can de-
liver a hit rate of 98.2%. And finally, we have SYS, another
RAM-based storage that exhibits unique behavior, because
its clients already cache its data. They only access SYS when
new data or new clients show up, resulting in a low request
rate and a nearly bimodal distribution of temporal locality:
either a key is accessed many times in a short period, or
virtually not at all.

This study has already answered pertinent questions to
improve Facebook’s Memcached usage. For example, Fig. 7
shows the relatively marginal benefit of significantly increas-
ing the cache size for the ETC pool. As another example,
the analysis in Sec. 6 demonstrated both the importance of
increasing Memcached’s hit rate, especially on larger data,
as well as the upper bound on the potential increase.

The data presented here can also be used as a basis for new
studies on key-value stores. We have also provided a simple
analytical model of ETC’s performance metrics to enable
synthetic generation of more representative workloads. The
treatment of workload modeling and synthetic load genera-
tion in this paper only scratches the surface of possibility,
and deserves its own focus in a following publication. We
plan to focus on this area and model the remaining work-
load parameters for ETC (such as key reuse), and other
workloads as well. With these models, we would like to cre-
ate representative synthetic load generators, and share those
with the community.

We would also like to see improvements in the memory
allocation model so that more room is saved for items in
high demand. Areas of investigation include an adaptive
slab allocation, using no slabs at all, or using prediction of
item locality based on the analysis in this study.

Finally, we are looking into replacing Memcached’s re-
placement policy. LRU is not optimal for all workloads, and
can be quite slow. We have already started prototyping al-
ternative replacement schemes, and the initial results are
encouraging.

Acknowledgements
We would like to thank Marc Kwiatkowski for spearheading
this project and Mohan Srinivasan for helping with the ker-
nel module. We are also grateful for the valuable feedback
provided by the following: Goranka Bjedov, Rajiv Krishna-
murthy, Rajesh Nishtala, Jay Parikh, and Balaji Prabhakar.

9. REFERENCES

[1] http://voldemort-project.com.
[2] Ahmad, I. Easy and efficient disk I/O workload

characterization in VMware ESX server. In
Proceedings of IEEE International Symposium on
Workload Characterization (Sept. 2007).

[3] Anand, A., Muthukrishnan, C., Kappes, S.,
Akella, A., and Nath, S. Cheap and large CAMs
for high performance data-intensive networked
systems. In Proceedings of the 7th USENIX conference
on Networked Systems Design and Implementation
(Apr. 2010).

[4] Andersen, D. G., Franklin, J., Kaminsky, M.,
Phanishayee, A., Tan, L., and Vasudevan, V.
FAWN: a fast array of wimpy nodes. In Proceedings of
the 22nd ACM SIGOPS Symposium on Operating
Systems Principles (SOSP) (Big Sky, Montana, 2009),
ACM, pp. 1–14.

[5] Arlitt, M., Friedrich, R., and Jin, T. Workload
characterization of a web proxy in a cable modem
environment. ACM SIGMETRICS - Performance
Evaluation Review 27 (1999), 25–36.

[6] Arlitt, M. F., and Williamson, C. L. Internet
web servers: Workload characterization and
performance implications. IEEE/ACM Transactions
on Networking 5 (October 1997), 631–645.

[7] Barford, P., Bestavros, A., Bradley, A., and
Crovella, M. Changes in web client access patterns.
In World Wide Web Journal, Special Issue on
Characterization and Performance Evaluation (1999).

[8] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and
Vajgel, P. Finding a needle in haystack: Facebook’s
photo storage. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and
Implementation (Oct. 2010).

[9] Berezecki, M., Frachtenberg, E., Paleczny, M.,
and Steele, K. Many-core key-value store. In
Proceedings of the Second International Green
Computing Conference (Orlando, FL, Aug. 2011).

[10] Breslau, L., Cao, P., Fan, L., Phillips, G., and
Shenker, S. Web caching and zipf-like distributions:
Evidence and implications. In Proceedings of the 18th
Annual IEEE International Conference on Computer
Communications (1999).

[11] Carns, P., Latham, R., Ross, R., Kamil Iskra,
S. L., and Riley, K. 24/7 characterization of
petascale I/O workloads. In Proceedings of the 4th
Workshop on Interfaces and Architectures for
Scientific Data Storage (Nov. 2009).

[12] Cunha, C. R., Bestavros, A., and Crovella,
M. E. Characteristics of WWW client-based traces. In
Technical Report TR-95-010, Boston University
Department of Computer Science, (July 1995).

[13] Debnath, B. K., Sengupta, S., and Li, J.
Flashstore: High throughput persistent key-value
store. Proceedings of 36th International Conference on
Very Large Data Bases (VLDB) 3, 2 (2010).

[14] Debnath, B. K., Sengupta, S., and Li, J.
SkimpyStash: RAM space skimpy key-value store on
flash-based storage. In Proceedings of the Annual
ACM SIGMOD Conference (June 2010), pp. 25–36.

[15] DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Pilchin, A., Sivasubramanian,
S., Vosshall, P., and Vogels, W. Dynamo:
Amazon’s highly available key-value store. In
Proceedings of the 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP) (Stevenson,
WA, 2007), pp. 205–220.

[16] Duska, B. M., Marwood, D., and Feeley, M. J.
The measured access characteristics of world-wide web
client proxy caches. In Proceedings of USENIX

Symposium of Internet Technologies and Systems
(Dec. 1997).

[17] Feitelson, D. G. Workload modeling for
performance evaluation. In Performance Evaluation of
Complex Systems: Techniques and Tools, M. C.
Calzarossa and S. Tucci, Eds., vol. 2459 of Lecture
Notes in Computer Science. Springer-Verlag, Sept.
2002, pp. 114–141. www.cs.huji.ac.il/~feit/
papers/WorkloadModel02chap.ps.gz.

[18] Fitzpatrick, B. Distributed caching with
memcached. Linux Journal, 124 (Aug. 2004), 72–78.
www.linuxjournal.com/article/7451?page=0,0.

[19] Jiang, S., and Zhang, X. LIRS: an efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. In Proceedings of
the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems
(2002), SIGMETRICS’02, ACM, pp. 31–42.

[20] Kavalanekar, S., Worthington, B., Zhang, Q.,
and Sharda, V. Characterization of storage workload
traces from production windows servers. In
Proceedings of IEEE International Symposium on
Workload Characterization (Sept. 2008).

[21] Keeton, K., Alistair Veitch, D. O., and Wilkes,
J. I/O characterization of commercial workloads. In
Proceedings of the 3rd Workshop on Computer
Architecture Evaluation using Commercial Workloads
(Jan. 2000).

[22] Kim, Y., Gunasekaran, R., Shipman, G. M.,
Dillow, D. A., Zhang, Z., and Settlemyer,
B. W. Workload characterization of a leadership class
storage cluster. In Proceedings of Petascale Data
Storage Workshop (Nov. 2010).

[23] Lim, H., Fan, B., Andersen, D. G., and
Kaminsky, M. Silt: A memory-eficient,
high-performance key-value store. In Proceedings of
the 23rd ACM Symposium on Operating Systems
Principles (Oct. 2011).

[24] Lublin, U., and Feitelson, D. G. The workload on
parallel supercomputers: Modeling the characteristics
of rigid jobs. Journal of Parallel and Distributed
Computing 63, 11 (Nov. 2003), 1105–1122.
www.cs.huji.ac.il/~feit/papers/Rigid01TR.ps.gz.

[25] Manley, S., and Seltzer, M. Web facts and
fantasy. In Proceedings of USENIX Symposium on
Internet Technologies and Systems (Dec. 1997).

[26] Petrovic, J. Using Memcached for data distribution
in industrial environment. In Proceedings of the Third
International Conference on Systems (Washington,
DC, 2008), IEEE Computer Society, pp. 368–372.

[27] Reddi, V. J., Lee, B. C., Chilimbi, T., and Vaid,
K. Web search using mobile cores: Quantifying and
mitigating the price of efficiency. In Proceedings of the
37th International Symposium on Computer
Architecture (ISCA) (June 2010), ACM.
portal.acm.org/citation.cfm?id=1815961.1816002.

[28] Roselli, D., Lorch, J. R., and Anderson, T. E. A
comparison of file system workloads. In Proceedings of
the 2000 USENIX Annual Technical Conference (June
2000).

[29] Vasudevan, V. R. Energy-Efficient Data-intensive
Computing with a Fast Array of Wimpy Nodes. PhD
thesis, Carnegie Mellon University, Oct. 2011.

[30] Wang, F., Xin, Q., Hong, B., Miller, E. L.,
Long, D. D. E., Brandt, S. A., and McLarty,
T. T. File system workload analysis for large scientific
computing applications. In Proceedings of 21st IEEE /
12th NASA Goddard Conference on Mass Storage
Systems and Technologies (Apr. 2004).

[31] Zhao, H. HipHop for PHP: Move fast.
https://developers.facebook.com/blog/post/358/,
Feb. 2010.

http://voldemort-project.com
www.cs.huji.ac.il/~feit/papers/WorkloadModel02chap.ps.gz
www.cs.huji.ac.il/~feit/papers/WorkloadModel02chap.ps.gz
www.linuxjournal.com/article/7451?page=0,0
www.cs.huji.ac.il/~feit/papers/Rigid01TR.ps.gz
portal.acm.org/citation.cfm?id=1815961.1816002
https://developers.facebook.com/blog/post/358/

	Introduction
	Memcached Description
	Architecture
	Deployment
	Tracing Methodology

	Workload Characteristics
	Request Composition
	Request Sizes
	Temporal Patterns

	Cache Behavior
	Hit Rates over Time
	Locality Metrics
	Repeating Keys
	Locality over Time
	Temporal Locality: Reuse Period

	Case Study: ETC Hit Rates

	Statistical Modeling
	Discussion
	Related Work
	Conclusion and Future Work
	References

