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ABSTRACT

The typical nodes used in mote-level wireless sensor net-
works (WSNs) are often brittle and severely resource-cons-
trained. In particular, nodes are often battery-powered,
thereby making energy depletion a significant risk. When
changes to the connectivity graph occur as a result of node
failure, the overall computation may collapse unless it is ca-
pable of adapting to the new WSN state. Sensor network
query processors (SNQPs) construe a WSN as a distributed,
continuous query platform where the streams of sensed val-
ues constitute the logical extents of interest. Crucially, in the
context of this paper, they must make assumptions about
the connectivity graph of the WSN at compile time that
are likely not to hold for the lifetime of the compiled query
evaluation plan (QEP) the SNQPs generate. This paper
addresses the problem of extending the lifetime of an evalu-
ating QEP in the event of node failures. The basic idea is to
derive an equivalence class over the nodes in the WSN that
are equipotent for a given QEP and then to assign each QEP
fragment instance to a set of equipotent nodes (rather than a
single one). In this respect, the scheduling of QEP fragment
instances is onto an overlay network of logical nodes, each
of which maps to many physical nodes in the connectivity
graph. We contribute a description of how this approach has
been implemented in an existing SNQP and present exper-
imental results indicating that it significantly increases the
overall lifetime of a query whilst incurring small runtime
adaptation costs.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are useful in data col-
lection, event detection or entity tracking applications. In
particular, mote-level WSNs are sufficiently inexpensive that
one can envisage deploying them to sense at fine granulari-
ties both over space and over time. With the low cost, how-
ever, come severe resource constraints in terms of energy
stock, communication range, computational and storage ca-
pabilities, etc. Our focus here is on WSNs comprising static
motes of this kind (e.g., [2]).

If one views the WSN as simply an instrument for data
collection, one might task the relevant subset of nodes to
sense the physical world and send the sensed values, us-
ing multi-hop communication paths, towards a base station
where all the processing takes place. However, sending all
data in raw form to the base station causes more bytes to
be transmitted than would be the case if the nodes along
the route to the base station were tasked with some of the
processing [11]. Since the energy cost of processing data
is one order of magnitude smaller than the energy cost of
transmitting the same data [7], it is more energy-efficient to
do as much processing as possible inside the WSN, as this
is likely to reduce the number of bytes that are transmitted
to the base station.

One approach to in-WSN processing construes the WSN
as a distributed database, and the processing task injected
into nodes for execution is the evaluation of a query evalua-
tion plan (QEP). In this approach, users specify their data
requirements in the form of declarative queries, which the
system, called a sensor network query processor (SNQP),
compiles into optimized QEPs for injection into the WSN.
Through periodic evaluation, a stream of results is returned
to the users via the base station.

Many SNQPs have been proposed in the literature, e.g.
SNEE [4], TinyDB [10], and AndulN [8]. These SNQPs often
differ in terms, among others, of how much of the required
query functionality can be injected into the WSN, how much
use they make of distributed query processing techniques
(e.g., fragment partitioning, buffering tuples for block trans-
mission, etc.), and how much compile-time knowledge of the
WSN state they require in order to produce a QEP. Thus,
AndulIN does not inject joins for in-network execution, only
QEP leaves, i.e., sensing tasks. AndulN uses a TCP/IP pro-
tocol stack and therefore has no need to know the state of
the WSN connectivity graph at compile time. In contrast,
TinyDB is capable of performing limited forms of joins in-
side the WSN and pushes the entire QEP to every partici-
pating node. TinyDB infers the current connectivity graph



from the dissemination of the QEP into the WSN. Finally,
SNEE, which we focus on in this paper, pushes very expres-
sive QEPs into the WSN whilst still partitioning the latter
into fragments that are as small as possible for each node.
However, SNEE neither uses a generic protocol stack nor
can it compile the QEP without knowledge of the current
connectivity graph.

SNEE does more in-WSN processing than the other SNQPs
mentioned above. It generates QEPs that deliver good en-
ergy efficiency [4] whilst scheduling for node execution QEP
fragment instances that use less memory (partly by not
using, and hence not loading, generic protocol stacks) [4]
than the other SNQPs mentioned above. To generate QEPs
where medium access, routing, and transport are query-
specific, the SNEE compiler takes as input (among other
metadata) the current connectivity graph. This implies a
further, and stronger, assumption, viz., that if the connec-
tivity graph changes (e.g., a node fails) during the lifetime
of QEP p, then p may not be optimal for the new topol-
ogy (and, indeed, p may even be unable to run). In other
words, maximizing QEP lifetime is dependent on resilience
to failure. A SNEE QEP often has its lifetime bounded by
the time-to-failure of participating nodes. In practice, not
only node failure is assumed to be a common occurrence, the
energy stock of a participating motes is guaranteed to dimin-
ish over time and depletion eventually causes the motes to
become non-functional.

SNEE QEPs are therefore particularly brittle: if a partic-
ipating node fails, poor performance, or even a crash, could
ensue. One aspect of poor performance is the lack of adapta-
tion to tuple loss when the corresponding extent draws from
a failed node. Such failures lead to partial results for the
query. It is, therefore, desirable that, if possible, the QEP is
adapted in response to node failure. Another possibility is
that the failed node causes the communication graph used
by the QEP to partition in such a way that, although all
sensed values are flowing out of the leaves, they cannot be
used as they fail to reach some downstream operators, i.e.,
the energy expenditure of the acquisitions would be wasted.

In this paper, we break down the process of adapting to
node failure into two stages: firstly, we compute new paths
for routing tuples around the failed nodes; and secondly, we
reschedule the QEP fragment instances that were running
on the failed node to nodes in the newly computed paths.
Adaptations aim to minimize information loss and foster
compliance with quality of service (QoS) expectations such
as maximum delivery rate and constant acquisition rate.

The purpose of adaptations, in the case of this paper, is to
maximize the lifetime of the QEP. Since lifetime is influenced
by the rate of depletion of energy stocks and since any adap-
tation will cause some such depletion (i.e., carries an energy
overhead cost), adaptations must take into account the time
taken to adapt (during which, data will cease to flow) and
the energy spent in carrying out the adaptation. Our hy-
pothesis is the benefit of adapting with a view to increasing
the QEP lifetime (and, therefore, the amount of data pro-
duced) outweighs the cost incurred in adapting. We propose
an adaptation strategy that takes advantage of (fortuitous
or planned) functional redundancy to increase resilience to
failure. In particular, at compile time, we compute an over-
lay network over the physical network, in which one logical
node in the former maps to k£ + 1 equipotent nodes in the
latter, where k is the desired resilience level. The basic idea
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is to derive an equivalence class over the nodes in the WSN
that are equipotent for a given QEP and then to assign each
QEP fragment instance to a set of equipotent nodes (rather
than a single one). In this way, for the quality of the QEP
to be compromised due to the failure of a node n running
a fragment instance f, all the k nodes that are equipotent
to n must also have failed before f fails. We have studied
the above hypothesis experimentally. The results show that
the adaptation costs incurred by the overlay strategy do not
preclude significant increases in the lifetime of a QEP.

The rest of the paper is as follows: Sec. 2 briefly describes
related work. Sec. 3 describes the SNEE SNQP and how
the time and energy costs of a QEP are modelled. Sec. 4
describes the logical overlay strategy. Sec. 5 describes how
we experimentally evaluated it. Sec. 6 draws conclusions.

2. RELATED WORK

Broadly speaking, current SNQPs are not very tolerant of
node failure. In TinyDB, the fact that routing trees [10] are
constructed during the QEP dissemination process provides
some amount of inter-query fault tolerance, as failed nodes
do not take part in disseminating the next QEP (which could
be a recompilation of the same query) and hence will be dis-
qualified from participating in its evaluation. Also, each
node in TinyDB evaluates the entire QEP (i.e., TinyDB
makes no attempt to partition the plan into fragments), and,
as a result, ignoring a failed node is a sound strategy. Thus,
whilst TinyDB is not, strictly speaking, adaptive, it is, to a
certain degree, resilient to some forms of node failure. How-
ever, tuple transmission is not globally scheduled (as it is in
SNEE), so there is no way of estimating how many tuples
might be lost as a result of failed nodes.

The SmartCIS project [9] builds upon TinyDB with a par-
ticular goal (among others) of supporting fault-tolerant rout-
ing trees via multi-path transmissions. This approach incurs
energy overheads in verifying that current paths are correct
and in searching for new correct ones.

AndulN has no specific mechanism for fault tolerance. In
contrast with both TinyDB and SNEE, which compile into
TinyOS [6], AnduIN compiles into Contiki [3]. The dif-
ference is relevant in our context because, unlike TinyOS,
Contiki provides a TCP/IP-based communication protocol
stack. Thus, AndulN benefits from the robust routing and
transport properties built into TCP/IP. The drawback is
that TCP/IP incur much greater overheads (and take up
more memory footprint) than the minimalistic, query-specific
protocols used by TinyDB and SNEE. Some of these over-
heads stem from the need to maintain up-to-date connectiv-
ity paths as well as from the need to send acknowledgement
packets. As to memory occupancy, TCP/IP implementa-
tions will take up space and will also claim more memory
for such structures as routing tables. By reducing the mem-
ory on the nodes that can be allocated to the QEP, there
is a reduction in how much processing can be shipped to
the WSN and how much memory can be used buffering and
blocked transmission, both features that are energy-saving.
AndulN does not adapt to failure of acquisition nodes.

The current, publicly-released version of SNEE has no
adaptive behaviour. As pointed out, the compilation and
optimization of a query takes as input the connectivity graph
and of the nodes from which logical extents for sensed streams
stem. As a result, any node failure compromises the quality
of the compiled QEP: if acquisition (i.e., leaf) nodes fail,



data is lost; if non-leaf nodes in the routing tree fail, the
QEP execution fails.

3. TECHNICAL CONTEXT

SNEE aims to generate energy-efficient QEPs. The com-
pilation/optimization process takes as input a SNEEql query
(as exemplified in Fig. 1), QoS expectations (not shown in
the figure) in the form of a desired acquisition rate (i.e., the
frequency at which sensing takes place) and a maximum de-
livery time (i.e., an upper bound on the acceptable amount
of time between data being acquired and being reflected
in the emitted results), and the following kinds of meta-
data: (1) the current connectivity graph, which describes
the (cost-assigned) communication edges in the WSN; (2)
the logical schema for the query, which describes the avail-
able logical extents over the sensing modalities in the WSN;
(3) the physical schema for the query, which describes which
physical nodes contribute data to which logical extent, and
which node acts as base station; (4) statistics about nodes
(e.g., available memory and energy stocks); (5) cost-model
parameters (e.g., unit costs for sleeping, sensing, process-
ing, and communicating) [1]. The query takes two streams,
one stemming from sensors in a field, the other from sensors
in a forest. It joins them on the condition that light levels
are lower in the field than in the forest and emits onto the
output stream the matching values and the ids of the nodes
that generated them.

Fig. 2 shows the SNEE (compilation/optimization) stack.
As a distributed query optimizer, it uses a two-phase ap-
proach. The single-site phase (Steps 1-3 in Fig. 2) comprises
the classical steps needed to compile and optimize a query

for centralized execution. The outcome is the physical-algebraic

form (PAF) for the query, where each operator has been
given its execution order and assigned a concrete algorithm.
The multi-site phase (Steps 4-7 in Fig. 2) turns the PAF into
a distributed algebraic form (DAF) for the query by making
decisions that are specific to in-WSN execution. These in-
clude deciding on a routing tree R, on fragment instance al-
location along the routing tree captured as a DAF D and on
timing the activities in the nodes (switching from QEP frag-
ment evaluation to communication and so on) in the form of
an agenda A. A final step converts the triple (R, D, A) into
a set of per-node nesC/TinyOS source file, which are then
compiled into binary form. This is what we refer to as the
executable QEP.

In more detail, Step 4 in Fig. 2 generates a routing tree
(RT) for the query as an approximation of a Steiner tree,
e.g., the one in Fig. 3(a) for our example query. Each vertex
is a sensor node; an edge denotes that the two nodes can

Logical Schema:
field (id, time, temp, light);
forest (id, time, temp, light);

Physical Schema:
field: {N6, N9}; forest: {N7}; sink: {N8}

Q: SELECT RSTREAM c.id, c.light, f.id, f.light

FROM field[NOW] c, forest[NOW] f
WHERE c.light < f.light

Figure 1: Example Query, Logical/Physical Schemas

query, QoS, logical/physical schemas,
connectivity graph, statistics, parameters
|

~~.

v per-node nesC source files

Figure 2: The SNEE Stack

communicate; the arrow denotes the direction of communi-
cation; double-line circles denote the sink or else nodes that
do sensing; single-line nodes only do processing or commu-
nication or both. Recall that a Steiner tree is a minimum
spanning tree (and hence likely to be energy-efficient) that
necessarily includes a given set of nodes. In our case, these
are the leaves (i.e., the acquisition nodes) and the root (i.e.,
the base station).

Step 5 in Fig. 2 decides which fragment instances to place
for execution in which node. This partitions the PAF into
fragment instances and assigns the latter to RT nodes with
a view to conserving energy by reducing the number of tu-
ples that need to be transmitted. The resulting DAF for
the example query is shown in Fig. 3(b). Dashed boxes de-
fine fragment boundaries; the list in curly brackets at the
bottom-right corner (below the fragment identifier) denotes
how many instances of that fragment there are and in which
nodes they run. The fragment containing the deliver opera-
tor runs on the sink node, the fragment instances containing
the acquisition operators run on the leaf nodes and the re-
maining fragment instances are assigned to run on Node 1
because it is, amongst the nodes through which all tuple
streams required for the join flow, the hop-count closest to
the leaves. We call such nodes, confluence nodes.

Step 6 in Fig. 2 decides when to execute the different tasks
in each participating node. These decisions are represented
as an agenda, i.e., a matrix where rows denote points in the
query evaluation cycle, columns denote participating nodes,
and the content of each cell defines the task scheduled for
that node at that time. The agenda for the example query
is shown in Fig. 3(c). Fragments are identified by number
as in Fig. 3(b), with subscripts denoting fragment instances;
the notation tzn (resp., ran) denotes that that node at that
time is transmitting to (resp., receiving from) node n; a row
labelled sleeping denote the fact that, for that slot, WSN
is idle. In the process of deciding on an agenda, SNEE also
determines how much buffering of tuples can be done on the
nodes with the memory remaining from fragment instance
allocation. SNEE tries to pack tuples into blocks to save on
transmission overheads, but since buffering delays delivery,
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(c) Agenda

Figure 3: Example Inputs to Code Generation

it places a limit on the buffering in order to not violate the
user-specified maximum delivery time. By being governed
by an agenda, a SNEE QEP implements a simple form of
TDMA. Whilst this is often economical provided that the
estimation models are accurate (and [1] shows that they are),
any changes to the timing of the operators or transmissions
requires the agenda to be recomputed and hence the QEP
to be recompiled and propagated into the WSN.

Step 7 in Fig. 2 takes the RT from Step 4, the DAF from
Step 5, and the agenda from Step 6 to produce a set of per-
participating-node source files. Compiling these files yields
the binaries that, together, comprise the QEP. For an in-
depth description of the SNEE compilation stack and data
structures, see [4].

We note that, as described in [1], SNEE makes intensive
use of the empirically-validated analytical cost models for
energy, memory and time expenditure computed over the
RT, DAF and agenda for a query. For example, in SNEE,
we can estimate the energy and time cost of running a QEP
fragment instance on any given node per agenda execution
cycle. Such capabilities allow us to estimate the time that a
QEP will run before a given node fails due to energy deple-
tion.

4. RESILIENCE TO NODE FAILURE

The problem we address can be informally phrased as fol-
lows: given a SNEE QEP ¢ (computed as described in the
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previous section), if a participating node in ¢ fails at run-
time, adapt g so that its lifetime is extended. We propose
an adaptation strategy that takes advantage of (fortuitous or
planned) node redundancy in order to increase ¢’s resilience
to node failure. In particular, at compile time, we compute
an overlay network over the physical network, in which one
logical node in the former maps to k+ 1 equipotent nodes in
the latter. The basic idea is to derive an equivalence class
over the nodes in the WSN that are functionally equivalent
for a given QEP ¢ and then to assign each fragment instance
of g to a set of equivalent nodes (rather than a single one).
In this way, for g to be compromised due to the failure of
a node n running any fragment instance f of w, all the k
nodes that are equipotent to n must also have failed before
f fails and ¢q is compromised.

One desideratum for any solution based on adaptive strate-
gies is that the cost of enacting the adaptive response must
be low, so that the net benefit of having adapted is high.
The solution contributed in this paper is guided by the de-
sire to minimize run-time reprogramming. To understand
why, note that a SNEE QEP is injected into the WSN using
an over-the-air-programming (OTAP) layer that routes the
appropriate binary to each node and writes them onto the
latter’s programming memory. We note that both packet
transmission and packet writing are costly in both time and
energy terms. Since node binaries break down into a large
number of transmitted packets, and each such packet must
be written onto flash memory, the cost of (re)programming
is very high. As such, our aim is to reduce the run-time
cost of responding to node failure and, for this purpose, we
aim, at compile-time, to preventively replicate code on more
nodes than would otherwise be needed and keep the replicas
inactive until and unless nodes fail. When they do, the run-
time adaptation simply involves activating a (so to speak)
dormant node that is equipotent to the failed node.

Thus, our approach to computing the logical overlay aims
to make run-time responses reprogramming free: at compile-
time we identify equivalence classes of cardinality k + 1 for
each participating node and program the k + 1 nodes in
the same equivalence class with the same binary. At any
point in time, the set of k nodes that are equipotent to an
active node n has two partitions: the (possibly empty) set
of nodes that have failed so far, and the (possibly empty)
set of inactive nodes. If, and when, n fails, it is added to
the set of failed nodes, and one inactive node is activated to
replace it. Thus, the lifetime of the QEP can potentially be
extended until all the & inactive replicas have been activated
and failed.

This approach leads to very low run-time adaptation cost
and, hence, to large net benefit from adaptations. How-
ever, it is dependent on there being opportunities for find-
ing equivalences classes in the WSN. This may happen fortu-
itously in the case of very large scale and dense deployments,
or by design, in the case where fault-tolerance is important
and therefore controlled redundancy is a requirement on the
deployment design. The trade-off, therefore, is between in-
vesting in node redundancy and reaping guaranteed longer
QEP lifetimes in the presence of node failure or else refrain-
ing from investing in redundancy and adapting through re-
programming, which offers less strict assurances of signifi-
cant extensions in QEP lifetimes.

The remainder of this section describes both the compile-
time and run-time changes made to SNEE (as described



in [4]) to enable resilient QEP evaluation using logical over-
lay. The solution takes as input a SNEE QEP ¢ , all the
metadata M and all the intermediate data structures D used
in compiling q. There are four stages in the compile-time
part of the process, as follows: given ¢ and M, in Stage 1,
a super-overlay for g is generated, which, in Stage 2, con-
verted into a set of logical overlays by considering alternative
communication edges; then, given ¢, M and D, in Stage 3,
the logical overlays are ranked using the time, memory and
energy cost models; and, finally, in Stage 4, the per-node bi-
naries in ¢ are replicated to the k-equipotent nodes of each
participating node. The resulting QEP ¢’ differs from the
original ¢ in that for each participating node there are k
other equipotent nodes in g that are already programmed
for performing the functions assigned to it in q. The stages
above are explained in more detail below with the use of
examples.

4.1 Generating Super-Overlays

We refer to a node in the RT computed by SNEE as an
active node (in the sense that, by default, it will be running
the assigned binary when the initial QEP starts to evaluate).
Stage 1 generates super-overlays over the subset CN C AN
of active nodes in the RT that we refer to as candidate nodes
for replication. An internal node in AN is a candidate node
in CN. An acquisition node in AN is a candidate node in
CN if it is asserted, in the physical schema, to be equipotent
to another node in the WSN. This caters for the situation
in which the precise location and sensing electronics of an
acquisition node is not sufficiently relevant, and therefore, in
case a specific acquisition node fails, others are considered
equipotent to it in spite of being in a different location and
possibly having different sensing electronics.

A node w € W, where W is the set of all nodes in the
WSN that are not already participating in the QEP, is in
the same super-overlay node as an active node ¢ € C'N if
the following conditions are met: (i) the available memory
in w is at least the same as the available memory in ¢ (this
is so that w can host the binary that has been assigned to ¢
by SNEE); (ii) if ¢ is an acquisition node, then ¢ and w have
been asserted to be equipotent; (iii) if Ip(c) and lc(c) denote,
resp., the parent and children of ¢ in the super-overlay, then
there are edges in the connectivity graph between w and,
on the one hand, the active node in Ip(c), and, on the other
hand, the active nodes in lc¢(c). In the example in Fig. 4(a),
Nodes 1 and 3 satisfy these conditions and therefore form a
super-overlay node, as do Nodes 7 and 2, and Nodes 8 and
2. This results in the super-overlay in Fig. 5(a).

4.2 Generating Logical Overlays

When a node w belongs to a super-overlay node €2, the
conditions above ensure that w is connected with the ac-
tive node (as opposed to every nodes) in the children and
the parent super-overlay nodes of €2. The conditions above
do not ensure that w is connected with every node (other
than the active one) in the children and the parent super-
overlay nodes of €. There are several possible permutations
in which the physical nodes in one logical node can com-
municate with the physical nodes in another logical node.
The membership of each logical node determines, therefore,
whether edges can be formed between logical nodes that are
preserved for every pair of physical nodes that can be drawn,
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(a) Initial QEP (b) Post-Adaptation QEP

Figure 4: Initial and Post-Adaptation QEPs

(b) Overlay

(a) Super-Overlay (c) Replicated

Figure 5: Super-Overlay v. Logical Overlay

one in turn from each, from the respective logical nodes. In
order to determine the best permutation of physical nodes
in each logical node, we first identify the complete set of
valid permutations and generate, as a result, a set of logical
overlays for assessment.

The algorithm starts by traversing the RT from the root
until it reaches a node for which a super-overlay node has
been formed. All the connecting permutations between the
physical nodes in each of the logical nodes are considered
with a view to forming logical nodes with size k£ 4 1, which
denotes the required resilience level. Once the parent per-
mutations are generated, the process is repeated to generate
the children permutations. In both cases, the correctness
condition is that there are k+ 1 physical nodes in every log-
ical node and that if two logical nodes form a logical edge,
then each the physical nodes in one logical node forms a
physical edge with a physical node in the other logical node.

For every correct permutation that is generated in this
way, a candidate logical overlay is generated, and the pro-
cess proceeds down the RT. If no correct permutation can be
generated, the parent permutation is removed from consid-
eration and a new parent permutation is considered. If there
are no correct permutations left to assess, the algorithm re-
turns a failure-to-form-overlay result, as a logical node with
resilience level k could not be formed for that RT.



In the example, assuming that kK = 1 and that no equipo-
tent acquisition nodes have been asserted, Node 1 would be
located first. Then, the permutation consisting of Node 3
and Node 1 would be generated as it is the only correct
permutation, which suffices if £ = 1. We then look at the
logical node whose active node is Node 2 as it is a child of
Node 1. We generate the possible permutations with Nodes
7 and 8. As Node 3 can only communicate with Nodes 7
and 2, the only correct permutation is the one formed with
these two nodes. As Node 6 is an acquisition node (and no
equipotent node has been asserted), we have traversed the
RT and generated a single complete overlay that delivers
1-resilience.

4.3 Assessing Logical Overlays

Once the set of k-resilient logical overlays has been com-
puted, we assess them to determine which ones lead to the
longest estimated functional lifetime for the QEP, assum-
ing that node failures are caused by energy depletion alone.
This is done by computing the energy drain on each node
resulting from the execution of one agenda cycle using the
energy cost model in [1]. Given the statistics about current
energy levels on each node, we can estimate which node will
fail first due to energy depletion. As the agenda cycle re-
peats at fixed time intervals, we estimate the lifetime of the
QEP up to the first node failure. In this way, assuming the
resilience afforded by the replication of fragments over the
physical nodes in each logical node, we can estimate the life-
time of the QEP over a sequence of node failures. We select
the logical overlay that leads to the best estimated lifetime
for the QEP over a sequence of failures caused by energy
depletion.

4.4 Replicating QEP Fragments

The last compile-time step is to assign the QEP fragment
in the active node of a logical node to all the k equipotent
physical nodes in it. These nodes start in the inactive state,
only the node in the original RT is made active for the start
of QEP execution. This results in the assignments depicted
in Fig. 5(c).

4.5 Adapting to Run-Time Node Failure

At run-time, when an active node a fails, if @ has a set I
of equipotent inactive, non-failed nodes, then the adaptation
strategy selects amongst the node 7 € I with the smallest
average cost for communicating with Ip(a) and lc¢(a). Then,
i is removed from I and becomes the active node, a is added
to the set of failed nodes, and the children of a are reas-
signed to become the children of 4 (i.e., their parent edges
are redirected from a to 7).

At run-time, this adaptive response leads to the following
types of messages being sent and responded to: (a) redi-
rection messages, which change the destination node for a
node’s messages, and (b) activation messages, which cause
a node to start executing their agenda. In our example,
this means that, at runtime, if Node 1 fails, since I = {3},
Node 3 receives an activation message and becomes the ac-
tive node (and I = {}). Also, Node 2 receives a redirection
message and starts sending tuples to Node 3. As a result,
the actively executing DAF for the query becomes the one
depicted in Fig. 4(b).

Notice that our algorithm does not require the formation
of clusters. Some k-resilient approaches (e.g., [5]) generate a
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hierarchy of k-sized clusters with a view to distributing the
energy expenditure evenly across the levels of the hierarchy.
Nodes in a cluster then transmit to a cluster head with a
reduced energy cost and the cluster head expends more en-
ergy in communicating with other cluster heads or the base
station directly. In contrast, we do not use hierarchies, and
only one physical node in any logical node is active at any
point in time. Other cluster-based algorithms (e.g., [13])
rotate the cluster head periodically in an attempt reduce
the likelihood that the node playing that role fails. This is
because when the cluster head fails, a new one needs to be
elected, which incurs an overhead. In contrast, our approach
makes the relevant decisions at compile-time and only incurs
the run-time cost of simpler, local, one-way activation and
redirection messages.

S. EXPERIMENTAL EVALUATION

This section presents some experimental evidence we have
collected and that support the hypothesis that the benefit of
adapting with a view to increasing the QEP lifetime (and,
therefore, the amount of data produced) outweighs the cost
incurred in adapting.

The experiments we present here focused on investigating
the effect of a sequence of nodes failures throughout the life-
time of a QEP. The goal was to explore the extent to which
the logical overlay approach is able to provide resilience to
failure and hence yield more tuples/data from the sequence
of repaired QEPs than the initial QEP in the sequence is
capable of doing.

Throughout the experiments, we adopt a set of assump-
tions, as follows. We assume that all the metadata has been
collected and are accurate and, therefore, we exclude the
collection time from our measurements. We assume the
SNEE energy and time cost estimation models are accurate
as shown in [1]. We assume that our cardinality estimation
model (which was thoroughly experimentally validated using
the Avrora [12] emulator) is also accurate. We assume that
execution starts with fully charged batteries, but our contri-
butions hold even if, from the start, the energy stock differs
across different nodes. We assume that an autonomic com-
ponent that runs outside the WSN on very-capable hardware
is in charge of deciding and enacting adaptive responses and,
therefore, we exclude the time taken to generate the adap-
tations from our time measurements.

The aim of the experiments based on a sequence of node
failures was to determine if the decisions made in construct-
ing and making use of logical overlays might be cost-ineffective
over the sequence of failures with respect to the aggregated
lifetime and the number of tuples delivered over the latter.

5.1 Experimental Procedure

We began by generating a set of 30 synthetic WSN topolo-
gies, with corresponding physical and logical schemas. Each
topology comprises 30 nodes with random connectivity to
a subset of other nodes.! The deployment layout was con-
trolled to give rise to logical overlays with a guaranteed k-
resilience level, k = 1. For a third of the topologies, SELECT
* queries were generated over the available sensed extent.
For another third of the topologies, aggregation queries were

"We ran experiments over larger topologies, but no new
conclusions emerged so we have omitted the results to save
space.



generated. For the final third, join queries were generated.
In all cases, we have set the QoS expectations as follows: the
acquisition rate is a tuple every 10 seconds and the maxi-
mum delivery time is 600 seconds.

For each topology, query, logical and physical schemas, we
used SNEE generated the corresponding, initial QEP. We
then estimated its lifetime and used this estimate to cal-
culate how many agenda cycles could be executed between
node failures so as to uniformly distribute the failures over
the lifetime of the initial QEP. We control for which nodes
fail after each adaptation until the logical overlay itself fails
to allow further adaptive responses.

When simulating the failure of a node, we take the fol-
lowing into account: (a) we prefer confluence nodes both
because they are, by definition, crucial for the correctness of
the query, and because they tend to have a higher workload
than other types of node and are, therefore, more likely to
fail in practice; and (b) we exclude acquisition nodes because
it allows us to evaluate the net benefit of adaptive responses
between functionally-equivalent plans.

In computing costs, we take into account the OTAP costs
of disseminating the initial QEP. We also take into account
the energy spent executing the QEP during the agenda cy-
cles between failures. This allows us to estimate the func-
tional lifetime of a QEP and express it in terms of the num-
ber of executions that an adapted QEP would execute before
the next node fails. From this, we can determine the number
of tuples delivered through the lifetime of the QEP using our
cardinality estimation model (which returns an estimate of
the number of tuples returned per agenda execution cycle).
Finally, we, of course, take into account the energy and time
taken to adaptively respond to each node failure.

5.2 Results and Observations

Added Lifetime.

The first experiment fixes one topology and three queries
(from each of the classical kinds) and measures the number
of agenda cycles that each QEP executes (starting from the
initial one, before any node failure, through several adapted
QEPs resulting from responses to successive node failures).
The experiment compares the results using the logical over-
lay strategy with those obtained with the original plan. The
results are shown in Fig. 6.

The following observations can be made. (1) As succes-
sive nodes fail, the estimated lifetime of the successor QEP
using logical overlays can grow to twice as large as that of
the original QEP. This is because, as each node fails, its re-
placement starts operating with more energy than the failed
node had when it failed therefore boosting the estimated
added lifetime. On the negative side, beyond a certain num-
ber of failures, there are fewer opportunities to adapt and
fewer benefits from adapting (in this experiment) because
the scarcity of equipotent nodes begins to restrict what al-
ternative routes can be found. (2) As successive nodes fail,
the increase in lifetime can be partly explained by the re-
duced number of tuples that need to be transmitted. (3)
When adaptations do not increase the lifetime, the reason
is that the set of nodes which failed did not include the
node in the initial QEP that had the most costly agenda
execution cost. (4) The join query is a good example of
significant benefits ensuing from adaptive responses. The
boost in lifetime for the third, fourth and fifth node fail-
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Figure 6: Additional Agendas Cycles Over a Se-
quence of Node Failures

Figure 7: Tuples Delivered to the Base Station Over
a Series of QEPs From Several Node Failures

ures results from the fact that the nodes that fail have the
worst estimated lifetimes (because they execute a join and
bear large a communication workload). The physical nodes
that replace them (as a result of the logical overlay strategy)
have significantly longer battery life and, hence, estimated
lifetime.

Added Tuples.

The second experiment again fixes one topology and three
queries (from each of the classical kinds) and measures the
number of tuples delivered as each QEP executes (starting
from the initial one, before any node failure, through several
adapted QEPs resulting from responses to successive node
failures). The experiment compares the results using the
logical overlay strategy with those obtained with the original
QEP. The results are shown in Fig. 7.

The following observations can be made. (1) In all cases,



there are benefits in terms of added delivered tuples that
ensue from adapting using the logical overlay strategy. (2)
As successive, the original QEP loses tuples from acquisi-
tion nodes located below the failed node in the routing tree,
resulting in less tuples eventually reaching the base-station.
(3) As the logical overlay strategy is used to adapt to succes-
sive node failures, the adapted QEP enhances the likelihood
that tuples from all the acquisition nodes reach the base sta-
tion thereby leading to a larger number of delivered tuples.
(4) The join query is again a good example of significant
benefits ensuing from adaptive responses. Note that the
third node to fail is a confluence node. As a result the QEP
would not emit tuples. By adapting, even though the new
QEP executes for less agenda cycles that would otherwise
be the case, more tuples are delivered.

6. CONCLUSION

SNQPs construe a WSN as a distributed, continuous query
platform where the streams of sensed values constitute the
logical extents of interest. Crucially, in the context of this
paper, they must make assumptions about the connectivity
graph of the WSN at compile time that are likely not to hold
for the lifetime of the compiled QEP the SNQPs generate.
When nodes fail (either due to energy depletion or hardware
faults), the connectivity graph changes. From a computa-
tional viewpoint, this implies a change in the interconnect
that links the distributed elements of the computation tak-
ing place in the WSN. The risk in this case is that the overall
computation may collapse unless it is capable of adapting to
the new interconnect, i.e., the new WSN state. This paper
has addressed the problem of extending the lifetime of an
evaluating QEP in the event of node failures and has de-
scribed the following contributions: (1) We have described
the logical overlay strategy that enables k-resilience to suc-
cessive node failures in the SNEE SNQP system. (2) We
have provided experimental evidence showing that adapting
to node failure is beneficial in extending the lifetime of QEPs
and in increasing the number of tuples that are delivered to
the base station over the lifetime of the QEP.

In future work, we are planning to address the problem
of computing a sequence of timed adaptations at compile
time so that, proactively and preventively, we take into ac-
count the estimated lifetime of a node and reorganize the
computation before the node is predicted to fail.
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