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ABSTRACT
This paper develops and evaluates search and optimization tech-

niques for auto-tuning 3D stencil (nearest-neighbor) computations

on GPUs. Observations indicate that parameter tuning is necessary

for heterogeneous GPUs to achieve optimal performance with re-

spect to a search space. Our proposed framework takes a most con-

cise specification of stencil behavior from the user as a single for-

mula, auto-generates tunable code from it, systematically searches

for the best configuration and generates the code with optimal pa-

rameter configurations for different GPUs. This auto-tuning ap-

proach guarantees adaptive performance for different generations

of GPUs while greatly enhancing programmer productivity. Exper-

imental results show that the delivered floating point performance

is very close to previous handcrafted work and outperforms other

auto-tuned stencil codes by a large margin.

1. INTRODUCTION
Main-stream microprocessor design no longer delivers perfor-

mance boosts by increasing the processor clock frequency due to

power and thermal constraints. Nonetheless, advances in semicon-

ductor fabrication still allow the transistor density to increase at the

rate of Moore’s law. This has resulted in the proliferation of many-

core parallel architectures and accelerators, among which GPUs

quickly established themselves as suitable for applications that ex-

ploit fine-grained data-parallelism.

Still, software development for parallel architectures turns out to

be more difficult than that for uni-processors in terms of obtaining

high performance, even when aided by new programming models

such as CUDA [1] and OpenCL [9]. Programmers spend substan-

tial time and effort to understand the underlying architecture to best

utilize all resources. This can become a daunting task since perfor-

mance is affected by a multitude of architectural features. Even

worse, architectural difference between generations of the same

hardware line may require a diversity of optimization strategies

with sometimes opposite optimal set-points. Programmers may
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have to explore many (if not all) combinations of optimization op-

tions and parameter values to determine the best configuration for

a particular hardware. This poses a great challenge since program-

mer productivity is adversely affected by lengthy tuning efforts.

Simply re-profiling and re-writing the program each time the hard-

ware is upgraded is neither desirable nor feasible over time.

Current compilers for general-purpose languages struggle to bal-

ance portability, performance and programmability. Domain-

specific languages (DSLs), in contrast, offer a promising solution

at the expense of sacrificing language generality [3]. DSLs have re-

stricted expressiveness aimed at a particular domain. It is precisely

this domain-specific knowledge that allows the DSL-compiler to

attain performance achieve comparable to hand-coded domain im-

plementations. In contrast, general-purpose languages are inher-

ently limited in their optimization scope in exchange for assuring

correctness and good overall (but not best) performance on average

for a wide range of applications. Examples of well-known DSLs

are HTML for web pages, Matlab for scientific computation and

SQL for database queries.

This work focuses on providing a portable source-to-source auto-

generation and auto-tuning framework for iterative 3D Jacobi sten-

cil computations on different GPUs. We generate stencil code as

native CUDA code for NVIDIA GPUs, yet the same principles ap-

ply for GPUs of other vendor and comparable programming mod-

els, e.g., OpenCL [9].

Stencil (nearest-neighbor) computations are widely used in scien-

tific computing, including structured grids as well as implicit and

explicit partial differential equation (PDE) solvers in domain rang-

ing from thermo/fluid dynamics over climate modeling to electro-

magnetics among others. An iterative explicit stencil computation

is comprised of computation-intensive kernel. At each discrete

timestep, all stencil points are updated according to values of their

spatial neighbors from a previous timestep. On one hand, the uni-

form and communication-free behavior is well suited for the SIMT

(single instruction multiple threads) paradigm advocated by state-

of-the-art GPUs. On the other hand, an efficient GPU implemen-

tation is sensitive to neighbors accessing patterns across different

stencils. One key characteristic of most stencil computations is the

overlap in input values to update multiple neighboring points. Ex-

ploiting this property is crucial to achieve competitive performance

on GPUs. One common GPU technique is to use the on-chip shared

memory (shared by a warp/block of threads) as an intermediate stor-

age space for overlapped input values. Instead of letting each thread

fetching all inputs from off-chip global memory, all inputs are first

cooperatively loaded to shared memory before they are referenced



when computing a new stencil value. This is beneficial even in

more recent generations of cache-enabled GPUs since this shared

memory is orders of magnitude faster than global memory. It is

critical to determine how many threads should be grouped together

in one block: Increasing the block size increases shared memory

data reuse but may also deteriorate the GPU’s occupancy rate of

processing units [1].

There are many other factors that affect the performance. For ex-

ample, how many stencil points should a thread work on? The

larger the number, the more instruction-level optimizations can be

applied by a compiler. But the less data-parallelism is exposed, the

higher risk is for not fully utilizing a GPU’s processing units. Also,

is mapping inputs to texture memory faster? Our experiments show

that the answer varies from case to case. Overall, there is no uni-

versal, optimal configuration for all types of stencil computations

on different GPU models. Therefore, auto-tuning is not only desir-

able but also necessary to improve performance in this particular

domain.

This work falls into the area of implicitly parallel programming

models [10]. Our model relies on a compiler to generate highly

efficient parallel code without requiring much interaction with the

programmer.

The contributions of this paper are:

• We abstract a wide variety of stencil computations into a set of

domain-specific specifications. This allows the end-user to cus-

tomize specific problems without having to consider the underlying

architecture.

• We thoroughly summarize optimization techniques for stencil

problems in previous literature and extract three sets of key parame-

ters that affect the performance: (1) Block sizes that determine the

shared-memory usage per block; (2) block dimensions that affect

the number of registers consumed by each thread and (3) whether

or not to map a subset of the input into texture memory.

• We develop an auto-generation and auto-tuning framework,

i.e., we translate stencil specifications into executable code that

is subsequently auto-tuned to the optimal configuration within a

parametrized search space for each target GPU.

• Experimental results show competitive performance to manual

tuning and demonstrate the superiority and necessity for auto-

tuning to combining performance with correctness.

The rest of the paper is organized as follows. The related work

is presented in Section 2. In Section 3, we describe the stencil

specification and the output of the framework. We explain various

optimization strategies and how they are applied to our framework

in Section 4. Detailed experimental results are presented in Section

5, with thorough comparison with previous works. We summarize

our work in Section 6.

2. RELATED WORK
Auto-tuning has long been identified as an effective approach to

offer portability and productivity. For example, ATLAS [2], OSKI

[23] and FFTW [6] are well recognized auto-tuning libraries tar-

geted at general-purpose processors for dense/sparse linear algebra

subroutines and FFT kernels in digital signal processing, respec-

tively.

Recent improvements in programmability of GPUs allow auto-

tuning to be applied to GPUs as well. Several CUDA implemen-

tations for linear algebra subroutines and FFTs with auto-tuning

capability already exist [7, 12, 19].

Previous implementations of stencil computations on GPUs can be

grouped into three categories: (1) Hand-coded implementations of

a particular stencil that strive to achieve the best performance pos-

sible [17, 18, 20] — but with optimization techniques that may not

generalize to other types of stencils — (2) Implementations where

ease of programming is the primary goal rather than performance

— often with code generators for various stencils [5, 22, 14, 11] —

and (3) implementations that focus on a particular parameter and

study how tuning it can affect performance [13, 16].

We conjecture that performance or programmability are not mu-

tually exclusive. The merit of our work is to offer both ease of

programming and performance at the same time. By providing

a stencil specification front-end, we alleviate the end-user’s bur-

den to master architectural details. Near-optimal performance is

achieved by extracting necessary parameters and thoroughly auto-

tuning them. Even though some of the aforementioned work uti-

lizes certain tuning parameters, such work either relies on ad-hoc

hand tuning [22] or the tuning space is limited [5, 11].

3. DESIGN OVERVIEW
The stencil computation considered in this work allows point-wise
updates according to a sequence of the following equation over a
3D rectangular domain:

out([i][j][k]) =
∑

m

wm ∗ in[i± Im][j ± Jm][k ±Km]

+
∑

l

wl[i][j][k] ∗ in[i± Il][j ± Jl][k ±Kl]

+
∑

n

wn ∗ inn (1)

The three dimensional addressing in the parenthesis on the left

hand side is optional. If absent, we assume the result (out in this

case) is an intermediate result that will be used later in another in-

struction on the right hand side as an input inn. The first two parts

on the right hand side characterize the stencil behavior. The cen-

ter point and a number of neighboring points in the input grid (in)

are weighted by either scalar constants (wm) or elements in grid

variables (wl[i][j][k]) at the same location as the output. Offsets

(Im/Jm/Km and Il/Jl/Kl) that constrain how the input grid is

accessed are all constant. We call their maxima the halo margins of

three dimensions (halo_i = max {Im/l}, halo_j = max {Jm/l}
and halo_k = max {Km/l}). To ensure that the access pattern

is legal (non-negative indexing) for marginal elements in the input

grid in, we assume both input and output grids (in and out) are

enlarged by twice the halo margins on each associated dimension.

We differentiate wls and in in (1) and call them array parameters

and array input, respectively. Array parameters are restricted by

their access pattern: they can only be accessed at the same posi-

tion as the output element. The array input can be accessed with

various constant offsets (i/j/ks) on each dimension. We assume

there is only one array input, but there can be zero or multiple array

parameters.

Given the stencil specification that contains only a list of instruc-

tions in the format of Eq. 1, our auto-tuning framework generates



typedef struct {
int dims[3];
int iter;
int haloMargins[2][3];
...
int numNodes; // for multi-node
int curNode;// for multi-node

} StencilConfig;

(a) Auto-Generated Code

initStencil(StencilConfig *config);
stencilIteration(StencilConfig *);
stencilIteration_mpi(StencilConfig *);
exitStencil(StencilConfig *);

(b) API

int main(int argc, char **argv) {
StencilConfig config;
config.iter = 0;
config.dims[0] = 256; ... // more init.
initStencil(&config);
while(config.iter < 100) // run 100 iterations

stencilIteration(&config);
exitStencil(&config);

}

(c) Sample User Code

Figure 1: Example of Auto-Generated Code (Excerpts)

(a) 7-Point (b) 13-Point (c) 19-Point (d) 27-Point

Figure 2: Stencil Examples

a header file and an implementation file that can be either included

in user code or compiled into libraries.

Excerpts of the generated code are depicted in Figure 1. The two

major APIs are stencilIteration() and stencilIteration_mpi(). One

performs single GPU calculations, the other is for multiple-node

GPUs (GPU clusters) computations with node-to-node MPI mes-

sage passing.

We call a stencil calculation an N-point stencil where N is the total

number of input points used to calculate one output point and an

order-M stencil where M is the maximum over all halo_i/j/ks. In

this paper, we choose four types of stencil computations as bench-

marks (see Figure 2).

• 7-Point Stencil (Figure 2(a)): Each element in the output grid

is updated by the same position in the input grid and 6 neighbors

offset by 1 on each direction. The grid point and 6 neighbors are

scaled by α and β, respectively, before they are added to generate

the output. Both α and β are constants. There are 8 floating-point

operations for each point (6 adds and 2 multiplies).

• 13-Point Stencil (Figure 2(b)): The access pattern resembles the

7-point stencil except that the maximal distance to the neighbors

extends to 2, making it an order-2 stencil. There are 15 floating-

point operations at each point (12 adds and 3 multiplies).

• 19-Point Stencil (Figure 2(c)): This is also called the Himeno

benchmark, the behavior of which is detailed elsewhere [20]. We

use the same specification (Table I in [20]), except for ignoring the

last line of residual calculation. All the weights in this benchmark

are array parameters, making it a very cache-unfriendly bench-

mark. The total number of floating-point operations is 32 and there

are 14 memory accesses per point.

• 27-Point Stencil (Figure 2(d)): Each grid point computation in-

volves all points in a 3 × 3 × 3 cube surrounding the center grid

point. The 4 edge points, 8 corner points and 12 face neighbor

points are multiplied by different constants. The number of opera-

tions is 30 with 4 multiplies and 26 adds.

Table 1 summaries the specifications and properties of the four

stencils above.

3.1 Domain Specification and Framework
The formulation of a stencil is trivial in our framework as users pro-

vides a file specifying an equation according to the format of Eq. 1

plus parameters, such as the size of each dimension and data type

(float or double). Table 1 shows that each stencil can be expressed

by no more than a few lines of code. In contrast to hand-written

CUDA kernels, which usually are a hundreds of lines of code, this

is a considerable improvement in terms of productivity. The in-

ternal work flow of the framework is depicted in Figure 3. The

parser analyzes the specification code in terms of Eq. 1 and ex-

tracts stencil features. These include halo margins (halo_i/j/k),

input/output array names, scalar or array parameters (ws) and the

number of floating-point operations per stencil. The parser also

detects whether the stencil access pattern includes corner element

accesses or not. 7-point and 13-point stencils are corner access free

because at most one dimensional offset exists when accessing the

input array. The code generator takes those feature parameters and

chooses different template files according to the corner access pat-

tern before generating tunable code. The auto-tuning engine mainly

operates on a single-node level, where optimized parameters are

determined based on run-time profiling. The same optimized pa-

rameters are used on multiple nodes to generate GPU cluster code

with MPI support.

3.2 Domain Kernel Template
The design of the template kernel file is affected by the strategy

to break the 3D rectangular space into thread blocks in CUDA. In

related work, the 3D X × Y × Z space was divided into smaller

cuboids of size x × y × z [5, 15]. Each of them was mapped to

a thread block of the same size. Recently, a 2.5D decomposition

method was proposed [20, 18]. It decomposes the 3D stencil space

over the two most frequently changed dimensions (X and Y). Sten-



Kernel Specification
# array

params
Flops

per stencil

mem. refs

per stencil
7-point tmp = (ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1) ∗ beta; 0 8 8

order-1 u1i,j,k = tmp + alpha ∗ ui,j,k;
13-point tmp = coef1 ∗ (ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1);
order-2 tmp+ = coef2 ∗ (ui+2,j,k + ui−2,j,k + ui,j+2,k + ui,j−2,k + ui,j,k+2 + ui,j,k−2); 0 15 14

u1i,j,k = tmp + coef0 ∗ ui,j,k;
s0 = wrk1i,j,k + a0di,j,k ∗ pi,j,k+1 + a1di,j,k ∗ pi,j+1,k+1;
s0+ = b0di,j,k ∗ (pi,j+1,k+1 − pi,j−1,k+1 − pi,j+1,k−1 + pi,j−1,k−1) + a2di,j,k ∗ pi+1,j,k;

19-point s0+ = b1di,j,k ∗ (pi+1,j+1,k − pi−1,j+1,k − pi+1,j−1,k + pi−1,j−1,k);
order-1 s0+ = b2di,j,k ∗ (pi+1,j,k+1 − pi−1,j,k+1 − pi+1,j,k−1 + pi−1,j,k−1) + c0di,j,k ∗ pi,j,k−1; 12 32 32

(himeno) s0+ = c1di,j,k ∗ pi,j−1,k + c2di,j,k ∗ pi−1,j,k;
ss = (s0 ∗ a3di,j,k − pi,j,k) ∗ bndi,j,k;
wrk2i,j,k = pi,j,k + omega ∗ ss;
bi,j,k = param0 ∗ ai,j,k

+param1 ∗ (ai−1,j,k + ai+1,j,k + ai,j−1,k + ai,j+1,k + ai,j,k−1 + ai,j,k+1)
27-point +param2 ∗ (ai−1,j−1,k + ai−1,j+1,k + ai+1,j−1,k + ai+1,j+1,k + ai−1,j,k−1 + ai−1,j,k+1 0 30 28

order-1 +ai+1,j,k−1 + ai+1,j,k+1 + ai,j−1,k−1 + ai,j−1,k+1 + ai,j+1,k−1 + ai,j+1,k+1)
+param3 ∗ (ai−1,j−1,k−1 + ai−1,j−1,k+1 + ai−1,j+1,k−1 + ai−1,j+1,k+1

+ai+1,j−1,k−1 + ai+1,j−1,k+1 + ai+1,j+1,k−1 + ai+1,j+1,k+1);

Table 1: Specifications of Four Stencil Benchmarks. Indices are subscripted to save space.

CodeParser
Parameter

Engine

Tunable
Code Multi−Node

Generator Code Generator Code

Multi−Node
Stencil Lib

Single Node
Code

Optimized
Multi−Node

Optimized

Single Node
Stencil Lib

Stencil
Reference

Templates

Tuning

Figure 3: System work flow: A user-defined specification is parsed to generate tunable code based on a template. The code is passed

to an auto-tuning system to find the best parameter configuration for a single GPU (also for GPU clusters with MPI)

cils of size x×y×Z are assigned to a thread block, which contains

only a plane of x×y threads. Inside the kernel, threads sweep over

the Z axis and cooperatively process one plane at a time.

The benefits of the second method are three-fold: (1) It reduces

the pressure on shared memory usage. In 3D decomposition, each

block maintains a small block of size (x+2×halo_i)× (y+2×
halo_j)× (z+2× halo_k) in shared memory. The 2.5D method

only needs a blocks size of (x+2×halo_i)× (y+2×halo_j)×
(1 + 2 × halo_k). While sweeping through the z-axis, the planes

can be shifted and reused as the work on z-axis is progressed. If

the stencil does not have corner accesses, such as 7-point and 13-

point stencils, we can further reduce the shared-memory usage to

(x + 2 × halo_i) × (y + 2 × halo_j) while keeping the other

parameters in registers. (2) The 3D decomposition method con-

sumes more memory bandwidth on the Z axis because halo regions

on Z are loaded twice on different blocks along the Z axis. (3) The

2.5D decomposition method tends to allocate more stencil points

per thread (Z points per thread instead of z points). This is an opti-

mization technique also known as thread fusion. For a large enough

problem size, i.e., (X × Y ) generates enough threads, this helps to

amortize other overheads, such as initial setup code in the kernel.

In our design, we adopt the block partition strategy in the 2.5D

blocking method, i.e., stencil space is partitioned into columns

(Figure 4(a)). The cross section of each column is of size

(BlockSize.x × BlockSize.y), see Figure 4(b). We further

unroll over both X and Y dimensions to use (BlockDim.x ×
BlockDim.y) threads per kernel block (see Figure 4(c)). Previous

work only exploits the unrolling factor at most over the Y dimen-

sion. Our experiments illustrate that unrolling over both dimen-

sions can be beneficial (see Section 5).

threads
y

x

1

X

Y

Z

... ...

Into Columns Dimensions

(a) Decompose Space (c) Unroll on Both X and Y(b) Column Size is 

(BlockSize.x, BlockSize.y, Z)

BlockSize.x

B
lo

ck
S
iz

e.
y ...

B
lo

ck
S

iz
e.

y

BlockSize.x

B
lo

ck
D

im
.y

BlockDim.x

Figure 4: Stencil space decomposed over X & Y; process one

column per thread block; thread code is unrolled.

Our code generator is based on two kernel templates, depending

on whether the stencil has corner accesses (Fig. 5(a)) or not (Fig.

5(b)), where halo_k = 1 is assumed in these figures. Their most

distinct difference is how the shared memory is used. For sten-

cils with corner accesses, all input stencils are first stored in shared

memory to calculate the output stencils. The corner-free stencils

can be treated as a special case where a plane of stencils does not

share inputs other than the points on the same plane. Therefore,

only the middle plane is stored in shared memory in this case —

all other inputs along the Z axis are stored in register files. This ap-

proach, tailored to corner-free stencils, not only reduces the shared

memory pressure but also speeds up the stencil calculation due to

the performance advantage of using registers over shared memory.



# d e f i n e s i z e y (BLOCK_Y+ h a l o _ j ∗2)

# d e f i n e s i z e x (BLOCK_X+ h a l o _ i ∗2)

t emplate < c l a s s T>

_ _ k e r n e l _ _ s t e n c i l _ i t e r a t i o n ( . . . )

{

/ / I n i t i a l i z a t i o n I n s t r u c t i o n s

g _ tx = . . . ; g _ ty = . . . ;

. . .

__shared__ T shArr [ 3 ] [ s i z e y ] [ s i z e x ] ;

f i r s t = 0 ; second = 1 ; t h i r d = 2 ;

/ / Load f i r s t 2 p l a n e s

shAr r [ 0 ] [ ] [ ] = ;

shAr r [ 1 ] [ ] [ ] = ;

f o r ( k= h a lo _ k ; k<= z S i z e ; k ++) {

/ / Load t h i r d p l a n e t o __shared__

shAr r [ 2 ] [ ] [ ] = ;

__syncthreads ( ) ;

i f ( i n s i d e ) {

/ / s t e n c i l c a l c u l a t i o n

. . .

}

__syncthreads ( ) ;

/ / S h i f t p l a n e s

f i r s t = ( f i r s t +1) %3;

second = ( second +1) %3;

t h i r d = ( t h i r d +1) %3;

} }

(a) With Corner Accesses

# d e f i n e s i z e y (BLOCK_Y+ h a l o _ j ∗2)

# d e f i n e s i z e x (BLOCK_X+ h a l o _ i ∗2)

t emplate < c l a s s T>

_ _ k e r n e l _ _ s t e n c i l _ n o _ c o r n e r ( . . . )

{

/ / I n i t i a l i z a t i o n I n s t r u c t i o n s

g _ tx = . . . ; g _ ty = . . . ;

. . .

__shared__ T shArr [ s i z e y ] [ s i z e x ] ;

/ / Load f i r s t 2 p l a n e s t o r e g i s t e r s

T midd le = . . . ; T below = . . . ;

f o r ( k= h a lo _ k ; k<= zSize−h a lo _ k ; k ++)

{

/ / S h i f t r e g i s t e r s

t o p = midd le ;

midd le = below ;

/ / l o a d t h i r d p l a n e t o r e g i s t e r s

T below = . . . ;

__syncthreads ( ) ;

/ / l o a d m id d l e p l a n e t o __shared__

. . .

__syncthreads ( ) ;

i f ( i n s i d e ) {

/ / s t e n c i l c a l c u l a t i o n

. . .

} } }

(b) Without Corner Accesses

Figure 5: Stencil Kernel Templates

4. GPU-SPECIFIC AUTO-TUNING
We next describe in detail various optimization techniques used by

our implementation. We reason about their effects on performance

and consider if they need to be made elastic by promoting them as

parameters for auto-tuning.

4.1 Single Node Optimizations
Coalescing Memory Accesses: For NVIDIA GPUs, the latency of

global memory references is deeply affected by whether the mem-

ory is accessed in coalesced way or not. More recent GPUs sup-

port coalesced memory access when memory accesses conducted

by threads in one warp can be combined into as few memory trans-

actions as possible [1], where a warp is the basic thread instruction

scheduling unit in NVIDIA GPUs. We reinforce the following rules

to coalesce most of the memory accesses:

• The size of the most frequently changing dimension (X dimen-

sion) for input/output arrays is padded to multiples of 32 stencil

elements.

• The origin of the input/output arrays are shifted right by 32 −
HALO_I stencil elements relative to the memory pointer obtained

from the CUDA malloc function. This guarantees 128-bit align-

ment. The internal origins of the input/output array thus become

128-bit aligned ensuring coalesced memory accesses for output ar-

rays as long as every thread loads the same row at the same time

when operating on a half-warp granularity.

• Parameter arrays are allocated to be the same size as the in-

put/output array, even though only the internal elements are used

throughout the stencil calculation. This way, the indices of param-

eter arrays and parameter input become identical saving registers

and extra cycles for address calculations. Similar to the input/out-

put arrays, their origins are also shifted to the right. Reading from

the parameter arrays become coalesced as well.

Tuning the Block Size: Choosing the right block size is one of

the most important factors to balance the utilization of registers

and shared memory. Since we use Z-axis sweeps, our blocks have

two dimensions of size BlockSize.x × BlockSize.y. The opti-

mal blocking size is determined by several seemingly conflicting

factors:

• Since accesses to part of the halo margins are non-coalesced

memory accesses, we want to limit these as much as possible. This

gives us incentive to increase BlockSize.x as much as possible.

• To reduce the redundant loading of halo margins between differ-

ent blocks, we need to keep the block close to a square shape.

• The shared-memory usage is proportional to BlockSize.x ×
BlockSize.y. It must not surpass the shared-memory size on-chip.

Our experiments show that the optimal blocking size can be differ-

ent under different scenarios: On one hand, different GPU models

require different sizes for the same stencil problem. On the other

hand, the same GPU model requires different blocking sizes for

different stencil problems. To obtain the coalesced memory ac-

cess effects for an input array, our search space for BlockSize.x
is a multiple of the half-warp (16, 32, 48, 64). BlockSize.y has

no such constraints. So we sweep its value continuously from 2

to 16. The search space for the CUDA block size (BlockDim.x
and BlockDim.y) is a subset of the block size search space,

with the constraint that BlockSize.x/y is integer divisible by

BlockDim.x/y. The motivation behind this ratio is that a smaller

set of threads has a higher efficiency in using registers. This thor-

ough search lets us balance register utilization and shared memory

space, two key resources for stencil implementations on GPUs that

are scarce.

Loading the Input Array Efficiently: An important step in the

stencil kernel is to efficiently access the input array. A straight-

forward but naive implementation is to load it directly from the

off-chip global memory while calculating the output point. The

obvious drawback is that this does not exploit the data sharing be-

tween neighboring threads. The on-chip shared memory serves

as an ideal user-controlled scratch pad in this scenario. The

problem narrows down to how to efficiently load a larger block

of data ((BlockSize.x + 2 ∗ HALO_I) × (BlockSize.y +
2 ∗ HALO_J)) using a smaller set of computation threads

(BlockDim.x × BlockDim.y). We first load the internal re-

gion (BlockSize.x × BlockSize.y). Because BlockDim.x/y
are divisible by BlockSize.x/y, this can be done easily without

branches. For marginal regions, we rely on the code generator

to map computational threads to elements on the margin region,

as shown in Figure 6. In the graph, we assume BlockDim.x/y
equals to BlockSize.x/y, respectively. Each computing thread is

sequentially assigned to a point in the margin area. The x and y in-

dices are auto generated as a constant array. The number of points

in the margin area is not necessarily divisible by the number of

computing threads. In those cases, threads will be responsible for

loading more than one marginal points or there will be idle threads

that load the upper-left corner point (see the Figure 6(a)) to avoid

diverging branches. Comparing with other approaches, e.g., [20],

this method neither requires branches nor issues any unnecessary

loads. The only non-coalesced memory loads are issued for the

columns on each side of the sub-plane.

Using Texture Memory: Mapping the read-only input array into

the GPU’s texture memory has been shown to improve performance

in [20], especially for bandwidth-limited benchmarks. There is no

texture support for the double precision data type, but we can use

the texture fetch for the int2 type and __hiloint2double to convert

it to double. Whether or not to use texture memory for the input

array is determined by a boolean tuning parameter.



idle thread
(1) (2)

non−coalesced loading

(a) No Corner Case

non−coalesced loading

(1) (2)

(b) With Corner Case

Figure 6: Load input sub-plane to shared memory. Internal regions are loaded in Step (1). There is a one-to-one mapping between

computing threads and internal regions. In Step (2), the mapping is auto-generated by the parameter tuning engine. (A circle denotes

a thread. A triangle denotes an array element loaded at the current step.)

4.2 Multi-Node Auto-Tuning
For GPU clusters, we divide the stencil space along the Cartesian

space. Each node is responsible for updating a smaller rectangular

3D space. The tuning parameters determined for a single node are

re-used directly for multi-node scenarios. However, the code gen-

erator needs to break the single kernel into several smaller ones,

each of which only processes a portion of the data set. The objec-

tive is to separate the six plane boundaries from the internal region.

While the boundaries need to be exchanged between neighboring

nodes, the internal regions can be calculated completely in parallel

with communication.

Our framework generates MPI calls for inter-node communication.

Nodes perform the following steps per iteration:

(1) Kernels copy non-continuous boundaries residing in GPU mem-

ory into continuous GPU memory buffers. For stencils with corner

accesses, eight corners and 12 edges are also copied into separate

buffers. Then, continuous boundaries are transferred from GPU

memory to host memory via cudaMemcpy.

(2) An asynchronous kernel updates internal regions.

(3) MPI sends and receives are issued to exchange boundaries.

Once boundaries are received, boundaries are copied from host

memory to GPU memory. This step can be overlapped with the

step (2).

(4) Kernels update stencils on boundaries.

These steps are illustrated in Figure 7.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
We conducted experiments on single nodes with four NVIDIA

GPU models: Geforce GTX 280, Tesla C1060, Tesla C2050 and

Geforce GTX 480, spanning two generations of NVIDIA GPUs

ranging from consumer-end graphics card to high performance

computing GPUs. Their major specifications are listed in Table 2.

All kernels are compiled under CUDA 3.2 at O3 optimization level.

Experiments with Tesla C2050 are conducted with ECC turned off.

For Fermi GPUs (Tesla C2050 and GTX 480), we prefer shared

memory over L1 cache since the shared memory size is 48 KB (in

contrast to 16 KB in earlier GPUs).

We also conducted multi-node experiments on two set of GPU clus-

ters connected by QDR Infiniband (36 Gbps) with fat-tree topology.

(4) Compute boundaries

own boundaryown boundary

neighbor boundary

GPU
Memory

CPU
Memory

region
internal (2) Compute internal region

(1) Copy own boundaries to host

to GPU

(3.a) MPI IRecv

(3.b) MPI ISend

(3.c) Copy neighbor boundary

Figure 7: Steps in multi-node scenario. For clarity, only one boundary

plane is shown.

One cluster was comprised of 32 nodes, each with one Tesla C2050,

other had 48 nodes, each with one GTX 480.

5.2 Single Node Results
Our single-node auto-tuning engine finds the optimal parame-

ters for all stencil types on each GPU model within the given

search space. These parameters are shown in Table 3. Each

GPU model has different optimal settings for all stencil types,

even within the same GPU generation. Almost all models fa-

vor large BlockSize.x except for some cases with early genera-

tion GPUs. These older GPUs have tighter restrictions on shared

memory size, especially for double precision (DP) stencils. Thus,

they can only afford smaller BlockSize.x sizes. BlockSize.y
is usually less than BlockSize.x, except for 7/13-point DP sten-

cils on a GTX 280 and the 13-point DP stencil on a Tesla C1060

because their smaller BlockSize.x (16) allows them to have a

larger BlockSize.y. Thus, reducing the non-coalesced memory

access (increasing BlockSize.x) is favored over reducing redun-

dant loads (increasing BlockSize.y).

An illustration of each tuning parameter’s contribution to perfor-

mance is given in Figure 8. Here, auto-tuning is comprised of three

steps: (1) BlockSize.x/y are set to be equal to BlockDim.x/y;

(2) BlockSizes.x/y are tuned for better performance; (3) texture

mapping is enabled/disabled. The necessity to unroll is confirmed

by the fact that BlockDim.x/y sizes are almost always different

than BlockSize.x/y. The only exception is given by a 19-point

DP stencil for Fermi GPUs. In this cases, BlockSize.y is too small



Model SM Count Core Count L1 Cache Bandwidth(GB/s) Register File Size Shared Memory SP GFlops DP GFlops

Geforce GTX 280 30 240 N 141.7 16 KB 16KB 933 78

Tesla C1060 30 240 N 102.4 16 KB 16KB 933 78

Tesla C2050 14 448 Y 144 32 KB 16 or 48 KB 1288 515

Geforce GTX 480 15 480 Y 177.4 32 KB 16 or 48 KB 1345 168

Table 2: Single Node Experiment Platforms

Model BlockSize.x BlockSize.y BlockDim.x BlockDim.y Texture SP GFlops

Geforce GTX 280 64/32/64/16 8/8/3/6 32/32/64/16 8/2/3/2 Y/Y/N/N 76.0/117.0/57.6/94.2

Tesla C1060 64/64/64/32 8/6/6/8 32/64/64/32 8/2/3/2 Y/N/Y/N 57.5/91.8/44.8/95.5

Tesla C2050 64/64/64/64 8/6/3/4 32/64/32/32 8/3/3/4 Y/Y/N/Y 87.3/133.8/64.6/157.6

Geforce GTX 480 64/64/64/64 3/3/3/8 32/32/32/32 3/3/3/4 Y/Y/N/Y 108.2/167.8/77.4/203.7

Model BlockSize.x BlockSize.y BlockDim.x BlockDim.y Texture DP GFlops

Geforce GTX 280 16/16/16/16 16/16/6/6 16/16/16/16 4/8/3/3 N/N/Y/N 32.5/35.4/24.0/29.0

Tesla C1060 32/16/32/16 6/16/4/6 32/16/32/16 2/8/2/3 N/N/Y/N 28.8/35.3/22.8/29.3

Tesla C2050 64/32/64/32 8/6/3/6 32/32/64/32 4/2/3/2 Y/Y/N/Y 45.9/66.8/31.8/97.7

Geforce GTX 480 64/32/64/32 6/6/3/4 32/32/64/16 3/2/3/4 Y/Y/N/Y 55.2/77.2/38.7/86.0

Table 3: 7/13/19/27-Point Stencil Optimal Tuning Results on Single GPU for Single/Double Precision (SP/DP)

to unroll. In addition, Fermi GPUs provide enough registers to sup-

port a BlockDim.x of the same size as BlockSize.x.

Another interesting observation is that mapping the input array to

texture memory does not necessarily result in better performance.

This is in part because some stencils are not bandwidth-limited on

certain GPUs. For GPUs that have high GFlops capabilities, using

texture memory usually helps because memory references are on

the critical path (7/13/27-point DP stencils for C2050 and GTX

480). Using texture memory has one overhead though: Texture

mapping requires the device memory to start from 128-bit aligned

address. But our input/output array base addresses are shifted to

non-aligned addresses so that the addresses with offset at halo_i
(base address for internal region) are 128-bit aligned. Therefore,

there is an extra offset adjustment calculation if we want to enable

texture mapping. This extra arithmetic for address computation can

negate the benefit of lower latencies for texture memory accesses

for some cases.

To demonstrate the effectiveness of the auto-tuning engine, we se-

lect two cases and represent performance in GFlops as a surface in

a 3D histogram. Figure 9 depicts the single-precision (SP) 7-point

stencil on a GTX 280. Figure 10 depicts the DP 27-point stencil

on a Tesla C2050. The left diagrams in the figures illustrate how

the performance changes while varying BlockSize.x/y, assum-

ing the best BlockDim.x/y has been found. The right diagrams

in the figures depicts how the performance changes when varying

BlockDim.x/y for a fixed BlockSize.x/y overall. The figures

demonstrate that each tuning parameter plays an important role in

the final performance, neither one of which can be explored inde-

pendently of the other. Hence, an auto-tuner needs to exhaustively

test all permutations.

Our auto-tuning engine does exactly that: an exhaustive search over

all possible permutations is performed. This guarantees a global

optimum with respect to the parameter search space. Adaptive

search methods could be adopted to prune the search space. How-

ever, care must be taken because local optima exist, as seen in the

figures. For example, in Figure 9(b), (64,4) is another locally op-

timal BlockDim.x/y pair. Considering the search space is rela-

tively small (less than 200 combinations in the worst case), exhaus-

tive search is feasible as individual runs can be short.

5.3 Multi-Node Results
We study the weak scaling property [8] of our framework in the

two GPU clusters. We keep the problem size per GPU constant and

increase the stencil size over all three dimensions at roughly the

same rate as the increase in number of GPUs. Therefore, the sten-

cil space is kept as close to a cube as possible. The Y axis of Figure

11 depicts the normalized performance (measured in GFlops) of a

single GPU. For the C2050 GPU cluster, all three order-1 stencils

(7/19/27-point) show better efficiency (77% to 80%) than order-2

stencil (50% for 13-point). Because the GTX 480 has higher single-

node DP GFlops for 7/13/19-point stencils, the weak scaling effi-

ciency is worse than that on the C2050 cluster. But for 27-point

stencils, GTX 480’s single-node DP GFlops is less than C2050’s

DP GFlops. Therefore, the efficiency is better (about 90%). This

can be explained by the difference in inter-node message sizes re-

quired by different stencils types. The message size is roughly pro-

portional to the degree of the stencil order. Therefore, our 13-point

stencil is communication-bound in our current cluster configura-

tion.

Some of the curves do not show a noticeable improvement from 24

to 27 GPUs (nodes). The 19-point stencil curve even shows a slight

drop. This is because the stencil space is divided into 2×3×4 and

3×3×3 partitions in these two cases, respectively. The latter case

contains a center node that needs to communicate with all other 26

nodes. This node becomes a hot-spot and reduces the performance.

But as we increase the number of GPUs, the curve recovers to the

expected slope for weak scaling.

5.4 Comparison with Previous Work
We report our results on a wide range of GPUs and stencil types,

which allows us to compare our performance directly with a wide

range of prior work, both for handwritten and auto-generated codes.

Datta et al.’s work on optimizing stencil codes in multi-core archi-

tectures including GPUs is one of the early contributions in this

area [5]. They showed an unprecedented 36 GFlops for 7-point
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Figure 8: Stencil Tuning Effect Breakups
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Figure 9: GTX 280 7-Point Stencil (SP)

stencil on a GTX 280 with their highly optimized code. Theirs is

10% faster than our performance (32.5 GFlops). This is mainly due

to the difference between the instruction orders in our template file

and their hand-tuned kernel code, as we discovered by inspecting

their and our codes side-by-side. But interestingly, their best per-

formance is achieved at a block size of 16× 16 and unroll factor of

4 over the dimension Y, which is consistent to our findings in our

auto-tuning engine. However, this configuration is only optimal for

a DP 7-point stencil on the GTX 280s. For everything else, the

16× 16 block sizes are no longer optimal, as indicated by Table 3.

An efficient and handwritten CUDA implementation on the Hi-

meno benchmark is reported by Philips et al. [20]. Their imple-

mentation, with an extra two Flops per stencil for residual calcula-

tion, achieved 50 GFlops SP on a Tesla C1060. Our auto-generated

code achieves 44.8 GFlops on the same platform and is within 5%
to theirs if Flops are normalized (44.8 × 34

32
= 47.6 ). Their best

block sizes are 64×2 for Tesla C1060, while ours is 64×6 with an

unrolling factor of 2 over the Y axis. This is because they load the

input arrays into shared memory by issuing four branch-free loads

aligned at four corners. Choosing BlockSize.y as 2, in their case,

minimizes redundant memory loads, which is beneficial because

SP Himeno is bandwidth limited on the C1060. They also reported

near-perfect weak scaling efficiency on up to 16 GPUs. But their

system configuration is different from ours: (1) Each node has two

GPUs instead of one in our case. Therefore, half of the network

messages become memory copies on the same host. (2) The stencil

space only grows along the Z axis, eliminating the need to perform

Cartesian partitioning. This reduces the multi-node code complex-

ity significantly.

Kamil et al. proposed an auto-tuning framework for multi-core ar-

chitectures [11]. However, they reported only 14 GFlops DP on a

7-point stencil for a GTX 280. This is mainly because their code

generator does not take advantage of the fast on-chip shared mem-

ory, which is an ideal intermediate storage level to reduce memory

load for stencil-like computations.

Nguyen et al. have reported by far the fastest implementation of

any SP stencil code on single GPU [18]. Their manually-written

code for a 7-point stencil achieves 136 GFlops on GTX 285 (a simi-

lar platform as GTX 280), a large gain over our reported 76 GFlops.

However, their extra speedup comes from saving a large amount of

global memory accesses by exploiting data locality on the time do-

main. This is equivalent to executing several iterations per kernel,

a technique also known as increasing the ghost region. Increasing

the ghost region leads to less frequent message exchanges but does

not reduce the total amount of data transferred in the network be-

cause the payload for each message increases as well. It has been

shown to be insignificant in multi-node scenarios due to the slower

inter-node communication [21]. Therefore, we decided not to in-

clude ghost region sizes/update frequencies as a tuning parameter

in our code generator and auto-tuning schemes. For DP stencils,

their performance is no better than [5] due to limitations in shared
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Figure 10: C2050 27-Point Stencil (DP)
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Figure 11: Weak Scaling of DP Stencils on GPU Clusters

memory size of the GTX 285.

Unat et al. proposed a compiler framework called Mint using anno-

tated C as the front-end. It converts stencil computation into C code

using pragmas with several levels of optimized CUDA code [22].

Our DP performance of a 7-point stencil on the C1060 achieves

the same GFlops as their hand-written code (28 GFlops). In con-

trast, auto-generated Mint code with the highest level optimization

achieves only 22 GFlops.

Christen et al. [4] and Maruyama et al. [14] proposed two DSLs:

Patus and Physis. Patus purely depends on the cache on the Fermi

architecture without using any shared memory. Therefore, its auto-

tuning capability is severely limited. Physis currently lacks any

auto-tuning scheme, one has to choose block sizes manually. Both

report SP performance inferior to ours.

6. CONCLUSION
This paper shows that GPU programmability and performance are

not mutually exclusive under DSLs. With a DSL specification fed

to the front-end, problem descriptions can become very concise and

intuitive. Using auto-tuning with run-time profile feedback, opti-

mal tuning points within the parameter search space can be iden-

tified. Our framework combines auto-generation and auto-tuning

of 3D stencil codes on heterogeneous GPU clusters. We extract

a small, selective number of key performance-sensitive parameters

and auto-tune them to achieve the best possible performance over a

variety of GPUs. Compared to previous work, we manage to keep

the programmer’s effort to even a lower overhead without signifi-

cant sacrifice in performance.
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