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The need for a two-way interaction between logic synthesis and FPGA logic module design has
been stressed recently. Having a logic module that can implement many functions is a good idea
only if one can also give a synthesis strategy that makes efficient use of this functionality.
Traditionally, technology mapping algorithms have been developed after the logic architecture has
been designed. We follow a dual approach, by focusing on a specific technology mapping algorithm,
namely, the structural tree-based mapping algorithm, and designing a logic module that can be
mapped efficiently by this algorithm. It is known that the tree-based mapping algorithm makes
optimal use of a library of functions, each of which can be represented by a tree of AND, OR, and
NOT gates (series-parallel or SP functions). We show how to design a SP function with a
minimum number of inputs that can implement all possible SP functions with a specified number
of inputs. For instance, we demonstrate a seven-input SP function that can implement all
four-input SP functions. Mapping results show that, on an average, the number blocks of this
function needed to map benchmark circuits are 12% less than those for Actel’s ACT1 logic
modules. Our logic modules show a 4% improvement over ACT1, if the block count is scaled to
take into account the number of transistors needed to implement different logic modules.
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Design]: Design Aids, B.7.1 [Integrated Circuits]: Types and Design Styles; J.6. [Comput-
er Applications]: Computer-Aided Engineering
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1. INTRODUCTION

FPGAs are composed of programmable logic and routing resources. Arbi-
trary circuits are implemented by appropriately configuring these re-
sources. This article concentrates on the problem of designing the combina-

This work was partially supported by the Texas Advanced Research Program under grant
003658459, by a DAC Design Automation Scholarship, and by a grant from the AT&T Bell
Laboratories.
Authors’ address: S. Thakur and D.F. Wong, Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712-1188.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1084-4309/96/0100–0102 $03.50

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, January 1996, Pages 102–122.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F225871.225891&domain=pdf&date_stamp=1996-01-01


tional portion of logic modules. The combinational logic in most existing
commercial FPGAs can be broadly classified as lookup-table based [AT&T
1993; Xilinx Corp. 1994], PLA based [Altera Corp. 1993], or macro-cell
based [Actel Corp. 1994]. We design logic modules that fall in the third
category.
The technology mapping step in CAD is responsible for mapping circuits

to the FPGA architecture. This step involves identifying clusters in the
circuit that can be implemented by a single logic module, and covering the
circuit by such clusters. Designing a complex logic module that can imple-
ment many different functions is a good idea only if one can come up with a
mapping algorithm that can utilize the functionality so as to offset the
silicon costs associated with the complexity of the logic module. Typically
the best mapping algorithms for logic modules are discovered after the
architecture design has been done.1 The issue of having a two-way interac-
tion between logic module design and synthesis was stressed at the recent
FPGA Symposium [ACM 1995]. This approach is expected to lead to the
design of logic modules that can be synthesized efficiently. Our approach
presents the first instance of logic module design, where the mapping
algorithm is the starting point.
The structural tree-based mapping algorithm [Detjens et al. 1987; Rudell

1989] is very popular, and forms the core of many academic and commercial
technology mapping tools. This algorithm decomposes the unmapped logic
network into a collection of trees. The library is represented as a set of
graphs. Each component tree is then optimally mapped to the library using
graph matching techniques. Due to the decomposition into trees, matches
are identified only for those library functions that have a representation in
the form of a tree of gates (we call such functions series-parallel or SP
functions). The algorithm is optimal for libraries restricted to such func-
tions. For a FPGA logic module, the library is the set of functions that can
be implemented using one such logic module. We show how to design logic
modules that provide a large library of SP functions. Thus such logic
modules are mapped efficiently using the tree-based mapping algorithm.
We refer the reader to Rudell [1989] for a discussion on mapping using a
library of SP functions.
SP functions have the added advantage of having simple and compact

CMOS implementations. Hence we aim at designing logic modules that
are SP.
There has been recent work on designing FPGA logic modules based on

the concept of universal logic modules (ULMs) [Lin et al. 1994, Thakur and
Wong 1995]. A function is said to be a ULM for m-input functions if it can
implement all m-input functions [Patt 1973; Preparata 1971; Preparata
and Muller 1970]. In particular, Lin et al. [1994] give a BDD-based
computational procedure to derive ULMs. In contrast, the procedure given
by Thakur and Wong [1995] is algebraic, and works for arbitrary values of
m. Both methods use a synthesis strategy based on existing mappers for

1 See Cong and Ding [1994]; Karplus [1991a, 1991b]; and Murgai et al. [1992, 1991].
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lookup-tables. Targeting only the SP functions reduces the functionality,
and hence the complexity, of the logic module. Table I compares the total
number of NPN nonequivalent2 functions with the number of NPN non-
equivalent SP functions for various input sizes. It can be seen that the
number of SP functions is only a small fraction of the total number of
functions.
We show how to implement the logic modules that we design, so as to

further optimize their utilization. This is done by decomposing the logic
module into two smaller functions. Thus each logic module can implement
two functions, allowing multiple nodes in the mapped network to be packed
into one logic module.
In particular, we demonstrate a seven-input SP function that can imple-

ment all four-input SP functions. A logic module based on this function
requires two more transistors than Actel’s ACT1 logic module. Mapping
results show that, on an average, the number of blocks of this logic module
needed to map benchmark circuits are 12% less than those for ACT1. Thus
a more efficient use of the silicon area available is made by our logic
module.
The rest of the article is organized as follows. We introduce the notation

and specify the problem in Section 2. We study the properties of SP
functions in Section 3, and formulate the problem of deriving a SP function
that can implement all SP functions with a specified number of inputs as a
problem on graphs. We solve this problem for practical cases. In Section 4
we show how to use the tree-based mapping algorithm for mapping to our
logic modules. We also show how to implement these logic modules to
further optimize their utilization. We describe the experiments and their
results in Section 5.

2. DEFINITIONS AND PROBLEM SPECIFICATION

We denote the set of m-input Boolean functions by ^m. These functions are
assumed to have all m inputs in their supports. The complement of a
Boolean function f is denoted by f9. We denote a literal of a variable x by x*
when the specific phase of it is irrelevant.
Two functions, f, g [ ^m, are said to be P equivalent if f can be

transformed to g by applying a permutation to the inputs of f. Similarly, f
and g are NPN equivalent if f can be transformed to g by some combination

2 Two functions are NPN equivalent if one can be transformed to the other by a combination of
input permutation and input/output complementation.

Table I. Number of Nonequivalent Functions

Inputs Total number of functions Number of SP functions

2 4 1
3 14 2
4 222 5
5 616,126 12
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of input permutations, input complementation, and output complementa-
tion. These function equivalences induce equivalence relations on ^m.
These equivalence relations partition ^m into equivalence classes. These
classes are called the equivalence classes under P and NPN, respectively.
Thus the set of functions that are P equivalent to f are called the P
equivalence class of f, and so on.
For n $ m, we say that a function u(z1, z2, . . . , zn) covers a function f(x1,

x2, . . . , xm) if u can be transformed to f by:

(1) Assigning a value from {0, 1, x1, x19, . . . , xm, xm9} to each of z1, z2, . . . , zn.
(2) Optionally complementing the output of u.

This transformation is called the specialization of u. Thus if inverters are
available for free, then the function u can implement exactly those func-
tions that it covers.
The following claim follows easily from the definitions:

LEMMA 2.1 If a function u(z1, z2, . . . , zn) covers f(x1, x2, . . . , xm) then
it covers every function that is NPN equivalent to f.

We now formally define series-parallel (SP) functions. Any function of at
most one input is SP. If f and g are two SP functions with a disjoint
support, then f 1 g and f p g are SP functions. We represent a function f (x1,
x2, . . . , xm) by a logic expression F(p, 1, x1, x2, . . . , xm). The logic
expression for a SP function has the property that every input variable
appears exactly once, in some phase, in the expression. The term SP arises
from the fact that such functions can be implemented by series-parallel
networks of transistors.
It is an obvious fact that the logic expression F(p, 1, x1, x2, . . . , xm), for a

SP function f, can be represented by a labeled tree such that:

(1) The internal nodes are labeled AND(p) or OR(1) and have at least two
children each. The node labels alternate between AND and OR on any
path from the root to the leaves.

(2) The tree has m leaf nodes. Each leaf node is labeled by one of {x1,
x19, . . . , xm, xm9} such that each variable, in some phase, appears as a
label exactly once.

For a given SP function this labeled tree is unique (up to isomorphism).
Due to the exact correspondence with the logic expression for f, we denote
the tree corresponding to f by F(p, 1, x1, x2, . . . , xm) too. The meaning is
obvious from context. The unlabeled tree corresponding to the SP function f
is the tree obtained by eliminating the node labels on F(p, 1, x1, . . . , xm).
Clearly any SP function yields a unique (up to isomorphism) unlabeled
tree, but an unlabeled tree may yield different SP functions (by differently
labeling the nodes).

Example 2.1 The multiplexer function g(x1, x2, x3) 5 x19x2 1 x1x3 is not
SP. But the function f(x1, x2, x3) 5 x19(x2 1 x3) is SP and represented by the
tree F(*, 1, x1, x2, x3) in Figure 1(a). The corresponding unlabeled tree is
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shown in Figure 1(b). Labeling the unlabeled tree differently yields the
function x1 1 x2x3.
A function u(z1, z2, . . . , zn) is said to be a Universal Logic Module for
m-input SP functions if f covers every SP function with at most m inputs.
We say that such a function is SP-ULM.m.3 We shall address the following
problem:

Logic Module Design Problem. For a given value of m, find a SP
function f that is SP-ULM.m, and has a minimum number of inputs.

3. DERIVING SP-ULM FUNCTIONS

We first establish certain crucial properties of the NPN classes containing
SP functions. We show that any such class can be uniquely specified by one
unlabeled tree. Next we characterize the set of m-input SP functions
covered by an n-input SP function, for n . m. Together, these two results
let us formulate the problem of designing a SP-ULM.m function as a
problem on unlabeled trees. We give solutions to this problem for practical
cases.
The following claim is easy to see.

LEMMA 3.1 If u(z1, z2, . . . , zn) covers all SP functions with m inputs,
then it covers all SP functions with at most m inputs.

PROOF. Consider a function h(x1, x2, . . . , xm21) with m 2 1 inputs. The
function f(x1, x2, . . . , xm) 5 h(x1, x2, . . . , xm21) 1 xm is clearly a SP function
with m inputs and hence is covered by u. Consider the specialization of u
done to cover f. Replacing assignments of any of the variables z1, z2, . . . , zn
to xm by 0 and to xm9 by 1 will result in h. Hence u covers h. The result
follows by induction. e

Hence we concentrate on designing a SP function that covers all func-
tions with m inputs. By the preceding lemma, this is enough to guarantee
that a function is SP-ULM.m.

3 This particular notation arises from classical work on universal logic modules in which a
function is called ULM.m if it covers all m input functions.

Fig. 1. Trees repesenting x91(x2 1 x3): (a) labeled tree; (b) unlabeled tree.

106 • S. Thakur and D.F. Wong

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, January 1996.



Consider some function f(x1, x2, . . . , xm) [ ^m and let F(p, 1, x1, x2, . . . ,
xm) denote the logic expression representing f. The expression obtained by
changing all the 1 operators to p and vice versa is F(1, p, x1, x2, . . . , xm).
This corresponds to the function df (x1, x2, . . . , xm)—the dual of f. By De Mor-
gan’s law, the complement of f is given by:

f9~ x1, x2, . . . , xm! 5 df ~ x19, x29,. . . , xm9! ,

and is represented by the expression F(1, p, x19, x29, . . . , xm9).
Let (xs*(1), xs*(2), . . . , xs*(m)) be obtained by applying a permutation s to

(x1, x2, . . . , xm), followed by a complementation of some of the variables.
Then the function f(xs*(1), xs

*(2), . . . , xs*(m)) is represented by the expression
F(p, 1, xs*(1), xs*(2), . . . , xs*(m)).
From the two preceding observations we can conclude that, for a SP

function f, all the members of the NPN class of f are SP. From the
manipulation of logic expressions, we can see that the labeled trees
corresponding to a function NPN equivalent to f can be obtained from that
of f by swapping the 1 and p labels and/or relabeling the leaf nodes by a
permutation of x1, x2, . . . , xm in arbitrary phases. Thus the unlabeled trees
for f and g are identical. This implies that the entire NPN class of f can be
represented by a single unlabeled tree with m leaves. This conclusion is
stated in Lemma 3.2.

LEMMA 3.2 For two SP functions, f, g [ ^m, f is NPN equivalent to g if
and only if the unlabeled trees corresponding to f and g are identical.

Example 3.1 Consider the function f(x1, x2, x3) 5 x19(x2 1 x3). It is
represented by the labeled tree in Figure 1. The functions g 5 x2(x91 1 x3)
and g9 5 x29 1 x1x39 are SP also and represented by the labeled trees in
Figures 2(a) and (b), respectively. The corresponding unlabeled tree, from
which the tree representing any member of the NPN equivalence class of f
can be derived, is shown in Figure 2(c).
An immediate implication of the preceding lemma is that the number of

NPN equivalence classes of SP functions equals the number of unlabeled
trees with m leaves. A formula for this was computed in Knuth [1973,
problem 2.3.4.4.5] and was used in determining the entries of Table I.

Fig. 2. Trees representing NPN equivalent functions (a) tree for g 5 x2( x91 1 x3); (b) tree
for g9; (c) unlabeled tree for NPN class.
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Next we characterize the set of functions that can be covered by a SP
function. Recall that we want to derive a logic module which is itself a SP
function. We first show a simple lemma that asserts that any SP function
can always be specialized to cover the functions 0 and 1.

LEMMA 3.3 Any SP function covers the functions 0 and 1.

PROOF. Consider some SP function h(z1, z2, . . . , zk) [ ^k. Suppose the
input variables appear in the phases z1*, z2*, . . . , zk* in the logic expression
for h. Let D be some indeterminate. Setting z1* 5 z2* 5 . . . 5 zk* 5 D results
in h(z1, z2, . . . , zk) 5 D. Choosing D 5 0 or 1 results in a specialization of h
that covers the functions 0 and 1, respectively. e

We define the operation of collapsing a tree (labeled or unlabeled) as a
composition of an arbitrary number of applications of the following opera-
tions:

(1) Chopping: Two nodes a and b in the tree, such that a is a child of b,
are selected and the entire subtree rooted at a and the edge between a
and b are eliminated.

(2) Contraction: An internal node b, which has parent a and a single child
c, is selected. Node b is eliminated from the tree. If c is an internal
node, then the children of c are made children of a and c is eliminated.
If c is a leaf, then it becomes a child of a.

The preceding definitions are illustrated by the following example:

Example 3.2 Consider the SP function:

u ~ z1, z2, . . . , z6! 5 ~ z1 1 z2z3!~ z49 1 z5z6! .

The labeled tree for this function is shown in Figure 3(a). The result of
chopping the subtrees rooted at a1 and a2 is shown in Figure 3(b). Two
contractions at nodes b1 and b2 result in the tree in Figure 3(c).

Fig. 3. Collapsing a labeled tree: (a) label tree for u; (b) result of chopping; (c) result of
contraction.
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Note that the contraction operation is not possible unless preceded by a
chopping operation because all the internal nodes in the tree initially have
at least two children.
Consider a SP function u(z1, z2, . . . , zn) and let U(p, 1, z1, z2, . . . , zn) be

the labeled tree representing it. In the description of chopping, if the node a
is a leaf node with label zi*, then chopping the subtree rooted at a is
equivalent to:

—assigning 0 to zi*, if b is an OR node.
—assigning 1 to zi*, if b is an AND node.

If a is an internal node, then the chopping can be done by specializing the
function represented by the subtree rooted at a to:

—0 if a is labeled AND (and b is labeled OR).
—1 if a is labeled OR (and b is labeled AND).

Because the subtree rooted at a represents a SP function, Lemma 3.3
implies that these specializations can always be done. The sets of variables
appearing as labels of disjoint subtrees of U are disjoint, hence chopping
two disjoint subtrees can be done without any conflicting assignments to
variables. The contraction at b is equivalent to replacing a single input
AND or OR node by a wire. If node c is an internal node, then nodes a and
c lie on adjacent levels of the new tree and have the same label. To repair
this, the inputs of a and c are merged to create one node. In Example 3.2
the inputs of node c1 become the inputs of node a after the contractions at
b1. Hence we conclude that any collapsing operation, on a labeled tree U,
can be done by assigning 0 or 1 to the literals at some of the leaves of U.
For example, the collapsing described in Example 3.2 is equivalent to the
assignments z1 5 0 and z5 5 z6 5 0.
We observe that both preceding operations preserve the property of node

labels alternating between AND and OR along any path from the root to
the leaves. Thus if all the internal nodes in the tree obtained by some
collapsing operation have at least two children each, then the resultant
labeled tree represents a SP function.
We now establish a connection between the operation of collapsing the

labeled tree, corresponding to a SP function u(z1, z2, . . . , zm), and the set of
functions covered by u. Consider a tree T with m leaves obtained by
collapsing U(p, 1, z1, z2, . . . , zn). Suppose all internal nodes of T have at
least two children each and that the leaves of T are labeled z*i1, z*i2, . . . , z*im.
Let F(p, 1, x1, x2, . . . , xm) be the tree obtained by relabeling the leaves of T
by doing the assignments zi1 5 x*1, zi2 5 x*2, . . . , zim 5 x*m. This represents a
SP function, say f(x1, x2, . . . , xm). We now prove that u covers f.

LEMMA 3.4 If u and f are as defined above then u covers f.

PROOF. Because all the internal nodes of T have at least two children
each, the tree T represents a SP function of the m variables zi1, zi2, . . . , zim.
As described earlier, the collapsed tree T can be obtained by assigning 0 or
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1 to the rest of the inputs of u. Thus u can be specialized to f by assigning
an element of the set {0, 1, x1, x19, . . . , xm, xm9} to each of z1, z2, . . . , zn.
Hence u covers f. e

Thus the function u(z1, z2, . . . , zn) covers all functions derived by
collapsing U and relabeling the leaves of the collapsed tree. Hence a way to
ensure that a function u is SP-ULM.m is to make sure that the labeled tree
corresponding to any SP function of m inputs can be obtained by suitably
collapsing U and relabeling its leaves. We can simplify this result by using
Lemma 3.2. Consider an unlabeled tree S with n leaves, such that every
internal node of S has at least two children. Assume that any unlabeled
tree with m leaves can be obtained by collapsing S. Label S with AND and
OR at internal nodes such that nodes on adjacent levels have different
labels. Label the leaves z1, z2, . . . , zn from left to right. The resulting
labeled tree, say U(p, 1, z1, z2, . . . , zn), represents a SP function u(z1, z2,
. . . , zn). We claim that this function is SP-ULM.m. It is stated in the
following lemma.

LEMMA 3.5 The function u(z1, z2, . . . , zn) defined above is SP-ULM.m.

PROOF. Let C be any NPN equivalence class consisting of m-input SP
functions. By Lemma 3.2, C corresponds to a unique unlabeled tree of m
leaves, say Sc. By construction, Sc can be obtained by collapsing S. This,
with Lemmas 3.2 and 3.4, implies that u covers some member of the class
C. Hence by Lemma 2.1, u covers every member of C. Inasmuch as C was
an arbitrary NPN class consisting of m input SP functions, we conclude
that u covers all m input SP functions. By Lemma 3.1, u is a SP-ULM.m
function. e

Thus we have reduced the problem of designing a SP-ULM.m to the
following problem:

Universal Tree Design Problem. For a given value of m, find an unla-
beled tree S with a minimum number of leaves, such that S can be
collapsed to any unlabeled tree of m leaves.

We do not have an optimal solution to the above problem for a general
value of m. But the reduction of the original problem to the one above does
aid in understanding the structure of SP functions and the requirements of
a SP-ULM.m function. In the following we give a greedy procedure that
helps construct the tree S for practical values of m.

Algorithm universal_tree(m){

/* Returns an unlabeled tree that can be collapsed to any unlabeled tree with m
leaves. */

1 Create a list L of all unlabeled trees with m leaves;
2 S 5 head(L); delete_head(L);
3 while (?L? Þ 0){
4 T 5 head(L); delete_head(L);
5 if (S cannot be collapsed to obtain T ){
6 for i 5 m 2 1 downto 1{
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7 for each tree T9 s.t. S can be collapsed to T9{
8 if T9 is a subtree of T goto 11;
9 }
10 }
11 Augment S by adding new nodes so that it can be collapsed to obtain T;
12 }
13 }
14 return(S); }

The details of how line 11 is implemented are excluded from the algo-
rithm for simplicity. But the fact that T9 is a subtree of T, together with the
knowledge of the sequence of operations performed to obtain T9 by collaps-
ing T, is used to determine which nodes are to be added. Note that the
solution determined by this procedure is sensitive to the particular order in
which the unlabeled trees with m leaves are enumerated in the list L. Table
I shows that the number of unlabeled trees with m leaves (indicated by the
column showing the number of NPN classes of m input SP functions) is
very small for m # 5. For these cases one can find the tree S by trying
different orders for trees in L.
Figures 4(a) and (b) depict all the unlabeled trees with three and four

leaves, respectively. Figures 4(c) and (d) show unlabeled trees S1 and S2
that can be collapsed to any unlabeled tree with three and four leaves,
respectively. It can be shown that S1 indeed has a minimum number of
leaves among all trees with the property that they can be collapsed to any
tree with three leaves. Because there are two unlabeled trees with three
leaves, any tree with this property has to have at least four leaves.
Inasmuch as S1 has four leaves it has to have a minimum number of leaves
among such trees. A similar but more complicated argument establishes

Fig. 4. Constructing unlabled trees used to derive SP-ULM functions.
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the minimality of the number of leaves of S2. These unlabeled trees are
labeled to obtain the following functions:

u 5 z1~ z2 1 z3! z4 , (1)

v 5 ~ z1 1 z2! z3~ z4 1 z5z6z7! . (2)

By Lemma 3.5, u is SP-ULM.3 and v is SP-ULM.4.
We used Algorithm universal_tree to obtain an unlabeled tree that can be

collapsed to any unlabeled tree with five leaves. This tree has ten leaves,
and is shown in Figure 5.

4. IMPLEMENTATION ISSUES

This section shows how the SP-ULM functions for the practical cases,
derived in the previous section, can be efficiently implemented and
mapped. In Section 4.1 we show how the technology mapping library of a
SP function is generated. A tree-based mapper is used on this library to do
the mapping. Note that, from the discussion in the previous section, we can
conclude that any function NPN equivalent to a SP-ULM.m function is a
SP-ULM.m function as well. In Section 4.2 we argue that the specific
function, NPN equivalent to a SP-ULM.m function, chosen in the imple-
mentation does make a difference. We give a heuristic to choose this
function. Section 4.3 shows how the SP-ULM functions can actually be
implemented as a composition of two functions of a smaller number of
inputs. Thus each logic module, based on such a function, can be used to
implement two functions of less than m inputs or one of m inputs. We give
reasons to justify this.

4.1 Mapping to the SP-ULM Functions

By definition, any SP function f (x1, x2, . . . , xm) can be implemented using
one module of a SP-ULM.m function u(z1, z2, . . . , zn), if each of x1, x2, . . . ,
xm is available in both phases. But, in reality, the negative phases of the
variables need to be explicitly generated using logic modules specialized to
implement inverters. Hence the library of the logic module, that is, the set
of functions that can be implemented using one logic module, contains only
those functions that are covered by u by assigning one of {0, 1, x1,

Fig. 5. Tree that can be collapsed to any unlabled tree with five leaves.
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x2, . . . , xm} to z1, z2, . . . , zn. The set of functions of m inputs that u can
cover, using these assignments, can be done by the procedure described
before Lemma 3.4. But, because the negative phases of x1, x2, . . . , xm are
not allowed, the relabeling of leaves can use only these variables in the
positive phase. Note that functions that are P equivalent need be repre-
sented by one library function only.
A SP-ULM function covers some nonSP functions too. As the tree-based

mapper cannot make use of these, we filter out these functions while
creating the library. A m-input SP function in the library of u is derived as
follows: The tree U(p, 1, z1, z2, . . . , zn) is collapsed to get a tree T with m
leaves, labeled zi*1, zi*2, . . . , zim

* . The assignments zi1 5 z1, zi2 5 x2, . . . , zim 5
xm are used to relabel the leaves of T. The resulting labeled tree corre-
sponds to an m-input function in the library of u. Iterating over all the
possible ways to collapse U gives the entire library. The library of an
n-input function contains functions of up to n inputs. This library is given
as input to the tree-based technology mapper, along with the optimized
logic network.
An immediate implication of the preceding discussion is that at least one

complemented literal has to occur in the implementation of a SP-ULM
function (in order for an inverter to be in the library). Hence we derive the
following two functions from those in Equations (1) and (2), by complement-
ing an arbitrarily chosen literal:

u1 5 z19~ z2 1 z3! z4 , (3)

v1 5 ~ z1 1 z2! z39~ z4 1 z5z6z7! . (4)

As an example, the library of the function u1 is shown in the following:

$ x19, x1x2, x19x2, x1 1 x2, x19x2x3, x1~ x2 1 x3!, x19~ x2 1 x3!, x19x2~ x3 1 x4!% .

Note that the functions x1(x2 1 x3) and x19(x2 1 x3) are NPN equivalent to
each other, yet they are both provided in the library so that the technology
mapper can reduce the number of inverters in the mapped circuit by
choosing the appropriate library function.

4.2 Choosing a NPN Equivalent Implementation for a SP-ULM Function

The preceding discussion reveals the fact that, for a given SP-ULM.m
function, choosing the correct function NPN equivalent to it is important.
For example the function u1 in Equation (3) is NPN equivalent to the
function:

u2 5 z19~ z29 1 z3! z4 . (5)

Of the four functions NPN equivalent to the three-input AND, u2 can
implement x19x2x3 and x19x29x3 whereas u1 can only implement x19x2x3. Some
thought reveals that the lower functionality of u1, as compared to u2, is due
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to the presence of symmetric inputs4 in u1. It can be seen that z2 and z3 are
symmetric in u1. Thus the assignment z1 5 x1, z2 5 x2, z3 5 0, z4 5 x3 yields
the same function as z1 5 x1, z2 5 0, z3 5 x2, z4 5 x3 for u1, namely, x91x2x3.
On the other hand, the same pair of assignments for u2 yields the functions
x91x92x3 and x91x2x3, respectively. Clearly, having many different members of
the same NPN equivalence class in the library is beneficial to the quality of
the technology mapping, as the technology mapper can then use these to
optimize the number of inverters in the mapped circuit.
The heuristic we use is based on the intuition that symmetric inputs

cause reduced functionality. Having designed a SP-ULM.m function we
identify the sets of symmetric inputs. For each set of symmetric inputs we
pick half the elements of this set and decide to have the inverted phase
literals for these in the final SP-ULM.m function. This is best explained
using the functions u1 and v1, defined in Equations (3) and (4), as examples.
The inputs to function u1 can be partitioned into the sets, {z1}, {z2, z3}, and
{z4}, of symmetric inputs. Using the preceding heuristic we get the function
u2 in Equation (5) that is NPN equivalent to u1, but has no symmetric
variables. Similarly the inputs to the function v1 can be partitioned into the
sets, {z1, z2}, {z3}, {z4}, and {z5, z6, z7}, of symmetric variables. Using the
heuristic yields the function:

v2 5 ~ z19 1 z2! z3~ z4 1 z59z6z7! . (6)

Note that the extra functionality does not come without an overhead.
Two extra transistors are needed to implement each inverter needed to
provide the negative phase literals. Section 5.1 shows the results of
comparing the quality of mapped circuits using libraries corresponding to
different NPN equivalent SP-ULM functions.

4.3 Decomposed Implementation of the SP-ULM Functions

A study of the frequencies with which various members of the library of a
SP-ULM function are used in technology mapping shows that functions
with a smaller number of inputs are used more often than those of a larger
number of inputs. This behavior has a serious effect on the utilization of
the functionality of the logic modules. Table II shows the distribution of the
number of inputs in the nodes of the mapped networks, obtained by
mapping MCNC circuits. The libraries of functions u2 and v2, defined in
Equations (5) and (6), were used. It is seen that a large fraction of the
nodes in the networks mapped using the library of u2 had at most two
inputs. Similarly, a large fraction of the nodes in the networks mapped
using the library of v2 had at most three inputs. In fact, for v2, no function
with more than five inputs was used. It is indeed wasteful to have a
seven-input logic module implementing three or four input functions most
of the time. We suggest a remedy to this problem in this section.

4 Inputs z1, z2 for a function u(z1, z2, . . . , zn) are symmetric if u(z1, z2, . . . , zn) 5 u(z2, z1, . . . , zn).
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We observe that the functions u2 and v2 can be decomposed into two
functions with disjoint sets of inputs. This is shown by the equations:

A 5 z19z4 B 5 z29 1 z3 u2 5 A p B (7)

A 5 ~ z19 1 z2! z3 B 5 z4 1 z95z6z7 v2 5 A p B (8)

Now each logic module is implemented as a two-output block such that B
appears at one output of the block and either A or A p B appears at the
other output. This is illustrated in Figure 6. A programmable multiplexer
is used to select between A and A p B. The obvious overhead then is that of
implementing the multiplexer in each logic module.
To map circuits using this implementation of the logic module we create

a library as described in Section 4.1. Each library function is annotated A,
B, C, or D depending on whether it needs block A, block B, either A or B, or
both A and B to be implemented. For example, for the function u2 and
blocks A and B as defined in Equation (7), the function x19x2 is annotated A
and x19 1 x2, x19 and x19(x29 1 x3) are annotated B, C, and D, respectively.
After the mapping has been done, a postprocessing step of matching nodes
that can be packed into one logic module is done.
The packing is done with the aid of a graph constructed as follows: one

node is created for each node of the mapped network that is annotated A, B,
or C. This graph will have edges for every pair of nodes that can be
implemented using a single logic module. To this end, an edge is added
between every pair of nodes annotated differently. An edge is added
between each pair of nodes annotated C. A node is created for every node
annotated D and an edge is added to any node annotated B or C, if the two
nodes can packed into the same logic module. A maximum cardinality
matching [Cormen et al. 1990] in this graph leads to an optimal packing
decision for the mapped network.
While creating the library for this implementation of a SP-ULM function,

the functions annotated A, B, or C are assigned an area of 0.5, and those
annotated D are assigned an area of 1. This is done to influence the
technology mapper to include more nodes annotated A, B, or C in the
mapping solution.

Table II. Usage of Library Functions of v2: Statistics of Mapped Networks

Number of Inputs k

Percentage of Nodes with at
most k inputs

u2 v2

1 14 11
2 67 51
3 95 75
4 100 95
5 100 100
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5. EXPERIMENTAL RESULTS

We now describe the experiments used to test the logic modules we derived.
Clearly the best test of the effectiveness of a logic module is the quality of
mapped circuits, measured in terms of the number of logic modules needed
to implement them. We use a set of MCNC circuits, optimized using the
rugged script in MIS. Our experiments are divided into two sets. In the
first set we study the effect of different implementations of the SP-ULM
functions on the quality of the mapped circuits. As mentioned in the
introduction and in the previous section, there is a tradeoff between the
increased functionality obtained by using a particular implementation of a
SP-ULM function and the extra area needed to do the implementation. We
study this tradeoff. The second set of experiments compares the best logic
module based on a SP-ULM function with Actel and Xilinx logic modules.
We use the tree-based mapper for mapping our logic modules and special-
ized algorithms available in MIS for the Actel and Xilinx modules. Section
5.1 deals with the first set and Section 5.2 with the second set of experi-
ments.

5.1 Comparing Different Implementations of SP-ULM Functions

Three different implementations of the SP-ULM.3 and SP-ULM.4 functions
were discussed in Section 4: initial implementations (u1, v1), implementa-
tions after inverting some literals in the logic expression (u2, v2), and the
decomposed implementations (u3, v3). The libraries for these six functions
were automatically generated from the logic expressions describing them.
The optimized networks were mapped using each of these libraries. Table
III shows the results of these experiments. We report the block counts after
mapping for each of the six libraries. For the implementations of the
functions in the decomposed form, the matching-based method for packing
two nodes of the mapped networks was used in a postprocessing step. The
results for these implementations include two block counts, one for the
mapped network before (b.m.) and one for it after this postprocessing
(a.m.).
We observe that, for the cases of decomposed implementations of u2 and

v2, the matching step to pack multiple nodes into one logic module causes a
reduction of about 33% in the block count. This is a direct consequence of

Fig. 6. Implementing the logic module as a composition of two functions.
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the fact that the technology mapper uses library functions with a smaller
number of inputs most of the time.
By themselves, the preceding block counts are not an adequate compari-

son of the effectiveness of different logic modules. These have to be
weighted by the areas of the logic modules themselves. The transistor
counts for the logic modules, assuming a CMOS implementation, are shown
in Table IV. The number of transistors needed equals twice the number of
literals in the logic expression, plus two transistors for each literal in the
negative phase. For the decomposed implementations, six extra transistors
are required to implement the multiplexer (assuming a CMOS implemen-
tation using pass gates). The total block count for the mapping experiment
is reproduced in this table for ease of comparison. The normalized block
count for each implementation is determined by normalizing the product of
the total block count and the transistor count by this product for u1.
Based on the results of the experiments we can make the following

comments:

Table III. Mapping Results of Different Implementations of SP-ULM Functions

Circuit u1 u2

u2 decomp.

v1 v2

v2 decomp.

b.m. a.m. b.m. a.m.

z4ml 29 32 36 21 26 23 27 14
misex1 39 37 46 29 29 24 29 15
vg2 63 65 76 50 46 40 47 26
5xp1 75 72 86 52 61 54 59 32
count 96 98 115 66 80 66 82 49
9symm1 125 113 132 95 90 75 95 61
9sym 92 91 107 70 81 62 77 44
apex7 156 153 173 113 129 111 127 69
C1908 339 375 407 260 318 227 312 161
rd84 104 97 114 71 88 67 82 50
e64 137 168 188 95 137 126 135 71
C880 279 267 325 220 233 182 233 119
apex2 173 168 206 135 151 129 151 89
alu2 219 220 263 184 183 166 190 108
duke2 282 270 316 203 241 208 242 132
C499 366 415 449 268 346 225 339 170
rot 451 442 505 308 382 317 373 195
apex6 543 492 540 362 436 332 391 208
alu4 528 523 607 438 405 352 447 290
des 2316 2221 2493 1649 1726 1432 1654 957
sao2 90 89 101 68 73 59 68 45
rd73 44 51 54 31 37 35 39 20
misex2 71 65 82 46 58 50 65 35
f51m 55 59 60 42 48 38 46 25
clip 77 74 81 57 60 52 57 36
bw 108 108 118 79 85 74 86 48
b9 84 76 87 63 68 57 66 36
C5315 1186 1203 1309 855 975 762 997 539
Total 8127 8044 9076 5930 6587 5345 6516 3644
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(1) Among the SP-ULM.3 functions, u1 is the best option. This function
being small, the sensitivity of the area of the logic module to the
addition of an inverter or a multiplexer is high. Hence, although the
block count is reduced by using u2 or the decomposed implementation of
u2, the benefit of this is overridden by the area penalty imposed.

(2) Among the SP-ULM.4 functions, the decomposed implementation of v2
is observed to be the best choice. For these functions the relative
increase in the size of the logic module, due to the extra inverters and
multiplexer, is less than the decrease in block count.

(3) The number of nodes in the mapped network is a good estimate of the
number of nets to be routed. An experiment showed that the average
number of pins per net is about the same for networks mapped using
any of the six libraries. Thus the routing resources will limit the
utilization of the SP-ULM.3 functions.

Hence we expect the decomposed form of v2 to be the most effective logic
module.

5.2 Comparing SP-ULM Functions With Commercial Architectures

Now we compare the best SP-ULM logic module with commercial logic
modules. We compared the decomposed implementation of v2 with Actel’s
ACT1 and Xilinx’s XC2000 (four-input LUT-based) logic modules.
We first compare the results of mapping for ACT1 and the four-input

LUTs with those for the decomposed implementation of v2. The act_map
algorithm [Murgai et al. 1992] implemented in MIS was used to map ACT1.
The block counts reported here are the same as those reported in Murgai
et al. [1992]. The LUT mapping algorithm in MIS [Murgai et al. 1991] was
used to do the mapping for the four-input LUT-based logic modules. The
Xilinx logic modules allow two functions to be mapped to the same logic
module, provided the input sets of these functions satisfy certain con-
straints. The function x_merge in MIS does the necessary matching step.
We used this as a postprocessing step after mapping for the Xilinx logic
modules. The results of these experiments are reported in Table V. We have
shown the block counts after mapping (and merging in the case of Xilinx).
A comparison of the number of transistors needed for these logic modules

is given in Table VI. The transistor count for the LUT is derived by
assuming that six transistors are used per SRAM cell and that the decoder
circuitry has a CMOS implementation. We reproduce the total block counts
from Table V in this table for ease of comparison. The normalized block

Table IV. Comparison of Different Logic Modules Based on SP-ULM Functions

Function u1 u2 u2 decomp. v1 v2 v2 decomp.

Transistors 10 12 18 16 18 24
Total Block Count 8127 8044 5930 6587 5345 3644
Normalized Block Count 1.0 1.18 1.31 1.30 1.18 1.07
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count for each implementation is determined by normalizing the product of
total block count and transistor count by this product for ACT1.
We make the following comments based on the preceding experiments:

(1) We observe that our logic module has one less input and one more
output than ACT1, but mapped circuits need 12% less blocks for our
logic module than for ACT1. The improvement is only 4% after the
transistor count is taken into consideration. But the nets to be routed
are fewer for our logic modules.

(2) The four-input LUT uses silicon area poorly compared to ACT1 and our
logic module. But the transistor count is true under the assumptions we
made in the foregoing. Also, the LUT has the advantage of having fewer
inputs and being fully symmetric in its inputs. This makes it very
flexible as far as routing goes. In addition, the LUT can be used to make
a reprogrammable logic module.

Table V. Mapping Results of Commercial Logic Modules
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We should remark here that the area of a logic module is more than that of
the logic function in it. Some programming circuitry is usually required at
the inputs of the logic module. Hence we expect the normalized improve-
ment to be more than the 4% reported here. Unfortunately, we do not have
information about the relative sizes of programmable switches and transis-
tors to quantify this overhead. For example, if the overhead is one transis-
tor per input, then the normalized improvement of our logic module over
ACT1 will be about 9%. If the overload is two transistors per input, then
the normalized improvement will be about 12%.

6. COMMENTS

We also used the techniques based on the theory of universal logic modules,
described in Thakur and Wong [1995], to derive functions that are SP-
ULM.3 and SP-ULM.4. Note that these techniques do not constrain the
SP-ULM function to be SP itself. For m 5 3 we obtained the same function
as in Equation (1). For m 5 4 the smallest number of inputs we could get
for the SP-ULM function was 7, the same number of inputs as the function
in Equation (2). But this function was much more complex than the one in
Equation (2).
The reason for this is that the technique described in Thakur and Wong

[1995] imposes a certain structure on the universal function. This results in
a constraint on the space of functions that can be chosen as the required
SP-ULM function. This is not necessarily a drawback of the previous
techniques, as that was targeted towards finding a function that covers all
functions, and not necessarily SP functions alone. Thus synthesis algo-
rithms for lookup-table FPGAs were applicable to those logic modules.
When those techniques were applied to generate SP-ULM functions, the
resulting functions also covered many other (nonSP) functions. Naturally
these SP-ULM functions are more complex. Because in this article we
restricted ourselves to SP-ULM functions that were themselves SP, the
resulting functions were much simpler. Consequently, the number of
nonSP functions covered by the SP-ULM functions derived in this article is
smaller.

7. CONCLUSIONS AND FUTURE WORK

There are many tradeoffs involved in the design of a logic module. Some of
the tradeoffs are between silicon area, functionality, synthesizability, and

Table VI. Comparison of Different Logic Modules
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the effect on routing. We showed how the first three issues can be
addressed using the concept of SP functions. The optimality of the tree-
based technology mapping algorithm for such functions guarantees the
synthesizability of logic modules that provide a complete library of SP
functions. We showed how such logic modules can be systematically de-
signed. We demonstrated a logic module that had a comparable complexity
to Actel’s ACT1 logic module. The number of blocks needed to map
benchmarks using our logic module is substantially lower than that using
ACT1. We conclude that considering the synthesizability of a logic module
at design time can aid in making more efficient use of silicon and in
reducing algorithm development effort after the design of the logic module.
We reduced the Logic Module Design problem to the Universal Tree

Design Problem. We gave a greedy heuristic that, in general, finds a
suboptimal solution to the latter problem. Finding the optimal solution is
an interesting open problem.
A statistical analysis of mapped circuits will show exactly which of the

SP functions in the library are used more often than others. One could then
decide to design a logic module that is approximately SP-ULM, that is, it
does not cover all SP functions but only the important ones. This might
lead to a further reduction in the size of the logic module. The techniques in
Section 3 directly apply to such an approach.
We considered trees of AND and OR gates, as in the standard implemen-

tation of a tree-based technology mapper that assumes a logic network
decomposed into two-input AND and OR gates. The algorithm being
structural in nature, it can be used for logic networks decomposed into
AND/OR gates and 2-1 multiplexers. In fact this extension of the mapping
algorithm is used to do the mapping for the Actel logic modules in Murgai
et al. [1992]. We propose to extend our ideas to design logic modules that
can be expressed as a tree of multiplexers and AND/OR gates, and that are
universal, in some sense, for a class of such functions. Given that multi-
plexers have efficient pass gate implementations, this might be an impor-
tant direction.
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