
Connecting Mobile Things to Global Sensor Network
Middleware using System-generated Wrappers

Charith Perera*+ Arkady Zaslavsky+ Peter Christen* Ali Salehi+

Dimitrios Georgakopoulos+

*Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

+CSIRO ICT Center, Canberra, ACT, 2601, Australia

ABSTRACT
Internet of Things (IoT) will create a cyberphysical world
where all the things around us are connected to the Inter-
net, sense and produce “big data” that has to be stored,
processed and communicated with minimum human inter-
vention. With the ever increasing emergence of new sen-
sors, interfaces and mobile devices, the grand challenge is
to keep up with this race in developing software drivers and
wrappers for IoT things. In this paper, we examine the
approaches that automate the process of developing mid-
dleware drivers/wrappers for the IoT things. We propose
ASCM4GSN architecture to address this challenge efficiently
and effectively. We demonstrate the proposed approach us-
ing Global Sensor Network (GSN) middleware which exem-
plifies a cluster of data streaming engines. The ASCM4GSN
architecture significantly speeds up the wrapper develop-
ment and sensor configuration process as demonstrated for
Android mobile phone based sensors as well as for Sun SPOT
sensors.

Keywords
Internet of Things, Sensor Networks, Global Sensor Network
Middleware, Mobile Sensors

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Sensor networks; C.2.4 [Computer-
Communication Networks]: Distributed Systems; D.2.11
[Software Engineering]: Software Architectures; H.3.4
[Information Storage and Retrieval]: Systems and Soft-
ware—Current awareness systems

1. INTRODUCTION
The term Internet of Things (IoT) was firstly coined by

Kevin Ashton [3] in a presentation in 1998. Further expand-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE ’12, May 20, 2012 Scottsdale, Arizona, USA
Copyright c©2012 ACM 978-1-4503-1442-8/12/05 ...$10.00.

ing this idea, the European Union has defined the above vi-
sion as “The IoT allows people and things to be connected
Anytime, Anyplace, with Anything and Anyone, ideally us-
ing Any network and Any service [12]”. It is expected that
50 to 100 billion devices will be connected to the Internet
by 2020. According to the BCC Research [4], global market
for sensors was around $56.3 billion in 2010. In 2011, it was
around $62.8 billion. Global market for sensors is expected
to increase up to $91.5 billion by 2016, at a compound an-
nual growth rate of 7.8%. The connection and configuration
of these sensor devices are not feasible to be done manually.
Automation is essential to achieve the vision of IoT. This is
the challenge we have addressed.

There is an increasing trend of developing middleware so-
lutions in order to connect sensors and actuators to the In-
ternet. These middleware solutions support fast and simple
deployment of sensor networks. GSN [1], Sgroi et al. [24],
Hourglass [25], HiFi [9], IrisNet [10], and EdgeServers [22]
are some of the major middleware solutions. These systems
share a common objective with minor differences in features
and functionality. The GSN solution provides advanced and
sophisticated functionality. Therefore, we decided to use
GSN as the sensor network middleware to exemplify our
proposed solution.

One of the major drawback in these existing middleware
solutions is connectivity and configurability. Sensors come
with APIs that provide software interfaces to retrieve sensor
data to the middleware solutions or applications. Different
middleware solutions use different mechanisms to retrieve
data from sensors. The solutions are referred using different
terms such as wrappers, gateways, handlers, proxies, media-
tors, etc. For example, GSN has a concept called Wrapper
[1]. Each sensor should have a supported wrapper to be at-
tached to the GSN server, in order to communicate with the
sensor hardware. These wrappers need to be developed man-
ually. This is an overwhelming task. There are many sensor
devices and smart objects [16] that come to the market reg-
ularly. Therefore, developing wrappers or similar solutions
manually is not a scalable and feasible approach. Thus, we
investigate the methods that can significantly automate this
process.

The rest of the paper is organised as follows. Section 2
presents an overview on sensor networks. Section 3 describes
Global Sensor Network (GSN) middleware in brief. GSN
wrapper is briefly discussed in Section 4. The life cycle of
the wrapper is presented in Section 5. Section 6 explains the
problem that we have addressed in detail. Our proposed so-

ar
X

iv
:1

30
1.

10
85

v1
 [

cs
.S

E
]

 7
 J

an
 2

01
3

lution is presented in detail in Section 7. The Sensor Device
Definition (SDD) files are explained in Section 8. Section 9
presents the experiment of connecting Android mobile de-
vices to GSN. Finally, Section 10 presents the related work
and is followed by a conclusion.

2. SENSOR NETWORKS
Sensor networks are the major enabler of the IoT. A sen-

sor network [2] comprises one or more sensor nodes which
communicate between each other using wired and wireless
means. Each sensor node has the capability to sense, com-
municate and process data. In sensor networks, sensors can
be homogeneous or heterogeneous. These sensors are de-
ployed in densely manner around the phenomenon which we
want to sense [2]. These sensor nodes are typically low-cost
and small in size that enable large deployments.

Today, increasing number of mobile sensors becoming avail-
able in the market as well as in sensor network deployments.
Mobile sensors are capable of sensing while moving from one
location to another. They add more efficiency and accuracy
to the sensor networks, because a single mobile sensor can
sense a larger area than a static sensor. Sensors built-in to
the mobile phones can behave as mobile sensors and make a
significant contribution in community sensing. For an exper-
iment, we connected a mobile phone to the GSN to collect
data via built-in sensors using manual wrapper development
approach. We were able to identify the difficulties and chal-
lenges related to manual wrapper development approach as
presented in Section 9. We proposed our ASCM4GSN ap-
proach to mitigate these difficulties.

Before IoT, sensor networks have been used in domains
such as health, military and home [2]. Today, sensor net-
works and IoT share substantial amount of similarities. How-
ever, most of the sensor network researches have been fo-
cused on low level design and deployment issues. For exam-
ple, fault tolerance, scalability, production cost, hardware
constraints, sensor network topology, environment, trans-
mission media, unpredictability, heterogeneity, energy effi-
cient counting, localisation algorithms and power consump-
tion are some of the leading research areas in the sensor net-
works [2, 5, 14, 15]. High level research areas such as data
fusion and processing, have gained significant attention only
in recent years.

Sensor network deployment has been considered as a dif-
ficult task in early days due to the heterogeneity of sensors.
Developers and engineers had to deal with low level pro-
gramming tasks in order to connect these sensor nodes to-
gether and get the sensor data into applications. A number
of frameworks and middleware solutions have been devel-
oped in order to make this process easier. Global Sensor
Network (GSN) [23] is such a middleware solution that en-
ables zero-configuration deployment. It is used widely in
over ten EU/Swiss funded research projects [11]. Figure 1
summarises our discussion and shows how the components
we discussed above fit in real world. The next section intro-
duces the Global Sensor Network (GSN) middleware.

3. GLOBAL SENSOR NETWORK
The Global Sensor Network (GSN) [1, 23] is a platform

aimed at providing flexible middleware to address the chal-
lenges of sensor data acquisition, integration and distributed
query processing. It is a generic data stream processing en-

gine. GSN has gone beyond the traditional sensor network
research efforts such as routing, data aggregation, and en-
ergy optimisation. The design of GSN is based on four ba-
sic principles: simplicity, adaptivity, scalability, and light-
weight implementation. GSN simplifies the process of con-
necting heterogeneous sensor devices to applications. Specif-
ically, GSN provides the capability to integrate, discover,
combine, query, and filter sensor data through a declarative
XML-based language and enables zero-programming deploy-
ment and management. The above reasons lead us to choose
GSN as our sensor network middleware over other alterna-
tive solutions.

The GSN adopts container based architecture. A detailed
explanation is provided in [1]. Virtual Sensor is the key
element in the GSN. A virtual sensor can be any kind of
data producer, for example, a real sensor, a wireless camera,
a desktop computer, a mobile phone, or any combination of
virtual sensors. Typically, a virtual sensor can have multiple
input data streams but have only one output data stream.

A Wrapper is a piece of code that does the data acqui-
sition from a specific type of sensor device. The GSN is
capable of retrieving data from various data sources. Wrap-
pers transform the raw data into the GSN standard data
model that can be queried and manipulated later. All the
wrapper classes need to extend the AbstractWrapper class.
Typically, third party libraries are initialised in the wrapper
constructor. Each sensor needs to have a specific wrapper
that can be used to retrieve raw sensor data. In order to
connect a Mica2 [7] sensor, for example, the GSN should
have a corresponding wrapper that can talk to Mica2 sen-
sor and retrieve data from it. Currently, the GSN provides
wrappers for all TinyOS [27] based sensors, RFID sensors,
web cams, actuators, etc. Likewise, in order to connect an
Android phone’s built-in sensors to the GSN, it has to have
a wrapper that can retrieve raw sensor data from Android
phones. We discuss GSN wrappers in general and wrapper’s
life cycle in details in the next sections.

4. GSN WRAPPER
In this section, we discuss GSN wrappers. As we explained

earlier, each and every sensor that needs to be connected to
GSN should have a corresponding wrapper. The Figure 2
depicts a basic code structure for a GSN wrapper.

public class EmptyWrapper extends AbstractWrapper {
 public boolean initialize () {
 }
 public void run () {
 while (isActive()) {
 }
 }
 public DataField[] getOutputFormat () { …. }
 public String getWrapperName() {…. }
 public void finalize () {….}
}

1

2

3
4

5

Figure 2: GSN Wrapper

All the wrappers need to extend the Java class
gsn.wrapper.AbstractWrapper. Therefore, all the wrappers
are subclasses of AbstractWrapper. There are four methods
that need to be implemented by the subclasses. Those meth-
ods are numbered 1-4 in the Figure 2. The methods are 1.
boolean initialise(), 2. void finalise(), 3. String getWrapper-
Name(), and 4. DataField[] getOutputFormat().

Internet

Cloud (Internet)

Computational
Rich Device

Static Sink
Node

Computational
Rich Device

Static Sink
Node

Sensor Networks (SN
1
)

Sensor Networks (SN
2
)

Mobile Sink
Node

Mobile Sink
Node

GSN Server GSN Server

Serial
Connector

Serial
Connector

Figure 1: Sensor Networks Communicating Over Internet

A new thread is created for each wrapper in GSN. After
creating the wrapper object, initialise() method is called as
shown as (1) in Figure 2. All the communication using third
party libraries should happen within this method. For ex-
ample, a camera wrapper may talk to a third party API in
order to talk to the camera and retrieve the camera images.
In an AndroidWrapper, initialise() method creates a socket
and waits until the client mobile phone sends the data pack-
ets.

The method finalise() is called at the end of the wrapper’s
life cycle. This method can be used to close all the connec-
tions that established with the outer world by the wrapper.
Concretely, all the resources acquired during the initialise()
method should be released here. For example, in the An-
droid wrapper, all the client communication resources such
as sockets and ports are released in this method.

The method getWrapperName() returns the name of the
wrapper. The method getOutputFormat() returns a DataField
object that provides a description of the data structure pro-
duced by the wrapper. The run() method is responsible for
retrieving sensor data from sensors and transform them into
GSN data model. All the sensor specific API calls need to be
done inside this method. This is the most complex section
of the class. The content of this method is hard to generate
automatically due to third party library dependencies. The
auto generation of GSN wrappers is discussed in Section 7.

5. GSN WRAPPER’S LIFE CYCLE
The life cycle of a wrapper begins with the initiation of

Virtual Sensor Definition (VSD) [11] file. When a user de-
fines a VSD file, it triggers the virtual sensor creation pro-
cess. This process triggers the specified wrapper to be gen-
erated.

<virtual-sensor name="AndroidHandler80" priority="10">

 <streams>
 <stream name="input1">
 <source alias="source1" sampling-rate="1" storage-size="1">
 <address wrapper="SunSPOT">
 </address>

 </source>

 </stream>
 </streams>
</virtual-sensor>

Figure 3: Virtual Sensor

The wrapper that corresponds to each stream source (i.e.
sensor) is defined under the address element in the VSD
file. For example, the VSD file segment depicted in Figure
3 triggers the SunSPOT [19] wrapper to be instantiated.
Virtual sensor creation process sends a Wrapper Connection

Request (WCR) to the wrapper repository [11] in the GSN
server. A Wrapper Connection Request is an object which
contains a wrapper name and its initialisation parameters
as defined in the Virtual Sensor. Sequentially, the following
steps are followed:

Look for wrapper instance
matching request

Wrapper instantiation
and initialization Failure

Success

No
instance

found

Instance
successfully
created

Register
stream-source

Query at wrapper
instance

Start
Instance
Found

Figure 4: Wrapper Life Cycle

First, wrapper repository looks for a wrapper instance
that matches to the WCR. If found, then the stream-source
query will be registered with the wrapper and returns true.

If there isn’t any wrapper object that matches WCR in the
repository, the wrapper repository generates a new appropri-
ate wrapper object. Then, the newly created object would
be added to the wrapper repository. Finally, the stream-
source query will be registered with the wrapper and returns
true.

If there isn’t any wrapper object that matches WCR in
the repository and wrapper repository does not have an ap-
propriate wrapper class to be instantiate, then returns false.
The virtual sensor loader fails to load a virtual sensor if at
least one of the stream sources required by an input stream
fails. For example, if user defines a virtual sensor as depicted
in the Figure 3 and if the GSN wrapper repository does not
have a SunSPOT wrapper, then the virtual sensor would
fail. Figure 4 summaries the life cycle of the GSN wrappers.
We proposed to extend this process in our solution. The
details are explained in Section 7.

6. THE CHALLENGE OF IMPROVING EF-
FICIENCY IN CONNECTING THINGS

We introduced the problem in brief in earlier sections.
Let’s discuss it in details. Almost all the sensors come with
third-party libraries or API released by the sensor manu-
facturer. If we want to retrieve sensor readings, we need
to access the sensor hardware through these provided third
party libraries. This stays true when we want to develop
sensor networks using sensor network middleware solutions.
For example, sensor network middleware solution such as

GSN provides features such as window based continuous sen-
sor data querying. In order to accomplish this task, GSN
should retrieve sensor data from the sensor devices and or-
ganise them according to GSN specific data model. Most
of the sensor network middleware solutions are good at pro-
viding high-level features such as querying which deal with
internal data structure. However, the biggest problem is get-
ting the sensor data from the sensor hardware devices into
middleware solutions. This challenge has been addressed by
different sensor network middleware solutions using different
mechanisms. For example, GSN uses Wrappers to accom-
plish this task. The Figure 5 shows the current GSN Data
Acquisition Architecture.

Mobile Sink
Node

Serial
Connector

Sink Node
Base computer Running GSN

Different Wrappers

Figure 5: Current GSN Data Acquisition Architec-
ture

However, we identify two drawbacks in current GSN data
acquisition architecture. First problem is that these wrap-
pers need to be developed manually by the programmers.
For example, if we want to connect a SunSPOT sensor into
the GSN, developers have to develop a wrapper that is spe-
cific for SunSPOT. This wrapper will use the libraries pro-
vided by the SunSPOT manufacturer to talk to the SunSPOT
sensor and retrieve sensor data. When the sensor devices get
updated, GSN developers have to update these wrappers as
well. That means developers have to keep on updating these
wrappers. This process decreases the scalability and it also
requires more effort and cost.

The second problem is lack of code sharing. For example,
one project may develop a wrapper for SunSPOT sensors.
However, there is no mechanism to distribute this wrapper
among other projects. The same wrapper may be developed
by different project groups. It reduces the effectiveness and
efficiency due to repetition. We have addressed these two
issues, first by automating wrapper generation and second
by developing a cloud repository. We discuss the details of
our proposed solution in Section 7.

Let us discuss some of the possible approaches that we can
follow to solve the problem presented above. By evaluating
several sensor devices and IoT middleware systems, it was
understood that the method (steps) of connecting a device
to an IoT middleware system is significantly similar. The
most commons steps can be explained as bellow.

• Acquire Manufacturers’ APIs: As we mentioned
earlier, each sensor device comes with an API. In some
instances, APIs are common across all the sensors de-
vices produce by the manufacturer. In other cases,
APIs are strictly related to specific type of sensors.
However, middleware system should use these APIs to
communicate with the sensor devices. Therefore, the
first step is to identify the path to the APIs.

• Acquire System Configuration Details: Most of
the IoT middleware solutions need system configura-
tion details such as IP addresses, ports and protocols
to communicate with the sensor devices. Sometimes,
it is possible to identify these details automatically
and otherwise users may need to enter them manu-
ally. Therefore, identifying the machine specific and
platform specific information is also a critical step.

• Initiate the Data Structure: Every middleware main-
tains its own data structure. Once the sensor devices
are connected to the middleware, the data sensed by
the sensors need to be stored in these data structures.
Therefore, identify the required data structure and al-
locate them is a major steps.

• Initiate the Communication between IoT Mid-
dleware and Sensor Device: The communication
between a sensor device and a IoT middleware solu-
tion usually starts by initiating the communication.
The exact process could be varied among different sen-
sor platforms. This initiation does not exchange any
sensor data, but it opens and establishes the necessary
ports and paths to proceed. This step also allocates
the required resources and makes them ready for the
data communication. This step further ensures that
both sensor and middleware is ready to communicate
between each other.

• Data Communication : This is the most important
step. Based on the communication path established
in the previous step, the sensor and the middleware
will communicate either in push or pull method. As a
result, middleware will receive sensor data periodically.
The IoT middleware can store the sensor data on the
data structure which prepared in an earlier step.

• Close the Communication and Release the Re-
sources: All the connections established between the
sensor device and the middleware system needs to be
closed. Furthermore, the relate resources need to be
released, so they are available for used by other oper-
ations.

We encapsulated these steps into five segments in the Sen-
sor Device Definition (SDD) files as discussed in Section
8. After identifying these commonalities, we investigate the
methods of simplifying the process of connecting the sensors
to IoT middleware systems.

Every IoT middleware has its own way of communicating
with sensor devices. Mostly, there are dedicated handlers
to accomplish this task. For example, in GSN, the han-
dlers are called wrappers as discussed in Section 4. In other
approaches, these handlers are called gateways, proxies, me-
diators, etc. Furthermore, different technologies can also be
employed to develop these handlers such as web services,
RESTful APIs, native code, etc. From the previous work
conducted by different researchers, it has been identified that
native code gives better performance in term of scalability
and efficiency compared to other technologies such as web
services [21]. Therefore, we decided to use native code to
develop the handler, in our case GSN’s wrappers.

The process of automated wrapper generation is depicted
in Figure 6. Once we define a SDD file for a specific sensor
as explained in Section 8, it can be used to develop wrappers
for different IoT middleware systems. As we mentioned ear-
lier, every IoT middleware has its own component similar to

wrappers. We can combine the wrapper template of an IoT
middleware and a SDD file to generate a Middleware specific
wrapper. Wrapper template explains the basic structure of
a wrapper such as functions, methods, data structures, etc.

Wrapper Template
for

IoT Middleware A

Wrapper Template
for

IoT Middleware B

Wrapper Template
for

IoT Middleware A

Wrapper For
Sensor Device X1

Wrapper For
Sensor Device X2

Wrapper For
Sensor Device X3

Wrapper For
Sensor Device X1

Wrapper For
Sensor Device X2

Wrapper For
Sensor Device X3

Wrapper For
Sensor Device X1

Wrapper For
Sensor Device X2

Wrapper For
Sensor Device X3

SDD File

Figure 6: The Wrapper Generation Process

7. ASCM4GSN ARCHITECTURE
The two main problems in the current approach are ad-

dressed as follows. We propose Automated Sensor Config-
uration Model For Global Sensor Network (ASCM4GSN)
architecture to address these issues. We introduce a Au-
tomated Wrapper Generation Layer. As the name implies,
this layer automate the process of wrapper generation. The
process can be explained as follows.

As we discussed in Section 5, the wrapper generation al-
ways begins with a Virtual Sensor Definition (VSD). When
a VSD mentions a name of a wrapper that GSN currently
does not have in the wrapper repository, first, GSN searches
the Sensor Device Definition Local Repository (SDDLR) to
look for a matching Sensor Device Definition (SDD) file. We
discuss SDD file in detail in the next Section. For now, SDD
file can be explained as a specification file that contains all
the information that is required to generate a wrapper class.

If Sensor Device Definition Local Repository (SDDLR)
does not have a matching SDD file, GSN will automatically
connect to the Sensor Device Definition Cloud Repository
(SDDCR) and search for a matching wrapper definition file.
If there is a matching SDD file, the GSN will fetch the
SDD file and feed it to the Automated Wrapper Genera-
tion Layer. This layer generates the wrapper class, compiles
it, and pushes it to the wrapper repository. After that, the
wrapper life cycle proceeds as explained in Section 5. Figure
7 shows our proposed architecture.

If there isn’t any SDD file in the Sensor Device Defini-
tion Cloud Repository (SDDCR) for a specific sensor, then
the developers may need to develop a SDD file based on
the SDD specification. However, the developers can upload
their SDD file to the cloud so other users do not need to
develop it again. This approach saves time and cost. In the
future, there will be increasing number of sensors available
in the market. Our community based cloud approach would
be ideal to deal with wider adaptation of IoT and sensor
network deployments.

 Automated
Wrapper

Generation
Layer

Serial
Connector

Sink Node

Base computer Running GSN

Sensor Device Definition
Cloud Repository (SDDCL)

Cloud

 Sensor Device
 Definition Local

Repository (SDDLR)

1

2

Sensor Device Definition
File (SDD)

3

Figure 7: Proposed ASCM4GSN Architecture

There are many reasons to base our approach on SDD files
rather than wrapper classes. We could also use direct wrap-
per classes instead of using SDD files. The reason for adding
extra step to our approach can be explained as follows.

If we use a wrapper class, then it would be a platform
specific such as Java, C#, etc. We keep SDD files platform
independent or cross platform. Some sensor devices may
need to be configured using machine specific details such as
port numbers, IP address, etc. Editing a SDD file is a much
cleaner and easier way compared to editing a class file. In
future, software tools can be developed to make the editing
significantly easier. In that case, designing tools to edit plat-
form independent file is much easier than editing different
class files written in different programming languages.

At a later stage it may be required to combine SDD files
with semantic technologies in order to make the automation
more sophisticate. As we mentioned earlier, wrapper class
also need to use third-party libraries which are developed by
sensor device manufacturers (e.g. camera). If we based our
approach on wrapper classes, then we may need to distribute
the libraries with the class file as well. This could create
licensing and legal issues. In SDD files, we only need provide
the link to the libraries so IoT middleware can download the
libraries from the sensor device manufacturers.

The second problem we identified has been addressed by
connecting GSN to the cloud. We developed a Sensor De-
vice Definition Cloud Repository (SDDCR), which acts as a
global repository for SDD files, so software developers and
hardware manufacturers can upload SDD files to the cloud.
This means if someone develops a SDD file for SunSPOT
once, any GSN instance deployed around the world would
be able connect SunSPOT sensors automatically using that
SDD file.

8. ASCM4GSN SENSOR DEVICE DEFINI-
TION

Sensor Device Definition (SDD) is an XML file which com-
prises number of elements. Describing each and every sec-
tions and elements of SDD is beyond the scope of this paper.
Here, we describe how SDD works using a real world exam-
ple. The left side of Figure 8 shows the SDD file which cor-

<libraries-collection>
 <library package-name="com.sun.spot.io.j2me.radiogram.*"
 source="http://gsncloud.com/libraries/spotlib_common.jar"
 platform="java" />
 <library package-name="om.sun.spot.peripheral.ota.OTACommandServer"
 source="http://gsncloud.com/libraries/spotlib_device.jar"
 platform="java" />
</libraries-collection>

<data-structure>
 <data-field field-name="light" type="int"
 description="Presents the light sensor."/>
 <data-field field-name="temperature" type="int"
 description="Presents the temperature sensor."/>
</data-structure>

<system-configuration class="System" method="setProperty" >
 <property name="SERIAL_PORT">/dev/ttyACM1</property>
<system-configuration>

<connection>
 <prerequisites builder-class="OTACommandServer" method="start" >
 <parameters>null</parameters>
 </prerequisites>
 <connection-initiation builder-class="Connector" method="open">
 <parameters name="scheme">radiogram</parameters>
 <parameters name="HOST_PORT">65</parameters>
 </connection-initiation>
 <data-interface class="RadiogramConnection" method="newDatagram">
 <parameters name="size" class="RadiogramConnection"
 method="getMaximumLength">10</parameters>
 </data-interface>
</connection>

<data-transformation>
 <data-retrieval class="RadiogramConnection" method="receive">
 <parameters name="packet">Datagram</parameters>
 </data-retrieval>
 <data-field field-name="light" class="Datagram" method="readInt"/>
 <data-field field-name="temperature" class="Datagram" method="readInt"/>
</data-transformation>

import com.sun.spot.io.j2me.radiogram.*;
import com.sun.spot.peripheral.ota.OTACommandServer;
import javax.microedition.io.*;

public class SunSpotsWrapper extends AbstractWrapper {

private DataField[] collection = new DataField[] {
 new DataField("light", "int", "Presents the light sensor."),
 new DataField("temperature", "int", "Presents the temperature sensor."),
 new DataField("packet_type", "int", "packet type")};

public boolean initialize() {

 System.setProperty("SERIAL_PORT", "/dev/ttyACM1");

 OTACommandServer.start();
 rCon = (RadiogramConnection) Connector.open("radiogram://:"+HOST_PORT);
 dg = rCon.newDatagram(rCon.getMaximumLength());

}

public void run() {

 rCon.receive(dg);
 light = dg.readInt();
 temperature = dg.readInt()
}

}

Sensor Device Definition File System-generated SunSPOT Wrapper

1

2

3

4

5

Figure 8: Comparison of SDD File and System-generated Wrapper

responds to SunSPOT sensor device. The right side of the
figure shows the SunSPOT wrapper generated by the Auto-
mated Wrapper Generation Layer based on the SDD file on
the left. Please note that both files are used for demonstra-
tion purposes and only contain major sections and elements.

Even though we do not intend to explain each and every
element in the two files, a high level explanation can be made
as follows. In Section 6, we identified six major steps that
are common across all the sensor platforms. After analysing
the steps, we encapsulate them into five segments in the
SDD file. The segments are marked 1 to 5 in Figure 8.
The segments are libraries collection, data structure, system
configuration, connection, and data transformation.

The segment (1) contains all the libraries that need to be
downloaded for GSN in order to compile the wrapper. It
consists of package names and the sources where the files
can be downloaded. This section can also be extended to
add installation files. For example, if a specific sensor needs
to install drivers on the GSN server, this section can provide
the source link to download and install the driver automat-
ically. It also consists of platform information. As we are
intended to make these SDD files platform independent, the
parameters can specify which libraries are related to which
platform (e.g. Java, .Net, C, etc.).

The next segment (2) includes the information about the
data structures. It can be used to provide all the informa-
tion required by the GSN in order to create GSN data model.
The sensor data will be stored in the data structure created
in this segment. The segment (3) is dedicated to store sys-
tem level configurations. There are configuration settings
that need to be configured. The properties and values need
be changed depending on the operating system. For exam-
ple, serial ports are named as /dev/ttyACM in Linux and

as COM in Windows.
The connection segment (4) comprises the information re-

lated four steps: initiate connection with the sensor devices,
initiate data retrieval mechanisms, retrieve sensor data, and
close connection. This segment would be a lengthy section.
According to our preliminary investigation, most sensors do
have these four steps. Final segment (5) is for the data trans-
formation. The retrieved data packets need to be examined
and extract the values from them. These values need to be
stored in the data structure defined in the segment (2).

If we consider the length and the complexity of the two
files, it is true that SDD file is more lengthy and complex.
However, we can easily develop a graphical user interface to
produce SDD file very easily which will reduce and hide the
complexity in major way.

9. ANDROID TO GSN CONNECTIVITY EX-
AMPLE

We evaluated the process of connecting sensors to an IoT
middleware called GSN. AndroidWrapper was developed in
order to retrieve sensor data from Android mobile phones.
It was realised that each and every sensor should have a
wrapper talking to a GSN server in order to collect data.
Developing such wrappers is a time consuming and tedious
job. It could take one or more days for a developer to develop
a single wrapper for a specific sensor including the time that
would take to familiarise with the specific sensor platform.
Our ASCM4GSN approach drastically reduces the develop-
ment time as the developer does not need to familiarise with
the sensor platform in order to generate a wrapper using our
approach. Figure 9 shows the client application we devel-
oped and installed on Android mobile phones. It generates

(a) (b)

Figure 9: Sensor Data Generator Application

and sends sensor data packets to the AndroidWrapper in
GSN.

10. RELATED WORK
We recognise two initiatives related to our work; Sen-

sorML [6] and IEEE 1451 standards [26]. SensorML pro-
vides functionalities such as describing sensors and sensor
systems for inventory management and sensor discovery, de-
scribing sensor geolocation of observed values, describing
processes and observations, describing performance charac-
teristics, describing processing and analysis of the sensor ob-
servations, etc. IEEE 1451 standards are dedicated to stan-
dardise the data communication among sensors, actuators,
and related devices. In our solution, we are dealing with
sensor installation and configuration challenge where both
above initiatives do not explicitly address this challenge.

Californium (Cf) CoAP framework [17] has proposed a
thin server architecture to solve the problem of connecting
heterogeneous devices from different manufacturers with di-
verse functionalities to the Internet of things. Cf [17] puts a
thin server in front of the device to work as a proxy. Thin
server only provides a low-level API to the elementary func-
tionality of a device. The client applications or IoT mid-
dleware system can communicate with the device via the
thin server using a RESTful API. All the functionalities are
encoded as REST resources.

However in this type of approach, the communication be-
tween the thin server and the device needs be developed by
the developers. This decrease the efficiency in connecting
thing to the IoT. Furthermore, using a thin server could
also raise issues in term of energy efficiency and commu-
nication overheads, specially due to the magnitude of IoT.
This approach will perform very well, if the device manu-
facturer provides a RESTful API integrated to the device’s
software package itself. Further, this approach would be
ideal for device manufacturers to be followed as a step for-
ward in standardising the communication between devices
and applications.

Web Services Gateways [21] is an approach based on Model
Driven Architecture (MDA) and Device Profile for Web Ser-
vices (DPWS). The focus is on connecting industrial devices,
where the devices have a lifetime of often more than 40 years,
to the client applications in IoT paradigm. They have de-

veloped gateways comprises with web services that provide
interfaces to access the devices.The web service are gener-
ated automatically using predefined models.

In [21], performance evaluation results has shown that the
approach is not scalable. The papers [21, 13] admit that
the web services approach would perform less compared to
native code approach. That is why we proposed a native
code generation approach over other mechanisms. The na-
tive code approach increases the node complexity and the
web service approach limits the scalability. There is a trade
of between the two.

InterX [20] is a smart phone-based service interoperabil-
ity gateway for heterogeneous smart objects. It employs a
mediator gateway that can transform one protocol to an-
other. For example, InterX enables the communication be-
tween Bluetooth based smart object and UPnP based smart
object via a gateway in runtime.

In contrast, our approach is based on development time
mediator. We use XML as the mediator to produce the
native code that can establish the communication between
IoT middleware systems and smart devices. Runtime media-
tors give less performance due to communication overheads.
Another difference is that InterX is focused on well recog-
nised appliances such as digital camera, tv, video player,
etc. In our approach, we focused on low level sensors such
a SunSPOT, Arduio, and we also offer extensibility to facil-
itate more low level sensors.

Hydra [8] is an IoT middleware that allows developers to
incorporate heterogeneous physical devices into their appli-
cations. The interaction between devices and the middle-
ware are enabled though web services. Hydra is based on a
semantic Model Driven Architecture for easy programming.
This is similar to the Web Services Gateways [21] approach
we presented earlier. Even though the performance eval-
uation of the Hydra middleware is not available in device
connection perspective, the paper [21] has raised the similar
issues related to employing web services as the gateways for
smart devices.

uMiddle [18] is a bridging framework that enables seamless
device interaction over diverse middleware platforms. This
approach is similar to the InterX [20]. uMiddle transforms
one protocol to another in runtime. This middleware is fo-
cused on the interoperability between popular protocols such
as Bluetooth, UPnP, etc. In contrast, we are more concerned
about connecting low level sensors to IoT middleware solu-
tions. uMiddle have identified three essential requirements
of an interoperability middleware platform; transport-level
bridging, service-level bridging, and device-level bridging.
We have also considered these requirements in our approach.

11. CONCLUSION AND FUTURE WORK
In this article, we propose and discuss the ASCM4GSN

architecture and develop a specification that can be used to
automate the sensor data acquisition and configuration pro-
cess related to IoT middleware. We conducted our imple-
mentation and experiments based on a popular IoT middle-
ware platform called GSN. Sensor devices come with APIs
that need to be used in order to retrieve sensor data from
the sensor devices. For this, middleware has to be aware
of sensor devices. Typically, sensor drivers/wrappers need
to be developed manually by a programmer using the third-
party libraries. This requires more time, cost and effort. We
have demonstrated that automating the process of develop-

ing sensor drivers/wrappers will improve efficiency and pro-
ductivity. We introduced Sensor Device Description (SDD)
specification to facilitate the automation. We have proposed
an SDD sharing mechanism using a cloud repository to re-
duce the repetitive work. Currently, SDD files can be used
to generate wrappers for GSN. However, we intend to keep
SDD file as a generic sensor device definition mechanism
that would be independent from IoT middleware solutions.

Our future research work aims at efficient and effective
automation of connecting things to IoT middleware as well
as incorporating generated extended functionality.We will
combine context capturing and semantic data technologies
with procesing of sensor data inside the wrapper itself.

12. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi.

Infrastructure for data processing in large-scale
interconnected sensor networks. In Mobile Data
Management, 2007 International Conference on, pages
198–205.

[2] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam,
and E. Cayirci. A survey on sensor networks.
Communications Magazine, IEEE, 40(8):102–114,
2002.

[3] K. Ashton. That ’internet of things’ thing in the real
world, things matter more than ideas, June 2009.

[4] BCC Research. Sensors: Technologies and global
markets. Technical report, BCC Research, 2011.

[5] A. Bharathidasan and V. A. S. Ponduru. Sensor
networks: An overview. Technical report, University of
California, Davis

”
2003.

[6] M. Botts and A. Robin. Opengis sensor model
language (sensorml) implementation specification.
Technical report, Open Geospatial Consortium Inc,
2007.

[7] Crossbow Technology Inc. Crossbow-manuals getting
started guide. Technical report, Crossbow Technology,
September 2005.

[8] M. Eisenhauer, P. Rosengren, and P. Antolin. A
development platform for integrating wireless devices
and sensors into ambient intelligence systems. In
Sensor, Mesh and Ad Hoc Communications and
Networks Workshops, 2009. SECON Workshops ’09.
6th Annual IEEE Communications Society Conference
on, pages 1–3.

[9] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, and
F. Reiss. Design considerations for high fan-in systems:
The hifi approach. In Conference on Innovative Data
Systems Research, pages 290–304, 2005.

[10] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan.
Irisnet: an architecture for a worldwide sensor web.
Pervasive Computing, IEEE, 2(4):22 – 33, oct.-dec.
2003.

[11] GSN Team. Global sensors networks. Technical report,
Ecole Polytechnique Federale de Lausanne (EPFL),
2009.

[12] P. Guillemin and P. Friess. Internet of things strategic
research roadmap. Technical report, The Cluster of
European Research Projects, 2009.

[13] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and
D. Savio. Interacting with the soa-based internet of
things: Discovery, query, selection, and on-demand

provisioning of web services. Services Computing,
IEEE Transactions on, 3(3):223 –235, july-sept. 2010.

[14] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. Technical report, University of Southern
California, 2005.

[15] S. Iyengar, N. Parameshwaran, V. Phoha,
N. Balakrishnan, and C. Okoye. Fundamentals of
Sensor Network Programming: Applications and
Technology. Wiley-Blackwell, 2010.

[16] G. Kortuem, F. Kawsar, D. Fitton, and
V. Sundramoorthy. Smart objects as building blocks
for the internet of things. Internet Computing, IEEE,
14(1):44–51, 2010.

[17] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving
application logic from the firmware to the cloud:
Towards the thin server architecture for the internet of
things. In Proceedings of the 6th International
Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS 2012),
Palermo, Italy, July 2012.

[18] J. Nakazawa, H. Tokuda, W. Edwards, and
U. Ramachandran. A bridging framework for universal
interoperability in pervasive systems. In Distributed
Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on, page 3, 2006.

[19] Oracle Corporation. Sun spot world: Welcome to the
internet of things, 2012.
http://www.sunspotworld.com/ [Accessed on:
2012-04-10].

[20] H. Park, B. Kim, Y. Ko, and D. Lee. Interx: A service
interoperability gateway for heterogeneous smart
objects. In Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2011 IEEE
International Conference on, pages 233 –238, march
2011.

[21] T. Riedel, N. Fantana, A. Genaid, D. Yordanov,
H. Schmidtke, and M. Beigl. Using web service
gateways and code generation for sustainable iot
system development. In Internet of Things (IOT),
2010, pages 1 –8, 29 2010-dec. 1 2010.

[22] S. Rooney, D. Bauer, and P. Scotton. Techniques for
integrating sensors into the enterprise network.
Network and Service Management, IEEE Transactions
on, 3(1):43 –52, jan. 2006.

[23] A. Salehi. Design and implementation of an efficient
data stream processing system. PhD thesis, Ecole
Polytechnique Federale de Lausanne (EPFL), 2010.

[24] M. Sgroi, A. Wolisz, A. Sangiovanni-vincentelli, and
J. M. Rabaey. A service-based universal application
interface for ad-hoc wireless sensor networks. In in
Ambient Intrelligence. Springer, 2005.

[25] J. Shneidman, P. Pietzuch, J. Ledlie,
M. Roussopoulos, M. Seltzer, and M. Welsh.
Hourglass: An infrastructure for connecting sensor
networks and applications. Technical report, 2004.

[26] The National Institute of Standards and Technology.
Introduction to ieee p1451, 2011.
http://www.nist.gov/el/isd/ieee/1451intro.cfm
[Accessed on: 2012.03.01].

[27] TinyOS Alliance. Tinyos, July 2010.
http://www.tinyos.net/ [Accessed: 2011-12-18].

	1 Introduction
	2 Sensor Networks
	3 Global Sensor Network
	4 Gsn Wrapper
	5 Gsn Wrapper'S Life Cycle
	6 The Challenge of Improving Efficiency in Connecting Things
	7 ASCM4GSN Architecture
	8 ASCM4GSN Sensor Device Definition
	9 Android To GSN Connectivity Example
	10 Related Work
	11 Conclusion and Future Work
	12 References

